
The application of artificial intelligence in water
transportation systems

Lučin, Ivana

Doctoral thesis / Disertacija

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Rijeka, Faculty of Engineering / Sveučilište u Rijeci, Tehnički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:190:564948

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-16

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of 
Engineering

https://urn.nsk.hr/urn:nbn:hr:190:564948
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repository.riteh.uniri.hr
https://repository.riteh.uniri.hr
https://www.unirepository.svkri.uniri.hr/islandora/object/riteh:2933
https://dabar.srce.hr/islandora/object/riteh:2933


UNIVERSITY OF RIJEKA
FACULTY OF ENGINEERING

Ivana Lučin

THE APPLICATION OF ARTIFICIAL
INTELLIGENCE IN WATER

TRANSPORTATION SYSTEMS

DOCTORAL DISSERTATION

Rijeka, 2022.





UNIVERSITY OF RIJEKA
FACULTY OF ENGINEERING

Ivana Lučin

THE APPLICATION OF ARTIFICIAL
INTELLIGENCE IN WATER

TRANSPORTATION SYSTEMS

DOCTORAL DISSERTATION

Thesis Supervisor: Prof. D. Sc. Zoran Čarija
Thesis Co-supervisor: Prof. D. Sc. Siniša Družeta

Rijeka, 2022.





SVEUČILIŠTE U RIJECI
TEHNIČKI FAKULTET

Ivana Lučin

PRIMJENA UMJETNE INTELIGENCIJE U
SUSTAVIMA TRANSPORTA VODE

DOKTORSKA DISERTACIJA

Mentor: prof. dr. sc. Zoran Čarija
Komentor: prof. dr. sc. Siniša Družeta

Rijeka, 2022.





Thesis Supervisor: Prof. D. Sc. Zoran Čarija, University of Rijeka, Faculty of En-

gineering

Thesis Co-supervisor: Prof. D. Sc. Siniša Družeta, University of Rijeka, Faculty

of Engineering

This doctoral dissertation was discussed on at the University

of Rijeka, Croatia, Faculty of Engineering in front of the following Evaluation Com-

mittee:

1.

2.

3.





Abstract

Water distribution systems are designed to assure safe water transportation to the end-

users. Since the water needs to have required quality and hydraulic characteristics,

these systems are regularly monitored, controlled, and improved. In this doctoral dis-

sertation, an investigation of different applications of artificial intelligence methods for

the purpose of improving water distribution systems was conducted. Firstly, the opti-

mization procedure coupled with numerical simulations is used for improving the de-

sign of the parts of the water system intake structure. In the further investigation of

optimization applications, pollution detection strategy is developed, where novel op-

timization approach based on search space reduction method and independent op-

timizations conducted for each possible source node is proposed. Machine learning

has been applied in the prediction of a number of pollution sources, based on a wide

range of pollution scenarios with a various number of pollution sources. Additionally,

machine learning has been used for leak localization, based on a wide range of leak

scenarios. As a further development of leak localization methodology, pipe segmen-

tation approach was proposed in which additional divisions of pipes were introduced

to simulate a more realistic scenario where leaks can occur not only at pipe junctions

but at any point of pipe. The conducted research showed several new possible utiliza-

tions of artificial intelligence methods which were previously not considered mainly due

to their considerable computational demand. These applications need to be further

explored since with the rapid increase of computational power these methods could

provide valuable insight into water system behavior and improve water transportation

system operation.

Keywords: water distribution systems, shape optimization, leak localization, pollu-

tion localization, Random Forest
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Sažetak

Sustavi transporta vode služe za opskrbu različitih korisnika pri čemu je glavna funkcija

sustava osiguranje želje kvalitete vode i njenih hidrauličkih karakteristika. Problemi

u sustavu mogu uzrokovati značajne gubitke, trajna oštećenja, a u konačnosti mogu

predstavljati opasnost za ljudske živote, te se zbog toga sustavi transporta vode re-

dovito prate i reguliraju. S povećanjem količine dostupnih mjerenja kao i s povećan-

jem računalnih resursa, primjena umjetne inteligencije prilikom dizajniranja i kontrole

sustava transporta vode postala je sve zastupljenija. U ovoj doktorskoj disertaciji pred-

loženo je nekoliko novih smjerova primjene umjetne inteligencije u svrhu poboljšanja

sustava transporta vode. Prvi od istraženih smjerova je optimizacijski pristup koji je

primjenjen za poboljšanje dizajna djelova ulazne strukture sustava transporta vode,

konkretno zaštitne rešetke. Primjenom optimizacijskih metoda moguće je prilagoditi

geometriju poprečnog presjeka kako bi se minimizirali hidraulički gubitci uz zadovol-

jenje ekoloških i inženjerskih zahtjeva. Optimizacijski pristup je primjenjen i na prob-

lem detekcije mjesta unosa onečišćenja u sustav transporta vode. U slučaju pojave

onečišćenja u sustavu potrebno je brzo odrediti lokaciju i parametre onečišćenja, u cilju

upozorenja korisnika i poduzimanja potrebnih zaštitnih radnji. Primjenom nove metode

koja smanjuje broj potencijalnih čvorova unosa onečišćenja, za svaki preostali poten-

cijalni čvor proveden je zaseban optimizacijski postupak, čime je smanjena dimenzion-

alnost problema što pojednostavljuje i ubrzava optimizacijski postupak. Nadalje, stro-

jno učenje primjenjeno je za predviđanje nekoliko mogućih lokacija unosa onečišćenja

na temelju ograničenih senzorskih mjerenja. Predikcijski model je istreniran na sin-

tetičkim mjerenjima dobivenim iz većeg broja numeričkih simulacija provedenih za var-

ijabilni broj lokacija onečišćenja i za varijabilne parametre unosa onečišćenja. Slična

metodologija provedena je i za određivanje mjesta oštećenja cjevovoda, gdje je predik-

cijski model istreniran na sintetičkim podatcima o izmjerenim tlakovima, koji su dobiveni
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iz većeg broja simulacija sa varijabilnim mjestom i veličinom oštećenja. Za razliku od

standardne metodologije, u kojoj se pretpostavlja da se oštećenje dogodilo u nekom od

čvorova vodovodne mreže, u ovom radu predlaže se novi pristup u kojem se nakon pre-

liminarne lokalizacije oštećenja provodi dodatna segmentacija cijevi kako bi se lokacija

oštećenja mogla točnije odrediti. Provedeno istraživanje pokazalo je da se metode

umjetne inteligencije danas mogu uspješno primjeniti na probleme koji se prethodno

nisu rješavali na ovaj način, ponajviše zbog prevelikih računalnih zahtjeva. Metode

predložene u ovom radu pokazuju da se povećanjem računalnih resursa i korištenjem

poboljšanih tehnika umjetne inteligencije može poboljšati rad i kontrola sustava trans-

porta vode.

Ključne riječi: sustavi transporta vode, optimizacija oblika, lokalizacija oštećenja,

lokalizacija onečišćenja, slučajna šuma
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Part I

Introduction
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Chapter 1

Introduction

Water transportation systems are designed for the safe distribution of water from the

catchment area to the end-users, e.g. industry or households. Depending on the desig-

nated purpose (technical water, drinking water etc.), water needs to have the required

quality and hydraulic characteristics. To obtain these attributes, water transportation

systems are regularly monitored and controlled to provide optimal system operation

[46, 85, 93].

The first step for achieving this goal is the appropriate design of water intake, where

trash racks or screens are installed so as to prevent the entrance of debris or fish in the

water distribution system [11, 89, 37]. Trash racks or screens can cause additional clog-

ging due to debris accumulation or can reduce system efficiency due to losses caused

by flow disturbance, hence they should be optimally designed [73, 33, 98]. Subsequent

water treatment can be conducted using filters and water purification systems if water

is to be used as drinking water [10, 23]. Although precautions are being taken, unex-

pected events such as accidental or intentional pollution intrusion in water distribution

network can occur [84, 72]. Intrusions of pollution can also occur in pipe leak locations

where contaminated soil may enter the pipe under certain conditions [53, 9]. These in-

trusions can cause serious health problems to the end-users, thus sensors are installed

in water distribution networks for water quality monitoring [32, 65]. In the case of an

accident event, various mathematical and statistical techniques based on the sensor

measurements can be used to identify conditions under which the accident occurred.

With growing technological trends such as Smart Cities and the Internet of Things,

the complexity of water distribution systems is continually increasing and consequently
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available amount of data which can provide valuable insight in system operation. Addi-

tionally, improvements to the existing infrastructure are constantly being implemented.

These trends indicate a strong need for computational techniques that can process

and analyze obtained data and consequently provide engineers with useful knowledge

which can enhance water transportation systems operation.

1.1 Accident events

1.1.1 Structural failures

Structural failures in water transport systems can be caused by various factors, e.g.

vibrations due to fluid-structure interaction [44, 80, 86], impact of large debris collision

with trash-racks, or smaller debris entering water distribution systems and causing dam-

age to system parts [17, 21]. For this reason, the geometry of intake structures needs

to be carefully considered to provide good protection and sustain debris load while at

the same time produce minimal disturbance of fluid flow. This presents an optimization

problem since opposing goals need to be satisfied [14].

Additionally, structural failures can occur due to material deterioration [42, 67, 15].

Various factors can influence pipe material deterioration, such as temperature varia-

tion, soil influence, age, stress due to pressure changes, etc. Due to expensive instal-

lation, water distribution network pipes are not regularly substituted, which can cause

corrosion and cracks in the material over the long term. The problem is that when a

leak occurs, it can precipitate material deterioration, which can ultimately lead to pipe

bursts. Pipe bursts are the greatest problem since they cause serious damage and

losses, thus a number of papers have considered methods for predicting pipe failures

[78, 22, 7, 87, 19]. A greater pipe burst can cause flooding of a populated or industrial-

ized area, which can cause considerable material losses, while the consequent water

supply outage can last for an extended period of time. Therefore, different methods for

detecting and localizing leak and burst locations have been explored [16, 88, 45, 35].

4



I. Lučin - doctoral dissertation

1.1.2 Water quality failure

Water quality failures can occur because of deliberate contamination injection in water

distribution networks or due to accident events. Pollution intrusion through leak location

is serious issue, since the soil at the location of the leak may be contaminated with

harmful micro-organisms and pathogens [41, 39, 9, 24]. Additionally, pipe corrosion can

lead to reduced water quality, i.e. occurrence of ”red water” [54]. In the case of these

incidents, it is of utmost importance to rapidly determine the location of intrusion, starting

time, duration of intrusion, and contamination concentration. With these parameters

identified, simulations of pollution spreading through water distribution networks can be

conducted. Simulation of contamination spreading identifies which parts of the water

distribution network, and in what amount, have been contaminated. On the basis of this

knowledge, required actions can be taken, such as prevention of further contamination

and warning of users in the contaminated area.

The presented problem is difficult to solve since it is an inverse problem, where

based on sensor measurements, different analytical techniques need to be employed

to determine causal factors of the event. For solving this problem optimization meth-

ods coupled with numerical simulations are predominantly used, which is known as

the simulation-optimization approach [62, 63, 2, 91, 92, 81, 90]. In this approach, opti-

mization methods try to find contamination parameters for the numerical simulation of

pollution scenario which will produce results most similar to the sensor measurements

obtained from the real event. In recent years machine learning approach is also often

employed, where machine learning algorithms for prediction of pollution parameters are

trained on a wide range of simulated contamination scenarios [51, 28, 29, 30].

1.2 Numerical simulations in water transportation sys-

tems

Due to large scale and great complexity of water systems, model testing is usually

not the feasible approach for analyzing existing systems or investigating possible im-

provements. In-field measurements usually provide only limited information, thus these

measurements are typically used for calibration of the numerical model, which is then
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used for obtaining detailed information regarding fluid flow. Therefore, numerical sim-

ulations are increasingly being used to enhance the existing design, to provide better

insight into system behavior under different conditions, or for designing a new infras-

tructure. Numerical simulations can be used for one-dimensional, two-dimensional,

and three-dimensional fluid flow analysis, depending on the considered problem. One-

dimensional simulation represent flows through long pipes, preferably circular pipes,

which are mostly used for water distribution systems. The most widely used software

for this purpose is EPANET, a public domain software developed by US Environmen-

tal Protection Agency [71]. This software enables fast simulation of system behavior

even for most complex networks. However, this speed is due to considerable simplifi-

cations of its flow model, such as the assumption of complete mixing at junctions, the

assumption of constant pressure and velocity values along a pipe, etc. However, wrong

results can be obtained as a result of these simplifications. Thus, two-dimensional and

three-dimensional fluid flow analysis is conducted when more detailed and more pre-

cise information regarding fluid flow is needed. For example, pressure and velocity

distribution at intake structures, identification of recirculation zones that occur due to

trash-rack and screen installation, mixing at junctions, etc.

Numerical simulations are the basis for using artificial intelligence methods such

as optimization algorithm or machine learning algorithms. Optimization methods can

be used to enhance existing system design if system design variations are evaluated

by numerical simulations of system behavior. Optimal sensor placements can be de-

termined if synthetic measurements obtained from the simulations are compared for

various sensor layouts. Fault events can be detected by optimizing simulation param-

eters of accident events by comparing simulation results to observed values. With the

increasing amount of sensor data, machine learning algorithms, which are based on

finding patterns and underlying correlations in the data, can be used to extract mean-

ingful information from sensor measurements, which can then provide better insight

into existing systems and enhance its monitoring. With increasing computational re-

sources, the importance and applications of these methods are growing, especially

machine learning methods. In this thesis, multiple novel areas of applications of pro-

posed methods in water systems are presented, and further research possibilities are

proposed.

6
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1.3 Organization of the thesis

In the presented thesis, several applications of optimization and machine learning tech-

niques are presented for known problems in water transportation systems, namely re-

duction of hydraulic losses, pollution localization, and leak localization. For each of

these directions, limitations of conducted research are discussed and future work is

proposed. The thesis is organized as follows.

In the second chapter, an overview of optimization methods used for water trans-

portation systems analysis is presented. Numerical and optimization approaches are

applied for the evaluation of novel trash-rack geometry designs. Previous research of

improved designs was mostly relying on experimental testing, whereby the proposed

artificial intelligence based methods provide an investigation of novel designs which

were previously not considered in experimental testing. The future application of the

proposed approach is discussed. Additionally, in the same chapter, the application

of optimization techniques for the detection of the pollution source is presented. It is

known that the pollution localization problem is very complex due to the categorical vari-

able which represents the source node. Additionally, it is a multi-modal problem, since

multiple equally good solutions can exist. Therefore, a novel approach that reduces

the search space of the considered problem is presented, with the addition of the novel

optimization approach. In this optimization approach, separate optimizations are con-

ducted for each suspect source node that survived the search space reduction. This

reduces the dimensionality and complexity of the considered problem, since it elimi-

nates the categorical variable which is also the most problematic from the optimization

standpoint. It also enables obtaining the best solution for each potential source node,

i.e. deals with the multi-modality of the problem. Limitations of the proposed method

are mentioned, and future work is proposed.

In the third chapter, an overview of machine learning methods used in water trans-

portation systems is presented. A novel machine learning approach based on a Ran-

domForest classifier employed for the prediction of a limited number of pollution sources

in water distribution network in the case of accident event is presented. Since the effi-

ciency of search space reduction methods and optimization methods depends on the

number of pollution injection locations, it is greatly beneficial to have information about

7
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the number of pollution sources. Assumptions used for the proposed method are ex-

plained, and further areas of investigation are explored. Machine learning application

was also used for the identification of possible leak locations. Random Forest classifier

is employed to detect source location based on large number of synthetic pressure data

obtained from the leak simulations conducted for various node demands and leak sizes.

As the further improvement of the proposed approach pipe segmentation is introduced.

Since the leaks can occur anywhere in the pipe segment, the proposed approach simu-

lates a more realistic case, where prediction model accuracy is estimated for leaks that

can occur anywhere in pipe segment, not only in network nodes. Further development

of the proposed idea is also briefly mentioned. In the fourth chapter, a conclusion is

provided where a summary of main contributions is presented and a proposal of future

research is given.
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Chapter 2

Optimization methods in water

transportation systems

Optimization methods are aimed at finding the best solution for a defined goal function,

which can be formulated as a maximization or minimization problem. During the itera-

tive process of the optimization method, values of input variables are varied, typically

within a predefined range, until stopping criteria are satisfied. The most straightfor-

ward optimization problem in water transportation systems is finding optimal geometry

design for defined criteria. For example, the design of trash-racks or screens within

provided limits to assure needed blockage while producing minimial hydraulic losses.

In this case, an optimization algorithm is used to iteratively provide values for chosen

geometry parameters, e.g. bar width, bar spacing, and bar length, and numerical simu-

lations are conducted to evaluate fitness function value, i.e. define hydraulic losses for

the chosen design. An increase in the number of considered geometry parameters in-

creases geometry flexibility and enables finding improved designs; however, a greater

number of optimization parameters considerably widen the search space. Therefore,

enhanced optimization methods need to be used to reduce the probability of obtaining

only local optima and to increase convergence speed, since numerical simulations for

evaluation of structure design usually require 2D or 3D numerical simulations which are

often computationally quite expensive.

Another type of optimization problem in water transport systems are inverse prob-

lems. In case of an incident event, it is of main importance to find conditions that caused

the incident. Optimization techniques and numerical simulations are jointly used where

9
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incident event parameters used for simulation are changed by optimization algorithm,

with results obtained by simulation being compared to the true sensor measurements.

Parameters that provide the best agreement between computed ”measurements” from

the simulated scenario and real sensor measurements are the optimal solution of the

optimization problem solved. This is considered as an inverse problem since based

on the recorded output (sensor measurements) the algorithm tries to find optimal input

(incident event parameters). Detection of pollution event parameters is considered as

an inverse type of problem, where based on sensor measurements pollution source

location and pollution parameters need to be obtained. The main problem is the node

variable which is the categorical variable that makes considered optimization problem

of the most complex type since the mixture of continuous and categorical values is

present in the optimization problem. Additional problem is that in case of pollution event

rapid reaction time is needed to minimize the harm for end-users, thus fast optimization

methods are needed.

Additional optimization problems in water distribution networks include optimal sen-

sor placement, calibration of numerical models based on in-field measurements, op-

timization of pipe diameters and lengths for new infrastructure, etc. However, these

optimization problems will not be covered in this thesis.

2.1 Optimization of hydraulic element design

To determine the geometry of various infrastructure segments engineering practice and

model testings are mostly used. For example protection racks or trash-racks can be

chosen in accordance with known guidelines regarding hydraulic losses [36]. How-

ever, with growing ecological concern, it is observed that classic designs can cause

injuries and increase mortality of fish species [5, 37]. Therefore, novel designs are be-

ing considered where turbulence zones are being induced, which fish naturally avoid.

However, these novel designs, which usually consist of angled trash racks and angled

bars, increase hydraulic losses, thus a compromise between engineering and ecolog-

ical concern needs to be made. In recent years, model testing is being conducted to

investigate different trash-rack and screen designs, bar spacing, length and inclina-

tion [95, 97, 68, 69, 4, 96]. However, cross-sections are usually kept rectangular or

10
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with a streamlined shape. Only recently novel cross-section designs are being consid-

ered [8, 55]. The main limitation of model testing is that designs used in investigation

need to be defined before testing, which makes it difficult to pinpoint the true optimal

design. Additionally, in model testing intake design is defined by testing facility equip-

ment, which is usually a straight channel and unique specifics of each intake cannot

be considered. This is a considerable simplification, since it is reasonable to believe

that each intake has a unique optimal design that ideally needs to be defined. Papers

dealing with numerical simulations of intake structures are rather sparse [70, 59, 3, 40].

In all of these papers, a limited number of pre-defined designs was investigated, thus

coupling numerical simulations with optimization techniques would enable exploration

of these new, innovative cross-sections specifically designed for the considered intake.

Figure 2.1: Numerically investigated bar inclinations, trash-rack inclinations, and bar

cross sections [48].

In this thesis, numerical analysis was conducted on four different types of bar cross-

sections: rhombus, rectangular, rounded front edge with inclined back in the lower half,

and rounded front edge with inclination starting after rounded edge, for different bar

and trash rack inclinations (Figure 2.1). Numerical analysis was conducted in the AN-

SYS Fluent using 2D k − ϵ turbulent flow model. The validation of numerical setup

was made by comparing with experimental results obtained from [4] for different bar

inclinations (45◦, 67.5◦, and 90◦) and trash-rack inclinations (15◦, 30◦, and 45◦). It

was observed that depending on thrash rack and bar inclination angles different cross-

sections produce an optimal solution, i.e. yield smallest head losses. This indicated

that optimization of bar cross-section could be beneficial for specific intake geometry.

Therefore, an optimization procedure using Particle Swarm Optimization (PSO) was
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conducted for a real intake structure of Hydroelectric power plant Senj, Croatia, where

three different bar cross-sections were considered: with all rounded edges, with all in-

clined edges, and design with rounded front edges and inclined back edges. In the

considered case, fluid flow was adjacent to the bars, so the optimization for all con-

sidered cases converged in cross-section with the lowest cross-section area since it

produced the smallest disturbance in fluid flow (Figure 2.2).

Figure 2.2: Investigated cross sections for optimization approach (left) with final optimal

design (right) [48].

The obtained results give a strong indication that further investigation of numerical

and optimization methods needs to be conducted. It must be noted that in the current

optimization procedure parametric shape was considered which is often the case in op-

timization methods since it provides a smaller search space due to the smaller number

of optimization variables. However, it limits the optimization possibilities since inno-

vative designs, such as curved bars [8] cannot be obtained. However, with growing

computational power, optimization procedures in which cross-sections are described

with the set of points where coordinate values are optimization variables could enable

obtaining more innovative designs such as curved bars with irregular cross-sections.

Although such shapes could be hydraulically more efficient, construction constraints

must be also taken into consideration such as the strength of the material, manufac-

turing demands, method of cleaning of the trash-rack structures, etc. These types of

problems need to satisfy multiple constraints and have multiple goals which are of-

ten opposed, therefore coupling of computational fluid dynamics (CFD) and structural
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(FEM) numerical analysis with optimization methods can provide improved solutions

while considering all present limitations.

2.2 Pollution localization with optimization - simulation

approach

Monitoring of complex systems such as water transportation systems can be a chal-

lenging task due to various accident events that can occur. Accidental or intentional

pollution intrusions need a rapid reaction, where identification of pollution source, con-

tamination concentration, starting time, and duration need to be identified as soon as

possible. Based on this information, simulation of pollution spreading can be conducted

so polluted water distribution network areas can be identified, warnings can be given

to the affected users, and the source of pollution can be eliminated. Since the reaction

time is of main importance, different methods and techniques are being used to simplify

the considered problem and narrow down the search space to provide faster response

time [20, 43, 64]. When using stochastic optimization methods, such as PSO, multi-

ple optimization runs are needed. Keeping in mind the necessity of rapid intervention,

multiple runs of optimization cycles can be time extensive and still do not assure ob-

taining the optimal solution. This is especially important when discrepancy in sensor

measurements [63] and water demand uncertainties [81, 90] are included. Additionally,

it is known that the considered problem is a multimodal, i.e. multiple solutions exist. As

a solution to this, niching algorithm has been proposed in work by [34, 91] where during

the optimization run the best solution for each network node is stored in its niche. This

approach produces multiple solutions from a single optimization run.

In this thesis, a search space reduction technique has been proposed in which, prior

to conducting the optimization process, preliminary evaluation of possible source nodes

is conducted. For each network node, an unrealistically high contamination value was

injected during the entire simulation time. Simulations were conducted using EPANET2

software. If sensors did not register contamination for this extreme case it is concluded

that they would not be able to detect contamination for any other, less severe, con-

tamination scenario parameters (e.g. smaller pollution concentration value, shorter in-

jection time, etc.), thus these nodes are excluded from the search space. In this way,
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a considerable percentage of network nodes can be eliminated before commencing

the optimization procedure. The main benefit of this forward approach is that number

of needed simulations is equal to the number of network nodes and the execution of

these simulations can be run in parallel. The proposed approach is not computationally

demanding but can provide considerable search space reduction. An extensive inves-

tigation of the proposed method was conducted for 5 different sized benchmark water

distribution networks which are shown in Figure 2.3. Details of considered networks

and sensor layouts can be found in Table 2.1.

Table 2.1: Overview of investigated networks and sensor layouts in [52].
Network No. of network nodes Simulation time Sensor placement

Anytown 19 24 h 70, 160

90, 110, 140

Net3 92 24 h 117, 143, 181, 213

115, 119, 187, 209

113, 120, 147, 211

117, 149, 167, 213, 253

117, 173

Richmond 865 72 h 123, 219, 305, 393, 589

93, 352, 428, 600, 672

BWSN Network 1 126 96 h 10, 31, 45, 83, 118

10, 83

BWSN Network 2 12523 48 h 871, 1334, ..., 11519
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Figure 2.3: Networks investigated in [52] for search space reduction method.

Additionally, two different approaches were considered, one in which multiple injec-

tion locations are possible and one in which only a single pollution source is considered.

If multiple sources of pollution are considered, network nodes were eliminated only if

all sensors did not record pollution in the extreme scenario. If only a single source of
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pollution is considered, the condition was that exactly all sensors that detected pollu-

tion in the real pollution event must detect pollution in the case of an extreme scenario.

Greater reduction of network nodes was obtained for the approach for a single source

of pollution, however, the assumption of only one pollution source can cause wrong

results if multiple sources are present.

Based on these findings, it was observed that if a reasonable number of suspect

nodes remained, independent optimization procedures for each suspect node can be

conducted in reasonable time. In this way, for each optimization the remaining optimiza-

tion variables are pollution injection starting time, injection duration, and concentration

value. This considerably reduces optimization complexity since the most problematic

categorical variable (pollution source location) is eliminated. Additionally, the proposed

approach eliminates the problem of obtaining only local optima. The niching algorithm

[34, 91] also provides multiple solutions, but the advantage of the approach proposed in

this thesis is that for each injection the optimum fitness is obtained, since independent

optimization runs performed for each injection node. In the case of the niching algo-

rithm, it is expected that the optimization algorithm investigates the most in the vicinity

of the optimal solution, where it is not given that obtained solutions from other niches

are the best solutions that can be obtained for these source nodes.

The performance of the proposed search space reduction method should be inves-

tigated under demand uncertainties and sensor measurement imperfection, which is a

more realistic case. The research conducted in this thesis, and many other pollution de-

tection techniques and methods found in literature, are tested with the measurements

from an extended period. However, in a real case scenario, methods for pollution de-

tection will be utilized from the first positive sensor detection. Therefore, the proposed

approach should be evaluated for more realistic conditions. The independent optimiza-

tion approach was further explored in work by [30] where based on machine learning

prediction several most suspect nodes are detected and are then used in independent

optimization procedures. However, these independent optimizations assume a single

injection location, where multiple injection locations should be also explored.
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Chapter 3

Machine learning in water

transportation systems

Machine learning algorithms are designed to find underlying patterns and correlations

in the data. Their best performance is achieved when a big amount of data is available

but at the expense of increased model complexity. With recent advances in technol-

ogy, the competence of machine learning models is increasing for various problems

which were previously not considered for machine learning application. Machine learn-

ing models can be used as a substitute for extensive experimental or numerical testing

when a considerable number of parameters is investigated. For example, when a large

number of parameters need to be considered, such as pipe diameters, pipe lengths,

temperature, water quality parameters, etc., a substantial number of experiments or

simulations would be required to obtain valid conclusions about the investigated phe-

nomena. However, if a limited but significant number of experiments or simulations

are conducted, a machine learning model can be used to predict the desired output

variable for various input parameter combinations which were not evaluated through

the experiment. Additionally, machine learning methods are also often used for finding

anomalies in sensor readings which can indicate accident events such as contamina-

tion occurrence or pipe bursts. Machine learning was previously used for evaluation of

mixing in double pipe junctions [27], water quality monitoring [56, 26], prediction of pos-

sible sources of pollution intrusion [83, 29, 28, 30], anomaly detection [82], prediction

of pipe failures [74, 25], leakage localization [47, 13], detection of cyber-attacks [58, 1]

etc.
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In case of accident events in which reaction time is the most important, the main

advantage of machine learning methods over optimization methods is considerable re-

duction in needed computational time. In the case of machine learning applications, the

majority of computational time is used for data preparation and model training. This can

be conducted prior to the accident event, so later the prepared prediction model can be

used with only a small computational effort needed. However, the main disadvantage

of the machine learning approach is that real conditions of water distribution networks

in the case of the accident event cannot be known, and can be considerably different

from those used for the construction of the machine learning model. This is especially

important for water network demands which can vary considerably on a daily or hourly

basis, where for the machine learning approach an estimate of system behavior is used.

Therefore, the advantage of the optimization approach is that it is prepared after the

accident event is observed, thus calibrated water distribution network model, based on

observed sensor measurements during the accident event, can be used.

It should be noted that the recorded accident events in water distribution networks

are rather rare, therefore the data for prediction model training is limited. However,

simulations of the wide range of different conditions can be utilized to consider var-

ious uncertainties that can occur to gather a considerable amount of synthetic data.

Ultimately, multiple prediction models can be prepared for utilization in the case of an

accident event. In this thesis, machine learning algorithms have been used to predict

the number of pollution locations and to determine possible leak locations based on

sensor measurements.

3.1 Machine learning application for determination of

number of pollution sources

Based on a larger number of pollution simulations with various pollution parameters,

machine learning models can be used to provide the most probable pollution source

with the prediction of injection time, injection duration and contamination concentration

[28, 29]. After a machine learning based source localization, further finer determina-

tion of pollution parameters can be conducted with optimization techniques [30]. The

main problem is that the majority of both optimization and machine learning techniques
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in the literature only consider a single pollution location. In [83] Bayesian approach

coupled with Support Vector Regression was used for the probability distribution of

possible contaminant sources with the assumption of a single injection location. In

[75] the efficiencies of the Bayesian probability-based method, backtracking method,

and optimization-based method were evaluated, where it was noted that the Bayesian

method was designed only for a single contamination location. Machine learning predic-

tions of pollution scenario parameters based on Random Forest algorithm [28, 29, 30]

all assume a single pollution location. As mentioned in the previous chapter, the pollu-

tion localization technique proposed in [52] showed better pollution localization in the

case of a single pollution source, although, it can be extended to multiple injection

sources. If several pollution locations are assumed, optimization variables need to be

assured for additional source locations which considerably increases the search space.

If these variables are ultimately not needed, the reaction time is prolonged due to an

unnecessary increase in problem complexity.

In this thesis, the machine learning approach is presented where the number of

contamination sources is predicted based on a large number of simulations for vari-

ous pollution scenario parameters. A considerable number of pollution scenarios were

generated with a randomly chosen number of pollution sources, concentration value,

injection time, and duration time. The number of injection locations varied from 1 to 4,

and investigated networks were Net3 and Richmond network. When multiple injection

locations are chosen, simplification was made and the same pollution parameters (in-

jection time, duration, and concentration value) were used for all locations. Similarly as

in [52], it was observed that random pollution parameters can cause pollution scenario

which is undetected by all sensors in the water distribution network, thus the prior check

of prepared data is conducted. Network nodes for which pollution is not detected are

eliminated, and simulation with multiple locations was conducted only for source nodes

that contribute to pollution readings. The example of conducted data preparation can

be observed in Figure 3.1 where 3 different source nodes were randomly chosen; how-

ever, ultimately only 2 network nodes were considered since for the one source node

(node 151) sensors did not detect contamination.
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Figure 3.1: Example of single and multiple sources pollution scenarios of Net3 consid-

ered in [51].

Random Forest classifier implementation in the Python library Scikit-learn [60] is

used to determine the number of pollution sources. This is important since the num-

ber of optimization variables needs to be defined before the optimization process and

some space reduction techniques have better performance in the case of the single

pollution source. Based on the right prediction of the number of contamination sources

only needed optimization variables can be used for the optimization problem. It was

observed that good accuracy can be obtained when an exact number of sources is pre-

dicted, however considerable improvement is obtained when it is predicted if single or

multiple numbers of sources are present. This information is also important since some

pollution localization techniques can be used only in the case of a single source or are

more efficient when that is assumed, as was shown in [52].

In the case of the proposed machine learning approach, a considerable assump-

tion was made where all sources of pollution had the same parameters. This could

be realistic in the case of simultaneous intentional intrusions; however, even then ex-

actly equal parameters are hard to expect. Therefore, further investigation should be
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conducted for the evaluation of the number of pollution sources but with various pol-

lution scenario parameters. Additionally, due to a large amount of considered data,

especially when uncertainties are incorporated, data reduction techniques should be

explored and other machine learning algorithms which could provide better model ac-

curacy. It must be noted that the reaction time is most important in this case, thus all

possible improvements that could reduce the computational time should be explored.

3.2 Machine learning application for leak localization

The presence of leak locations in water distribution networks can be a considerable

problem due to substantial water losses. The main problems are small leaks that can

be often hard to detect, and over time can cause considerable cumulative water losses.

Additionally, for some types of terrain, water is absorbed in the soil, thus leak pres-

ence is not evident on the surface and even greater leaks can remain undetected for

longer periods. Leak locations can also be hazardous due to possible contamination

intrusion from surrounding contaminated soil. Therefore, the detection, localization,

and repair of even small leaks is important. Usual methods for leak localization con-

sider hardware-based methods and software-based methods. Hardware-based meth-

ods use in-situ measurements, for example, infrared thermography, acoustic methods,

or ground-penetrating radar. The main problem is that these methods require an ex-

perienced operator and are time and money-consuming. Software-based methods use

various software for simulation of water systems or analysis of measured data from

sensor measurements. The main problem is that many software based methods rely

on residual-based analysis where pressure sensor measurements are compared to

expected (predicted) values, which can considerably differ from true pressure mea-

surements.Thus, these methods can have a considerable number of false positive pre-

dictions since an unexpected surge in water demand can be interpreted as leak oc-

currence. If numerical simulations are being conducted for the evaluation of expected

system behavior, the numerical model needs to be a good representative of the real

network, which is often the problem, due to various uncertainties. For example, the

accumulation of corrosion byproducts and suspended particles with time can cause

a reduction in pipe diameter and can change pipe roughness. These values can be
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calibrated with in-field measurements; however, considerable estimations still remain

present such as unknown valve opening status. An overview of some of leak detec-

tion and localization methods, with their advantages and limitations can be found in

[18, 31, 6, 94, 38, 88, 12, 94].

Recently different machine learning algorithms have been used for leak detection

and localization such as principal component analysis (PCA) [66], convolutional neu-

ral network (CNN) [99], artificial neural network (ANN) [61, 57], k-nearest neighbours

[76], Bayesian classifier [77], deep learning [99], linear discriminant analysis (LDA) and

neural network classifiers [79]. However, the main problem is a sparse number of data

for actual leak and burst events, which is the requirement for high prediction model

accuracy. However, a considerable amount of data can be obtained if simulations are

conducted with the variation of leak location, leak size, and node demands. The idea

is similar as in [29] and [51] where a large number of simulations for pollution scenarios

were conducted. Additionally, uncertainties can also be addressed by simulating leak

scenarios under various conditions, such as node demands, pipe diameters, etc.

For the leak localization using big data Random Forest algorithm implementation in

the Python library Scikit-learn [60] was employed. Two different-sized networks were

considered, Hanoi (Figure 3.2) and Net3 network. An overview of considered networks,

sensor placements, and simulation parameters is given in Table 3.1. The prediction

model accuracy was assessed for different base node variations, leak sizes, and sen-

sor layouts. It was observed that better prediction accuracy can be obtained for greater

leaks, which was expected since they cause greater disturbance in the pressure mea-

surements. Additionally, with the increase of network complexity and a wider range of

demand uncertainties, a possible number of leak scenarios rapidly increases, thus pre-

diction model accuracy for the same number of training data is reduced. Although for

these cases true leak node is often not detected, if several top nodes with the greatest

prediction model certainty are considered, a significant leak localization can be ob-

tained. Additionally, the prediction model can be prepared for a specific range, such as

nighttime when there are smaller water demands and with that smaller demand vari-

ations. It must be noted that considerable simplification is made, since the proposed

classification method is trained, and thus can only predict leak locations that are net-

work nodes. In reality, this is not the case since the leak can occur anywhere in the
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pipe segment. These issues are further investigated.

Figure 3.2: Hanoi network.

Table 3.1: Overview of investigated networks and sensor layouts in [49].
Network No. of network nodes Sensor placement Simulation time

Hanoi 31 14, 30 24 h

Net3 92 117, 143, 181, 213 24 h

115, 119, 187, 209

117,181

119,209

Further investigation was conducted for the pipe segmentation approach. Each pipe

is divided into additional segments, where three different machine learning frameworks

are considered and compared. The first model was trained and tested on leak scenarios

with leak locations in original network nodes, the same approach as in [49]. In the

second approach, the model was trained on all original and segmentation nodes and

the prediction of leak node is original or segmentation node. The thirdmodel was trained

on original network nodes, and prediction is made for scenarios with leak locations in

both original and segmentation nodes. Since the number of classes, in this case, is the
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same as the number of network nodes, segmentation nodes are associated with their

nearest original network nodes. If a prediction of that nearest original network node

is made, it is considered as the correct prediction for the segmentation node. It was

observed that the second approach considerably increases computational demands

and as such is currently not a feasible approach for larger networks. However, the last

approach simulates the most realistic case and as such can successfully localize the

area of leak location if several top nodes with the greatest prediction model certainty

are considered.

To further localize the leak location, sequential prediction models are used. After

the initial leak localization is made, pipe segmentation around most suspect nodes is

conducted (Figure 3.3). Sequential prediction models were trained with simulations

conducted with possible leak locations in the original most suspect network nodes and

segmentation nodes. However, it was observed that machine learning models have a

problem with detecting fine differences in pressure sensor measurements for different

leak scenarios, and although true leak location is always in several top nodes, it is not

always the prediction with the greatest certainty. Optimization methods could provide

finer parameter tuning, therefore, coupling of machine learning approach for general

localization with optimization approach for finer detection of leak location should be

explored.
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Figure 3.3: Pipe segmentation after initial machine learning localization as conducted

in [50].
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Chapter 4

Conclusion

4.1 Main contributions

In the presented thesis, multiple novel applications of artificial intelligence in water

transportation systems are presented and discussed. The enclosed papers show the

in-depth methodology of proposed applications, where multiple directions of possible

further utilization are discussed in the present thesis. It was shown that with grow-

ing computational resources utilization of novel approaches is greatly beneficial, where

previously used methods were less efficient.

The main contributions from the presented research are as follows:

• Numerical analysis and optimization methods have been used to determine op-

timal cross-section shape for the defined bar and trash-rack inclinations of the

water intake structure. Conducted research showed that optimal cross-section

shape varied for different trash-rack configurations, which showed the importance

of optimization methods that can freely adjust geometry-shape for specific intake

structures.

• A novel search space reduction method in pollution detection was presented,

which considerably reduced the number of potential pollution sources. Based

on the reduced number of solutions, a novel pollution localization technique was

presented, in which for each remaining suspect node an independent optimization

procedure was conducted to obtain pollution starting time, duration of injection,

and concentration value. This approach significantly reduced the complexity of
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the optimization problem since the categorical variable was removed. Addition-

ally, since the considered problem is multi-modal, multiple solutions are simulta-

neously obtained which is overall computationaly more efficient.

• A novel machine learning approach that identifies the number of pollution sources

in the water distribution network is proposed. The presented method show good

accuracy when the exact number of pollution locations are predicted, which is

important information for reducing the number of unnecessary optimization vari-

ables. Additionally, when it is predicted only whether single or multiple pollution

sources are present, the accuracy of the technique increases. This is important

since some space reduction methods are more efficient and others are special-

ized for a single pollution location.

• Random Forest prediction model trained on synthetic pressure data obtained by

simulated leak scenarios was utilized for the leak localization problem. It was

shown that the proposed approach can incorporate various uncertainties regard-

ing water distribution network behavior and provide considerable leak localization.

That represents a strong benefit since software-based methods that use residuals

as the criteria for anomalies detection use an estimated water distribution network

model and thus can cause wrong results.

• Further investigation of machine learning application in leak localization was con-

ducted for the pipe segmentation approach. Since the usage of 1D numerical

simulations enables detecting only network nodes as leak locations, and leaks

can occur anywhere in pipe segment, additional network nodes were created to

further localize leak location. Sequential machine learning models were used,

where the first Random Forest model was used to identify leak area for pipe seg-

mentation, and the second model was used to try to identify exact leak location. It

was observed that the proposed approach narrows down the leak area for leaks

occurring both in network nodes and in pipe segments with great accuracy; how-

ever, the exact location cannot be determined since multiple leak locations with

various leak sizes can produce similar pressure sensor measurements.
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4.2 Future work

As a continuation of conducted research possible future research areas are:

• The design optimization of the trash-rack cross-section should be conducted with

more parameters where profiles would be described with a large number of points

that would be able to converge into any shape, such as curved cross-sections.

Additionally, the expansion of fitness function for design optimization with ecolog-

ical goals should be explored, such as including fish avoidance ability considering

the proposed design.

• Search space reduction technique coupled with independent optimization meth-

ods proposed for the detection of pollution scenario parameters should be ex-

plored in the context of rapid reaction time, where the search for the pollution

parameters will start immediately after pollution detection, not after a longer mea-

surement time which was the case in this study. Additionally, time-varying pol-

lution injection should be considered since the assumption of constant injection

concentration is assumed.

• Other machine learning algorithms should be investigated to achieve improved

accuracy for the identification of a number of pollution sources and leak location.

Additionally, dimensionality reduction methods should be also explored to reduce

prediction model complexity.

• The machine learning application that identifies the number of pollution sources

should be further explored with various pollution scenario parameters for each

injection node.

• Coupling of machine learning algorithm that would identify the leak area and op-

timization methods which would find exact leak location should be explored.

• The segmentation approach should be applied to pollution location detection since

leak locations are also possible pollution intrusions locations. Thus, the current

assumption of pollution locations only in network nodes is also a considerable

simplification of the problem, which should be avoided if possible.
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Chapter 5

Summary of papers

A Assessment of Head LossCoefficients forWater Tur-

bine Intake Trash-Racks by Numerical Modeling

In this work, numerical simulations of fluid flow around trash-rack for different bar cross

sections are conducted to investigate cross section influence on head losses. Compar-

ison with experimental data is conducted to validate the usage of numerical simulations

which enable investigation of great number of trash-rack configurations. In previous ex-

perimental studies researchers mostly focused on trash-rack parameters (bar spacing,

bar length, inclinations etc.) where bar cross section was mainly rectangular or stream-

lined shape. Therefore, 2D simulations for different cross sections are carried out for

a range of trash-rack configurations in order to provide better insight how it affects en-

ergy losses. It is shown that head loss reduction due to change in cross section is

greatly dependent on trash-rack configuration, therefore optimization of simplified real

water turbine trash-rack is also conducted to produce the cross section that generates

smallest head losses for given configuration.

Lučin, I. , Čarija, Z., Grbčić, L., Kranjčević, L., 2020. Assessment of Head Loss

Coefficients for Water Turbine Intake Trash-Racks by Numerical Modeling. Journal of

Advanced Research, 21, pp. 109-119.; https://doi.org/10.1016/j.jare.2019.10.010
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B SourceContaminationDetectionUsingNovel Search

Space Reduction Coupled with Optimization Tech-

nique

Contaminant intrusion in a water distribution network is an important concern because it

can have hazardous consequences for the population. Reacting immediately is crucial

to prevent or reduce the further propagation of contamination. In terms of contami-

nation scenario characteristics, optimization is researched extensively as a valuable

methodology to provide information. This work presented a procedure preceding the

optimization which considerably reduces the search space for a potential contaminant

source location. For each suspect node, a simulation is conducted with unrealistically

high contaminant concentration injected throughout the whole simulation. If the sen-

sors do not register contamination in a subsequent scenario, then that node can be

eliminated as a possible contaminant source. The methodology is applicable for both

single and multiple contaminant injection nodes. This approach was investigated in

multiple benchmark networks and for different sensor placements in the literature. By

coupling the proposed search space reduction method with an optimization approach,

a novel efficient methodology for contamination source detection was presented.

Lučin, I., Grbčić, L., Družeta, S., Čarija, Z., 2021. Source Contamination Detection

Using Novel Search Space Reduction Coupled with Optimization Technique. Journal

of Water Resources Planning and Management, 147 (2), p. 04020100.;

https://doi.org/10.1061/(ASCE)WR.1943-5452.0001308
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C Machine-LearningClassification of a Number of Con-

taminant Sources in an Urban Water Network

In the case of a contamination event in water distribution networks, several studies

have considered different methods to determine contamination scenario information. It

would be greatly beneficial to know the exact number of contaminant injection locations

since some methods can only be applied in the case of a single injection location and

others have greater efficiency. In this work, the Neural Network and Random Forest

classifying algorithms are used to predict the number of contaminant injection locations.

The prediction model is trained with data obtained from simulated contamination event

scenarios with random injection starting time, duration, concentration value, and the

number of injection locations which varies from 1 to 4. Classification is made to deter-

mine if single or multiple injection locations occurred, and to predict the exact number of

injection locations. Data was obtained for two different benchmark networks, medium-

sized network Net3 and large-sized Richmond network. Additionally, an investigation

of sensor layouts, demand uncertainty, and fuzzy sensors on model accuracy is con-

ducted. The proposed approach shows excellent accuracy in predicting if single or

multiple contaminant injections in a water supply network occurred and good accuracy

for the exact number of injection locations.

Lučin, I., Grbčić, L., Čarija, Z., Kranjčević, L., 2021. Machine-Learning Classification

of a Number of Contaminant Sources in an Urban Water Network. Sensors, 21 (1), p.

245.; https://doi.org/10.3390/s21010245
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D Data-Driven Leak Localization in Urban Water Distri-

bution Networks Using Big Data for Random Forest

Classifier

In the present paper, a Random Forest classifier is used to detect leak locations on

two different sized water distribution networks with sparse sensor placement. A great

number of leak scenarios were simulated with Monte Carlo determined leak parameters

(leak location and emitter coefficient). In order to account for demand variations that

occur on a daily basis and to obtain a larger dataset, scenarios were simulated with ran-

dom base demand increments or reductions for each network node. Classifier accuracy

was assessed for different sensor layouts and numbers of sensors. Multiple prediction

models were constructed for differently sized leakage and demand range variations in

order to investigate model accuracy under various conditions. Results indicate that the

prediction model provides the greatest accuracy for the largest leaks, with the smallest

variation in base demand (62% accuracy for greater- and 82% for smaller-sized net-

works, for the largest considered leak size and a base demand variation of ±2.5%).

However, even for small leaks and the greatest base demand variations, the prediction

model provided considerable accuracy, especially when localizing the sources of leaks

when the true leak node and neighbor nodes were considered (for a smaller-sized net-

work and a base demand of variation ±20% the model accuracy increased from 44% to

89% when top five nodes with greatest probability were considered, and for a greater-

sized network with a base demand variation of ±10% the accuracy increased from 36%

to 77%).

Lučin, I., Lučin, B., Čarija, Z., Sikirica, A., 2021. Data-Driven Leak Localization

in Urban Water Distribution Networks Using Big Data for Random Forest Classifier.

Mathematics, 9 (6), p. 672.; https://doi.org/10.3390/math9060672
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E Detailed Leak Localization in Water Distribution Net-

works Using RandomForest Classifier and Pipe Seg-

mentation

In this paper, a Random Forest classifier was used to predict leak locations for two

differently sized water distribution networks based on pressure sensor measurements.

The prediction model is trained on simulated leak scenarios with randomly chosen pa-

rameters - leak location, leak size, and base node demand uncertainty. Leak local-

ization methods found in literature that rely on numerical simulations can only predict

network nodes as leak nodes; however, since a leak can occur at any point along a pipe

segment, additional spatial discretization of suspect pipe is proposed in this paper. It

was observed that pipe segmentation of the whole network is a non-feasible approach

since it rapidly increases the number of potential leak locations, consequently increas-

ing the complexity of the prediction model. Therefore, a novel approach is proposed,

in which a prediction model is trained on scenarios with leaks occurring in original net-

work nodes only, but with its accuracy assessed against pressure sensor measure-

ments from scenarios in which leaks occur in points between network nodes. It was

observed that this approach can successfully narrow down the suspect leak area and,

followed by additional segmentation of that network area and subsequent prediction,

a precise leak localization can be achieved. The proposed approach enables incorpo-

ration of various uncertainties by simulating leak scenarios under different conditions.

Investigation of leak size uncertainty and base demand variation showed that several

different scenarios can produce similar sensor measurements which makes it difficult

to unambiguously determine leak location using the prediction model. Therefore, future

approaches of coupling prediction modeling with optimization methods are proposed.

Lučin, I., Čarija, Z., Lučin, B., Družeta, S., 2021. Detailed Leak Localization in Water

Distribution Networks Using Random Forest Classifier and Pipe Segmentation. IEEE

Access, 9, pp. 155113-155122.; https://doi.org/10.1109/ACCESS.2021.3129703
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h i g h l i g h t s

� Numerical modeling can be used to
evaluate head losses for different
trash-racks.

� Rectangular bar cross section mostly
generates greatest head-losses.

� Change in bar cross sections can lead
to considerable head-loss reduction.

� Optimization can be conducted to
provide innovative trash-rack design.
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a b s t r a c t

In this work, numerical simulations of fluid flow around trash-rack for different bar cross sections are
conducted to investigate cross section influence on head losses. Comparison with experimental data is
conducted to validate the usage of numerical simulations which enable investigation of great number
of trash-rack configurations. In previous experimental studies researchers mostly focused on trash-
rack parameters (bar spacing, bar length, inclinations etc.) where bar cross section was mainly rectangu-
lar or streamlined shape. Therefore, 2D simulations for different cross sections are carried out for a range
of trash-rack configurations in order to provide better insight how it affects energy losses. It is shown that
head loss reduction due to change in cross section is greatly dependent on trash-rack configuration,
therefore optimization of simplified real water turbine trash-rack is also conducted to produce the cross
section that generates smallest head losses for given configuration.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Trash-racks are installed in the intake system of hydroelectric
power plants to prevent entrance of large debris which can damage
turbine parts and cause serious problems in power plant operation.
Installation of trash-rack causes disturbance in fluid flow with
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inevitable energy losses which should be minimized. To reduce
these losses and to keep the design simple for manufacturing
and cleaning, trash-racks, oriented perpendicular to fluid flow,
usually consist of many rectangular bars directed parallel to fluid
flow. Another main purpose of trash-rack is to prevent fish species
from entering the intake system [1]. With growing ecological con-
cern [2], influence of trash-rack design on fish migration and fish
mortality is increasingly taken into consideration [3,4]. Trash-
rack is not a suitable obstacle for some fish species, especially for
juvenile fish, which could be entrapped in turbine parts. Further-
more, in case of large approaching velocities, some fish species
are incapable of avoiding trash-rack which can cause fatal injuries
when colliding with bars. Increased awareness of these problems
prompted a change in the design of hydroelectric power plants
intake system. Inclined trash-racks in combination with angled
bars are increasingly considered to provide better fish guidance
toward fishways which are being installed to provide safe passage-
way for upstream or downstream migration considering fish beha-
viour [5,6]. Due to site specifications and fish species
characteristics, great number of case studies regarding fishway
efficiency are being conducted [7,8]. Multidisciplinary approach
is also considered to improve current knowledge and practice of
fishways [9].

To determine energy losses, a number of experimental investi-
gations on trash-racks were conducted. Idel’chik [10] proposed
empirical relationship regarding different bar cross sections, bar
spacing and rack angles that estimates head loss for bars parallel
to fluid flow. The United States Army Corps of Engineers [11] pro-
posed head loss coefficient values based on summarized open
channel tests with racks perpendicular to fluid flow for different
bar designs and spacings. Tsikata et al. [12] experimentaly investi-
gated influence of bar spacing and bar length on head losses where
it was shown that bar length reduction and increasement in bar
spacing reduce head losses. Furthermore, fluid flow around angled
bar racks and influence of different cross sections (rectangular, bar
with rounded leading edge and streamlined bar) were analysed in
[13]. Significant reduction in head losses was observed when rect-
angular cross section edges were rounded or cross section was
replaced with streamlined shape. Bar inclination to the approach-
ing flow was investigated only for rectangular cross section while
for other cross sections bars remained parallel to the fluid flow,
where head loss value increased when bar inclination increased.
Asymmetric flow behind inclined bars was also reported. Vortex
shedding behind trash-rack bars induce vibrations which can inter-
fere with natural frequency of the trash-rack and cause damage to
bars. Therefore, structural aspect of trash-rack exploitation must
be also taken into consideration [14]. Since design of trash-rack
varies greatly and trash-racks are used in wide range of operating
conditions, number of experimental and numerical studies investi-
gated this problem [15–17]. Clark et al. [18] analysed head losses
for six different cross sections (rectangular, rounded, commercially
available bar and variants of NACA airfoil) for bars parallel to fluid
flow and reported increase in head loss when channel inclination
before trash-rack i.e. approach flow inclination increases. In Raynal
et al. [19] different trash-rack inclinations with regards to channel
flume bottom were investigated where new head loss equation
considering blockage ratio, bar shape and rack inclination was pro-
posed. Additionally [20], rectangular and hydrodynamic bar shapes
were analyzed for various trash-rack to flume wall angles (while
bars were kept perpendicular to the trash-rack). In more recent
research, Albayrak et al. [21] investigated a wide range of angled
trash-rack configurations for rectangular and rounded bars and
other geometry parameters and proposed new head loss equation
which included relation between bar spacing, rack and bar angles
(primary parameters) and bar length, relative rack submergence
and bar shape (secondary parameters). Szabo-Meszaros et al. [4]

examined six different configurations of streamlined and rectangu-
lar bar profiles for different bar-setups; in four configurations
trash-rack was inclined against the channel wall for various bar
angles while two configurations had horizontally oriented bars.
Horizontal trash-racks and vertical with streamlined bars were
suggested as the best candidates for fish-friendly trash-racks.
Zayed et al. investigated influence of screen angle from the trape-
zoidal open channel wall for angled trash-racks [22] and V-shaped
trash-rack [23], both with circular bars where new head loss equa-
tions were proposed. In Beck et al. [24] a new innovative curved
bar design was investigated. Böttcher et al. [25] compared trash-
rack with circular bars and new fish protection and guidance sys-
tem - flexible fish fence where common head loss equations were
adapted for new proposed design.

Few numerical studies investigated flow around trash-racks.
Raynal et al. [26] validated two-dimensional fluid flow analysis
for bars angled at 45� using their previous experimental results,
under-estimating head loss experimental results. In work by Paul
et al. [27], 3D analysis of fluid flow around 3 and 7 submerged
bar-racks was conducted, where numerical analysis overestimated
experimental head loss coefficient. Åkerstedt et al. [28] conducted
an investigation for rectangular and biconvex bars for different
inclinations of fully submerged trash-rack, where simplification
was made with periodic boundary conditions and two-
dimensional fluid flow domain.

It can be noticed that most experiments from previous studies
considered two bar cross section shapes at most, whereas the
proposition of different cross sections could provide more favour-
able hydraulic conditions, especially considering configurations
with angled trash-racks and angled bars. The main problem with
innovative designs (e.g. V shape trash-rack in [23] and curved
bar shapes in [24]) is that researchers usually define trash-rack
geometry a priori, hence optimal solution could be overlooked.
The uniqueness of power plant intake geometry must also be taken
into consideration since channel geometry after trash-rack is usu-
ally not regular as in experimental setups. Geometry changes in
the intake channel, inclination or narrowing, are important since
they affect head losses, especially if analyzing bars with greater
angle of inclination. In those cases, recirculating zones are longer
with the possibility of geometry interference in the wake zone
which may also lead to turbine efficiency reduction. Numerical
studies provide a solution for a number of presented problems.
In the numerical approach, the whole turbine geometry can be
modelled in full scale, the influence of all geometry parameters
can be evaluated and fluid flow can be investigated in more detail
[29]. Furthermore, an optimization procedure can be conducted to
provide optimal trash-rack configuration for specific turbine that is
investigated.

In this work, numerical simulations are conducted for four dif-
ferent cross sections with different configurations of trash-rack
and bar inclinations. To validate the numerical results, trash-rack
configurations are chosen according to experiments conducted by
Albayrak et al. [21]. Following the numerical model validation,
cross section influence on head loss reduction for different config-
urations is further investigated. Finally, optimization of simplified
trash-rack geometry for a 50 years old hydroelectric power plant
HE Senj (Senj, Croatia) is conducted in order to provide optimal
cross-section regarding the head losses.

Materials and methods

Geometry definition

Numerical simulations are conducted for trash-rack inserted in
1 mwide, 12 m long and 0.1 m deep flume with constant rectangu-
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lar cross section (Fig. 1). Flume and bar dimensions are chosen to
validate numerical simulation with full scale trash-rack model
investigated in Albayrak et al. [21], for the trash-rack inclination
of 45� and rectangular bars with inclinations of 45�, 67.5� and
90�. Bars are considered completely submerged. Flow velocity
ranges from 0.13 to 0.43 m/s, in accordance to experiment.
Trash-rack bars are 0.1 m long with the greatest cross section
width of 0.01 m and with bar spacing 0.05 m. Reynolds bar number
Rs ¼ Us=m where U is approaching velocity and s bar width ranges
from 1295 to 4285. After validation, further investigation is con-
ducted for trash-rack inclinations of (a angle) 15�, 30� and
45� with bar inclinations of (b angle) 45�, 67.5� and 90� for differ-
ent cross sections. Influence of bar spacing on head losses for dif-
ferent bar and trash-rack inclinations is investigated in Albayrak
et al. [21] so this parameter is kept constant for all conducted sim-
ulations and only influence of cross section change was considered.

Four different cross section geometries are considered – rectan-
gular, rhombus, rounded front edge with inclined back in the lower
half and rounded front edge with inclination starting right after
rounded edge (Fig. 1). Hereinafter considered cross sections will
be referred to as cross section A, B, C and D, respectively. In cross
sections B, C and D, sharp edges are avoided due to production rea-
sons. Consequently, 2 mm straight segments can be seen in cross
section profiles.

Geometry and trash-rack placement in the channel can be seen
in Fig. 1. The trash-rack origin for all geometries is set at 3 m
downstream from the inlet. Cross sections considered for head
loss measurements for numerical model validation are defined
3 m upstream (inlet) and 3 m downstream from the trash-rack

origin. For all other configurations, head loss measurements were
conducted on inlet and outlet cross sections.

Number of bars on trash-rack depends on a and b angles, which
leads to different blockage of fluid flow on flume sides for different
configurations, e.g. for configuration b = 90� and a = 45� bars can
be spaced on trash-rack in a way there is no clearance on flume
sides or with clearance on both flume sides if one bar is removed.
Numerical investigation of both configurations shows around 15%
difference in head loss coefficient. Considering this information is
usually not mentioned when the experiment is described to avoid
influence of side clearance, outer bars were extended to completely
block the fluid flow. A similar method can be seen in Raynal [26]
where sides of the trash-rack domain were cut off.

For the configuration with greatest fluid flow blockage (a =
45�; b = 90�), 3D multiphase, 3D single phase and 2D simulations
are conducted. 3D multiphase fluid flow simulation best describes
the open channel nature of the experiment but requires consider-
able computational resources, thus simplification is made to
reduce computational time. A 3D geometry is created where
domain height is set as an estimation of free surface level which
was constant throughout the whole domain. This simplification
allowed usage of a single phase fluid flow model which signifi-
cantly reduced computational time. Since cross section along the
vertical axis remained constant, 2D simulations are also consid-
ered. All three simulations provide similar results - both 3D models
underestimate the head loss coefficient for around 14% while 2D
single phase model underestimation is around 15%. Consequently,
for all configurations, 2D simulation is chosen in order to reduce
computational time.

Fig. 1. (a) Numerical domain with trash-rack position and measurement locations (plan view). (b) Trash-rack detail with trash-rack inclination a and bar inclination b (plan
view). (c) Bar cross sections with indicated dimensions (in mm) used for fluid flow simulations (plan view).
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Numerical model

Simulations are conducted in ANSYS-Fluent for an unstructured
mesh with local refinement around trash-rack and channel walls.
Considering that changes in trash-rack configuration greatly influ-
ence fluid flow field (e.g. width and length of recirculation zone)
and keeping in mind that optimization should be conducted with
automated meshing, i.e. cannot be further refined according to
simulation results, meshing parameters are kept the same for all
considered configurations. First layer height is defined to maintain
yþ > 30 and scalable wall functions are used. Global element edge
size is defined to be within 0.016 m and 0.0001 m with prescribed
value of 0.004 m. Maximum size of the element edge for bar edges
is defined as 0.003 m and for channel wall 0.005 m. Mesh indepen-
dence study is conducted for configuration a = 45�; b = 90� with
numerical meshes sizing 230 000, 413 000, 723 000 and 920 000
elements (Table 1). Values of head loss coefficient became constant
for numerical mesh consisting of 723 000 elements, which
prompted the choice of the grid with around 800 000 elements
(depending on trash-rack configuration) for all simulations.
Detailed investigation of turbulent models for numerical simula-
tions of fluid flow around trash-rack was conducted in previous
study [30], where it was observed that k-� standard turbulence
model generates greatest head loss values showing the best agree-
ment with experimental results at the same time. In general, when
greater recirculation zone is present behind trash-rack, k-� stan-
dard turbulence model shows stability in results, while other mod-
els tend to oscillate. Due to these observations, k-� standard
turbulence model is chosen for all simulations in this study. Over-
view of boundary conditions can be seen in Table 2.

Numerical simulation is done by solving the steady-state
incompressible isothermal Navier–Stokes (NS) equations which
describe the fluid flow:

r � u ¼ 0 ð1Þ

ðu � rÞu ¼ � 1
q
rpþ mr2uþ f ð2Þ

where u is the velocity vector, p represents the pressure, q is the
fluid density, m is the fluid kinematic viscosity and f represents the
external forces acting upon the fluid (e.g. gravity). Eq. (1) repre-
sents the conservation of mass while Eq. (2) defines the conserva-
tion of momentum of fluid flow. Reynolds averaging is additionally
applied to the NS equations for turbulence modeling.

Chosen fluid is water with properties for temperature of 20�

(Table 3). Pressure-velocity coupling SIMPLE algorithm is used
and discretization scheme for the convection terms of governing
equations is second order upwind. Convergence criteria is assumed
if all residuals drop below 10�5 and additionally no change of head
loss coefficient is observed with further iterations.

Results and discussion

Validation of simulation

Validation is conducted for rectangular bars with a angle
45� and b angles 45�, 67.5� and 90� for four different velocities,
0.13, 0.23, 0.33 and 0.43 m/s. Head loss coefficient is calculated
as (to match the head loss coefficient in Albayrak [21]):

k ¼ Dp
2g
U2

0

ð3Þ

In Eq. (3) U0 is inlet velocity and Dp is the pressure difference
between upstream and downstream cross sections. Pressure differ-
ence represents an approximation of water level difference (Dh)
present in experiments. This assumption is validated with afore-
mentioned comparison with multiphase simulation results where
small variation was present for both considered models.

A greater recirculation zone for trash-racks with greater bar
inclination is noticed in the simulations (Fig. 2). Highly turbulent
flow behind trash-rack was also observed in experiments [21].
For b angle 45� recirculation zone accounts for around one third
of channel cross section, which is in agreement with Raynal [26].
For b angle 67.5� recirculation zone is present in around half of
the channel, while for b angle 90� recirculation zone increases even
more and with that suppresses fluid flow and increases head losses
(pressure drop). For the same inlet velocities, with the change in
trash-rack configuration, greater recirculation zone leads to higher
magnitudes of velocities due to the reduced cross sectional area
available for fluid flow. This produces a greater variance in down-
stream velocity profiles.

Measurement locations must be placed at an adequate distance
where fluid flow is undisturbed in order to obtain precise data.
That is often a problem, due to the space limitation of the experi-
ment. Mean velocities at observed cross-sections, that are needed
to determine head loss coefficient in the experiment, are calculated
with water height measurements at a given number of points or
combined with flow rate measurements - depending on available
instruments. For example, in Albayrak [21] three points in the
measurement cross section were considered. This is especially a
problem if measurements are made in a recirculation zone where
great velocity variation in the cross section is present. Therefore,
the average of measurements with a smaller number of points
and measurements with a greater number of points can produce
significantly different results.

With the increase in b angle, a greater deviation in results is
observed, where simulation underestimates head loss coefficient
with maximum deviation of 15%. Geometry simplifications must
be taken into consideration regarding this deviation since the
trash-rack structure is simplified, e.g. spacers are omitted from
the geometry. Design of trash-rack sides is not defined in the

Table 1
Head loss coefficient relative error for different mesh sizes with different global element edge size.

number of elements 230 000 413 000 723 000 920 000

element size 0.007 m 0.005 m 0.004 m 0.0035 m
e (kn) 2.02% 0.07% 0% 0%

Table 2
Boundary conditions used for fluid flow simulation.

boundary inlet outlet channel walls bar walls top bottom

type velocity inlet pressure outlet wall wall symmetry symmetry
value 0.13–0.43 m/s atmospheric pressure no slip no slip – –
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experiment description and is thus chosen arbitrarily for simula-
tion, as mentioned previously in Section b. Albayrak [21] reported
a head loss difference of 15% for some configurations due to scale
effects. Free surface measurement can also generate errors, with
a deviation of around 5% as reported in Raynal [20]. Also, when
considering experiments which have low water heights, the bot-
tom has a greater influence on head loss coefficient due to friction,
while in real turbine intakes, these water heights are always
greater. Water depth to channel width ratio in the experiment is
always considerably smaller than 1, while in real intakes it is
greater, making the influence of bottom surface negligible,
thus resulting in an overestimation of head loss coefficient
measurements in experimental studies. To avoid uncertainty
regarding aforementioned issues, head loss coefficient is normal-
ized as:

kn ¼ ke
kmax

ð4Þ

In Eq. (4) ke represents experimental head loss coefficients for
given trash-rack configuration and kmax represents maximum head
loss coefficient observed in all considered experiments. Normaliza-
tion of head loss coefficients will be used in the course of this
study.

Validation of numerical results can be seen in Fig. 3. Normalized
values of head loss coefficient obtained from simulations show
good agreement with normalized values of experiment results.
Greatest discrepancy is 4% for b=90� where for other configura-
tions it is under 2%. Numerical analysis shows very small variation

in head loss coefficient due to change in inlet velocity, contrary to
the experiment which is subjected to measurement errors. This
behaviour is expected, because head loss coefficient equation is
chosen to be invariant of the inlet velocity.

Numerical shape investigation

Numerical investigations are conducted for 4 different cross
sections with 9 different combinations of a and b angles for inlet
velocity 0.43 m/s. Measurement locations for verification are set
at inlet and 6 m downstream from inlet. At these measurement
locations for some configurations, large recirculation zone is
observed and for configurations with a = 15� if trash-rack starts
3 m downstream, measurement location at 6 m is not behind the
trash-rack (in experiment trash-rack location varied due to space
limitation where in this study it is set 3 m downstream from the
inlet). Therefore, numerical shape investigation measurements
are conducted at inlet and outlet cross sections. Trash-rack posi-
tion for different a angles and influence on fluid flow field can be
seen in Fig. 4.

Investigations conducted for different cross sections with differ-
ent ranges of bar and trash-rack inclinations showed that for most
configurations, cross section A provides the greatest head loss
coefficient (since the A area is the largest when compared to other
bar types) with the exception of configuration a = 45�; b = 90� and
a = 30�; b = 90� where cross section B generates the greatest head
loss coefficient. This could be explained with cross section A creat-
ing better fluid flow guidance (smaller turbulence zones) when
fluid flow is perpendicular to bar orientation. The smallest head
loss coefficient was observed mostly for cross section C, with the
exception of configuration a = 15�; b = 45� where cross section B
generated the smallest head loss. For greater a and b angles, selec-
tion of cross section is more relevant, whereas for smaller angles,
the value of head loss coefficient is similar for all cross sections.
These results are presented in Fig. 5 where values of normalized
head loss coefficient (normalized with value of greatest head loss,

Table 3
Fluid properties used for fluid flow simulation.

fluid water

temperature [�C] 20
density [kg/m3] 998.2

viscosity [kg/m-s] 0.001

Fig. 2. Velocity magnitude (in m/s) for trash-rack configuration a = 45� and for b angles 45� , 67.5� and 90� (top to bottom) and pathlines coloured by velocity magnitude for
trash-rack configuration a = 45� and b = 90� .
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i.e. cross section B for configuration a = 45�; b = 90�), for cross sec-
tions that generate greatest and smallest head loss, are presented
for all configurations.

It can be observed that trash-rack configuration (inclinations of
trash-rack and bars) has the greatest influence on head loss. Simu-
lation results show that for greatest bar inclination (b = 90�) reduc-

tion of trash-rack inclination (a) leads to a reduction of head
loss greater than 40%. For greatest considered trash-rack inclina-
tion (a = 45�), reduction of bar inclination leads up to head
loss reduction of around 80%. For smaller inclinations (for exam-
ple b= 45� where a is changed or a=15� where b is changed) lesser
reductions in head loss can be observed, which is expected due

Fig. 3. Experimental and numerical results of normalized head loss coefficient for trash-rack configurations for angles a = 45� and b = 45� , 67.5� and 90� .

Fig. 4. Velocity magnitude for trash-rack configuration b = 90� and for a angles (top to bottom) 45� , 30� and 15� .

114 I. Lučin et al. / Journal of Advanced Research 21 (2020) 109–119



to the fact that values of head loss coefficient are generally smaller
for these configurations. Configurations that provide better
fish avoidance are increasingly being installed, but since they
cause more losses, influence of cross section becomes more
prominent.

In Fig. 6 normalized head loss values are presented for all con-
sidered configurations and for all cross sections. Reduction of head
losses due to change in cross section accounts mostly for around
10%. Results for configuration a = 15�; b = 45� are not aligned with
the trend of other configurations which could be explained due to
small head loss coefficients for configurations with b = 45� (seen in
Fig. 5). For these configurations, a reduction of a angle or change in
cross section geometry generates a very small reduction of head
loss. For some configurations, different cross sections provide very
similar results, where if the configuration is changed, the head loss
coefficient difference becomes greater i.e. cross section selection is
more prominent. For example, for trash-rack configuration a =
45�; b = 90� both cross section A and D generate similar head loss
coefficient, where if a angle is decreased to 15� cross section A gen-
erates the greatest head loss coefficient. This shows that general-
ization of the optimal cross section cannot be made, hence it
must be optimized for every trash-rack configuration, especially
when new designs such as V-shaped trash-rack [23] start being
implemented.

Cross section optimization

Optimization of bar cross section is conducted for turbine
intake system of 50 years old hydroelectric power plant HE Senj
(Senj, Croatia) (Fig. 7a). Since the power plant is in the need of
reconstruction, a new trash-rack design is being considered also.

In the time of power plant construction there was no concern for
fish species so trash-rack consisted of rectangular bars installed
parallel and trash-rack perpendicular to fluid flow.

The optimization process is conducted for simplified geometry;
trash-rack remained perpendicular and bars parallel to fluid flow.
Distance between bars and their length is kept the same and only
cross sections are changed. Validation of numerical simulation was
conducted for rectangular cross section. Results showed good
agreement with available empirical results [10] and with in situ
measurements with error around 4%. Three different cross sections,
which are chosen due to easy machining, are considered: cross sec-
tion with front and back inclinations, cross section with curvature
at front and back and cross section with front curvature and back
inclination. For the first cross section, four optimization variables
defining width and length of inclination are considered. The second
cross section has three optimization variables which define the
radius of front curvature and inclination width and length in the
back. For the last cross section, two optimization variables which
define the front and back curvature are considered (Fig. 7b). There
are no limitations imposed on optimization variables due to con-
struction reasons, thus considered shapes present theoretical solu-
tion. Overview of optimization variables for each optimization case
is presented in Table 4.

Optimization is done using Particle Swarm Optimization (PSO)
which is a population based search algorithm that is inspired by
swarm intelligence, such as birds flock or fish school movements
[31]. The starting point of PSO is to initially randomly generate,
within certain bounds, a set of solutions (swarm) to a problem
and iteratively evaluate the quality (fitness) of every candidate
solution (particle). After every evaluation, the position of every
particle is adjusted towards the local or global optimal position.

Fig. 5. Normalized head loss coefficient values for considered trash-rack configurations. Presented data shows only cross sections that generate minimum and maximum
losses.
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Movement of every particle through the problem space is influ-
enced both by its own best solution and swarm’s best solution. This
process continues until values converge into a satisfactory and/or
steady set of solutions. Factors such as particle cognitive rate,
social rate, and problem space movement inertia greatly influence
the optimal position convergence. The PSO algorithm implemented
in the python optimization package inspyred is used with swarm
size of 10 particles, inertia factor 0.75, cognitive rate 1 and social
rate 1.

Goal functions for all considered optimization cases are defined
as:

minfaðxaÞ ¼ DpðxaÞ
minfbðxbÞ ¼ DpðxbÞ
minfcðxcÞ ¼ DpðxcÞ

ð5Þ

In Eq. (5) Dp represents result of numerical simulation con-
ducted for optimization variables xa; xb or xc which denotes vectors
of optimization variables dependent on the case:

xa ¼ ½a1; a2; a3; a4�
xb ¼ ½b1; b2; b3�
xc ¼ ½c1; c2�

ð6Þ

Fig. 6. Normalized head loss coefficients for (a) b = 45� , (b) b = 67.5� and (c) b = 90� .
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Details of optimization variables in Eq. (6) can be seen in Table 4.
Optimization is conducted several times to verify results.

Results converged to identical solutions for every cross section sep-
arately. Particle swarm optimization is used where for all three

cross sections optimization variables converged in their upper lim-
its. For case (a) optimization generated a cross section with maxi-
mum front and back inclinations which generated rhombus shaped
cross section. For case (b) front edge has maximum curvature with
maximum inclination in the back, which generated streamlined
shaped bar and for case (c) optimization generated cross section
with front and back edges with maximum curvature. These results
are expected since all considered profiles converged in cross sec-
tion with minimal cross section area; they generated the smallest
head loss which validated this optimization process. Initial and
optimized cross sections with indicated optimization parameters
can be seen in Fig. 7b.

Sharp edges in cross sections must be carefully considered due
to production, exploitation and safety reasons. During the process
of trash rack cleaning considerable forces can be induced on bars,
especially when removing debris stuck between bars, which If trash
rack cleaning system is in direct contact with the trash-rack, forces
induced during interaction can cause structural damage. Also,
depending on the hydroelectric power plant location, different
intakes are subjected to different type of debris. Considered HE Senj
mainly deals with smaller debris (weed or branches) so rhombus
shaped bars that have thinner front edge can be considered for

Fig. 7. (a) Intake structure of HE Senj with detail of current bar design. (b) Cross sections considered for optimization cases with optimization parameters (left) and their
optimized shape (right).

Table 4
List of optimization parameters for optimization cases with parameter constraints (L
denotes bar length and s bar width).

Optimization variables Constraints
[lower limit, upper limit]

Case a xa
front inclination length a1 [0, L/2]
front inclination width a2 [0, s/2]
back inclination length a3 [0, L/2]
back inclination width a4 [0, s/2]

Case b xb
front curvature radius b1 [0, s/2]
back inclination length b2 [0, L - s/2]
back inclination width b3 [0, s/2]

Case c xc
front curvature radius c1 [0, s/2]
back curvature radius c2 [0, s/2]
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installation. However, if greater debris (logs) is frequently present
at intake it can cause damage to construction if that type of cross
section is chosen. Also, depending on configuration, sharp edges
can cause fish injuries when interacting with trash-rack. This
problem is also present with rectangular cross section, where for
some bar inclinations (e.g. 90�) rhombus shape provides a safer
solution. Considering these problems are problem specific, edge
thickness constraints must be defined in accordance.

For different intake geometries, shape optimization of the bar
cross section can be conducted to provide the optimal solution.
Hence, cross sections that are usually not used, can be derived as
an optimal result for specific intake (e.g. innovative design consid-
ered in [24]). In this study, only parameters defining cross section
are included as optimization parameters, however, other geometry
parameters such as bar spacing, bar length, bar inclination etc. can
also be included. Cross section optimization for HE Senj was done
to reduce the losses without changing the bar spacing (which was
proved to be valid during exploitation). As it was mentioned in
[19,20] head loss reduction due to cross section change enables
reduction in bar spacing, but that must be carefully evaluated
due to its influence on other criteria such as structural aspect, deb-
ris accumulation, vibrations and velocity filed that can influence
the fish movement. With new innovative designs, such as V-
shaped trash-rack [23] optimization value becomes more promi-
nent because it can reduce the time necessary for conducting
experiments that vary different geometry parameters. Also, since
vortex shedding that influences vibrations and can cause damages
to trash-rack structure is known for standard trash-rack design,
when considering new innovative designs this aspect must also
be taken into consideration. More detailed numerical analysis
(LES) of unsteady fluid behaviour should be conducted [16] with
encompassing structural (FEM) numerical analysis [17].

Conclusion

In this study, the influence of trash-rack and bar geometry on
head losses is examined. Validation of numerical results is con-
ducted with experimental results from previous studies. A numer-
ical investigation of four bar cross sections for nine different trash-
rack configurations, where trash-rack and bar inclinations are var-
ied, is performed. Additionally, optimization of trash-rack bar cross
section is conducted using the PSO algorithm.

For a given experiment, where the channel cross section is con-
stant along the vertical axis, similar results are obtained with 3D
multiphase, 3D single phase and 2D simulations. Since difference
in 2D and 3D results were around 1%, 2D simulations are con-
ducted for all considered cases to save computational time. For
greatest bar (90�) and trash-rack (45�) inclinations greatest varia-
tion in the result is observed with numerical simulation underesti-
mating head loss coefficient by 15%. Rectangular cross section,
which is mainly present in turbine intakes, causes the greatest
head loss for almost all configurations which suggests there is an
area for improvement in current designs. For greater bar and
trash-rack inclinations greater turbulence zones can be observed
which cause greater head loss coefficient. Also, in case of low-
head turbines where the turbine is positioned rather close to the
trash-rack, the non-uniformity of flow may cause a reduction of
turbine efficiency. For these configurations influence of cross sec-
tion is greater than for configurations with smaller inclinations.
Optimization conducted for trash-rack perpendicular and bars par-
allel to fluid flow, generated geometry with minimal bar cross sec-
tion area.

In future work, possibilities of optimization should be explored
and validated with the experiment. Optimization can be conducted
for real intake geometries where the influence of channel before

and after trash-rack should also be also included. To decide on
the optimal cross section, apart from head losses, other flow field
parameters which influence the fish behaviour near trash-rack
can be included in the optimization goal function to encompass
both ecological and engineering approach. Construction and stabil-
ity aspect must also be taken into consideration, where constraints
or penalties for designs that induce vibrations that could lead to
construction failure should be included. Currently this optimiza-
tion procedure would include expensive goal function evaluation
since it would include both LES simulation and structural (FEM)
numerical analysis, but with growing computational power it
would provide comprehensive study of trash-rack design.
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ABSTRACT17

Contaminant intrusion in a water distribution network is an important concern since it can have18

hazardous consequences for the population. Reacting immediately is crucial to prevent or reduce19

the further propagation of contamination. In terms of contamination scenario characteristics,20

optimization is extensively researched as a valuable methodology to provide information. In this21

work, a procedure preceding the optimization which considerably reduces the search space for a22

potential contaminant source location is presented. For each suspect node, a simulation is conducted23

1 Lučin, December 14, 2021



with unrealistically high contaminant concentration injected throughout the whole simulation. If24

the sensors do not register contamination in a later scenario, then that node can be eliminated25

as a possible contaminant source. The methodology is applicable for both single and multiple26

contaminant injection nodes. This approach is investigated on multiple benchmark networks and27

different sensors placements, as given in the literature. By coupling the proposed search space28

reduction method with an optimization approach, a novel efficient methodology for contamination29

source detection is presented.30

INTRODUCTION31

In the event of a contaminant intrusion in a water distribution network, that can quickly affect32

a great number of network users, restoring water quality is a main concern. In order to give a33

fast response, it is needed to rapidly identify the contaminant injection location; thus, a number34

of studies have investigated emergency reaction and effects on human health in contamination35

events (Davis et al. 2014; Rasekh and Brumbelow 2015; Shafiee and Berglund 2017; Shafiee36

et al. 2018; Strickling et al. 2020). Due to a limited number of sensors in real water distribution37

networks, optimal sensor placement is particularly relevant in the fast and accurate detection of the38

pollution event parameters. Therefore, different optimization approaches and algorithms have been39

extensively investigated (Ostfeld et al. 2008; Hart and Murray 2010; Mukherjee et al. 2017; Zhao40

et al. 2016; Palleti et al. 2016; Ung et al. 2017).41

In order to determine the number of network users which are potentially affected by a contam-42

ination event in a water distribution network, the following needs to be known: the source node43

of contamination, the starting time of the injection, the duration of the injection and the injection44

concentration value. A number of different approaches for the identification of contamination45

scenario characteristics have been investigated, such as data mining (Huang and McBean 2009),46

backtracking method (Laird et al. 2005; De Sanctis et al. 2009), Bayesian approach (Yang and Boc-47

celli 2014) and simulation-optimization approach (Preis and Ostfeld 2007; Zechman and Ranjithan48

2009). When considering an optimization approach, the discrepancy in sensor measurements must49

be taken into consideration (Preis and Ostfeld 2008), as well as the uncertainty of water demand50
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(Vankayala et al. 2009; Xuesong et al. 2017; Yan et al. 2019) since both factors have an impact51

on the efficiency of the optimization method. Since source identification is an inverse problem,52

which are generally considered to be ill-posed, multiple solutions can yield similar results i.e.53

different contamination sources can cause similar contamination measurements in sensors. This is54

especially the case when sensor measurement and network demand uncertainties are considered.55

Consequently, the source identification problem can be considered as a non-unique, multimodal56

problem. This was investigated by using a niching algorithm which provided multiple potential57

optimization solutions (Hu et al. 2015; Yan et al. 2017). A detailed overview of optimization58

methods for identification of contamination source was presented in Adedoja et al. (2018).59

When considering larger networks, the complexity of the proposed problem increases and60

different methods for reducing complexity of the problem have been introduced. Aggregation (Qin61

and Boccelli 2017) and network skeletonization (Klise et al. 2013) approaches reduced the water62

distribution network model by simplifying it, albeit while deteriorating the accuracy of the water63

quality simulations. De Sanctis et al. (2009) investigated a reduction of suspect nodes using a64

backtracking method extended with contaminant status algorithm, where possible injection nodes65

and injection times pairs were identified by iterating over all sensor measurements. However, in the66

said method, the assumption of ideal sensors was made which could cause the false identification67

of suspect nodes. Further examination of the proposed method was conducted in Seth et al.68

(2016), where the efficiency of three different approaches was investigated for source identification;69

Bayesian-probability, optimization approach and contaminant status algorithm strategies. Liu et al.70

(2012b) and (2012a) used logistic regression analysis to identify potential source locations in order71

to narrow down the search space for the optimization methods which were then used to identify72

other contamination scenario characteristics. Sankary and Ostfeld (2019) investigated Bayesian73

localization of contamination intrusion using mobile sensor data.74

The authors of this study observed that during the optimization process, in which an algorithm75

searches for optimal contamination scenario parameters, in a considerable number of simulations76

there is no detected contamination whatsoever. Therefore, a new search space reduction method,77
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reducing the number of suspect nodes for the optimization process, is proposed. The said search78

space reduction is achieved by simulating an extreme contamination scenario for eachwater network79

node which is a potential source, with an unrealistically large contamination amount constantly80

being injected at the analyzed node. This can be considered as an upper bound of a contamination81

scenario simulation which was chosen to assure that the true source node is not eliminated. If82

the sensors do not detect contamination for such an extreme scenario, this node can be excluded83

from the list of suspect nodes. Contrary to the backtracking method, the method proposed in this84

work uses a forward simulation model with a simple sensor measurement comparison. Due to the85

fast execution of the water network flow simulations, the proposed forward approach can easily be86

conducted even on large scale networks.87

Since the described pre-optimization procedure only reduces the number of suspect nodes, it88

needs to be coupled with an optimization algorithm to identify the contamination scenario pa-89

rameters (injection time, duration, and concentration) and the true contamination source node. In90

this study, the proposed search space reduction method is coupled with an optimization approach91

in which an independent optimization is conducted for each remaining suspect node. A similar92

approach can be observed in Liu et al. (2012b) where local search methods (coupled with logis-93

tic regression) were conducted for each remaining suspect node. The independent optimizations94

reduce the number of optimization variables, in turn reducing the complexity of the given prob-95

lem. The optimization run with the smallest fitness value identifies the optimal source node with96

corresponding pollution event parameters. A major issue with the standard optimization approach97

is the source node parameter being a categorical variable and which makes the optimization task98

a combinatorial optimization problem, that is a very difficult problem to solve. Also, due to the99

multimodal nature of the problem, the optimization is highly dependent on initial conditions, as it100

can easily converge to local optima without ever discovering the global optimum. The proposed101

optimization approach successfully avoids the problem of obtaining only local optima solutions by102

providing both the optimal and approximate solutions.103

This paper is organised in the following manner: considered contamination scenarios and104
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investigated benchmark water distribution networks are presented, followed by a description of105

the pre-optimization procedure and the used optimization approach in which Genetic Algorithm106

(GA) and Particle Swarm Optimization (PSO) are independently employed for each remaining107

suspect node. In the results section, the search-space reductions are presented for all networks,108

contamination scenarios and sensor placement layouts, in order to inspect the robustness of the109

proposed method. Also, the results of the optimization approach for the chosen contamination110

scenarios are presented. In the discussion section, the benefits and limitations of the proposed111

method are examined.112

MATERIALS AND METHODS113

Test cases114

Hypothetical contamination scenarios are simulated in EPANET2 (Rossman et al. 2000) version115

2.0.12 for small, medium and large sized benchmark water distribution networks. All networks116

are obtained from The Centre for Water Systems (CWS) at the University of Exeter (Centre for117

Water Systems ), with the exception of EPANET2 example networkNet3. All simulation parameters118

(duration, hydraulic, quality and pattern time step) are kept at default values, with the exception119

of the pattern time step which is set to 10 minutes for the small and medium sized networks. The120

contamination starting time, duration of injection and concentration value are chosen arbitrarily121

and are equal for every scenario within the considered network. The EPANET2 flow paced method122

is used for the contaminant injection for all conducted simulations. In all simulations, a single123

injection node and a constant value of concentration is defined. The basic assumptions are that124

the considered network demand multipliers are calibrated and the sensors are considered ideal.125

Different sensor placement is taken into consideration for each pipe network and presented in Table126

1 with the corresponding literature. In order to investigate the robustness of the proposed method,127

for each considered network, the contamination scenarios are simulated for each network node, e.g.128

for a network consisting of 100 nodes, a search space reduction for 100 contamination scenarios is129

investigated.130
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Small network131

For the small sized network, hypothetical network Anytown, USA consisting of 19 nodes,132

proposed by Walski et al. (1987), is used (Fig 2). The simulation time is 24 h with a hydraulic time133

step of 1 min, a quality time step of 1 min and a pattern time step of 10 min. Two different sensor134

layouts are examined. In the first layout, sensors are placed in network nodes 70 and 160, while in135

the second one, in nodes 90, 110 and 140 (Table 1). The contaminant injection starts at C = 5 h,136

with a duration of 120 min with a constant injection concentration of 500 mg/L.137

Medium networks138

The first medium sized network used is the EPANET2 example Net3 consisting of 92 nodes (Fig139

3). The simulation time is 24 h with a hydraulic time step of 10 min, a quality time step of 5 min140

and a pattern time step of 10 min. The investigation of four different sensor layouts is performed141

(Table 1). For all considered cases, the contamination injection starts at C = 5 h with a duration of142

100 min and with a constant injection concentration of 300 mg/L.143

The second medium sized network analyzed is the Richmond network (Fig. 4a) with 865 nodes144

and two different sensor layouts (Table 1). The simulation time is 72 h with a hydraulic time145

step of 1 h, a quality time step of 5 min and a pattern time step of 1 h. For all considered cases,146

the contaminant injection starts at C = 5 h with a duration of 5 h and with a constant injection147

concentration of 500 mg/L.148

The third medium sized network considered is the BWSN Network 1 (Ostfeld et al. 2008) (Fig.149

4b) with 126 nodes. The simulation time is 96 h with a hydraulic time step of 30 min, a quality150

time step of 5 min and a pattern time step of 30 min. Two different sensor layouts are examined151

(Table 1). For all considered cases, the contaminant injection starts at C = 5 h with a duration of 5152

h and with a constant injection concentration of 300 mg/L.153

Large network154

For a large network, BWSN Network 2 consisting of 12523 nodes is considered (Fig 4c). Due155

to the significant number of nodes, only the sensor layout by Wu and Walski (2008) is considered156

because of its greatest detection likelihood (Table 1). Originally, the simulation time is set to 48 h,157
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but for the purpose of this research, it was set to 24 h with a hydraulic time step of 1 h, a quality158

time step of 5min and a pattern time step of 1 h. For all considered cases, the contaminant injection159

starts at C = 5 h with a duration of 5 h and with a constant injection concentration of 500 mg/L.160

Search space reduction method161

For each network, a group of extreme contamination scenarios is conducted. Extreme contam-162

ination scenario simulations are conducted for each node independently, with the contamination163

injection starting at the beginning of the simulation and lasting throughout the whole simulation.164

Concentration is kept constant with an unrealistic value of contamination (1 kg/L). The idea is to165

test whether the contamination originating from the examined node will ever be registered in the166

used pollution detection sensors. If the relevant sensors are unable to detect contamination for this167

extreme scenario, it is safe to assume that this node is not a possible contaminant source and does168

not need to be considered as one in the optimization process. The search space reduction method is169

conducted with a Python script which executes the EPANET2 extreme scenario simulation for each170

node, collects the sensor measurements from the report file and compares them with the sensor171

measurements from the contamination event (in this case the hypothetical contamination scenarios172

which were previously simulated). The flowchart of the proposed method can be seen in Fig. 1.173

The elimination of the true source node can be done due to the demand uncertainty or sensor174

measurement imperfections. However, if the extreme scenarios are simulated on a calibrated175

hydraulic model, which is also to be used later in the optimization phase, then these uncertainties176

remain intrinsic to the entire optimization approach and as such cannot be avoided. In other words,177

even if the optimization would still take into account the suspect node which was eliminated by178

the search space reduction procedure, the sensors would always measure zeros when that node was179

chosen as a source node, regardless of the variation of other optimization parameters (injection180

time, duration, and concentration). Consequently, the optimization method would also eliminate181

that node as a possible solution, i.e. it would concentrate on exploring other suspect nodes (although182

with less efficiency).183

In light of the above, two different methods of analysis of sensor detection in extreme scenario184
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are used. In the conservative method, only those nodes that did not register contamination in the185

extreme scenario, i.e. for which all sensor measurements are zero, are removed. This assures186

that the elimination of the true source node cannot be done because of the search space reduction187

method. In the case of multiple contaminant sources, one node can influence detection in one sensor188

and another node can influence detection in a different sensor. Thus, in those scenarios only nodes189

for which sensors do not detect contamination at all can be safely eliminated, i.e. the conservative190

search space reduction method is to be used. The non-conservative method is based on matching191

sensor detection, i.e. where it is required that the sensors which jointly detected pollution in a real192

pollution event must also jointly detect pollution in the extreme scenario. This method assumes a193

single injection location and enables greater search space reduction. However, in this method, the194

sensor measurement imperfections must be taken into consideration.195

Optimization procedure196

For the optimization phase of the source contamination detection, an optimization approach197

which removes the source node variable from the optimization process is used. In order to do198

so, the assumption of a single contaminant source node is adopted. In this approach, a separate199

optimization process is independently conducted for each network node remaining after the search200

space reduction. The independent optimization processes are conducted with the contamination201

starting time, duration and concentration as the optimization variables. In this manner, the com-202

plexity of the given problem decreases by reducing the optimization problem from four mixed203

(categorical/continuous) variables to three continuous variables.204

A great number of studies of the optimization-based contamination detection used Genetic205

Algorithm (GA) and its variants, thus the GA implementation in the Python optimization package206

DEAP (2012) is used. Since in the proposed approach, the search space is reduced to continuous207

variables, Particle Swarm Optimization (PSO) algorithm, as implemented in Python optimization208

package inspyred (2017), is also applied to this problem. The goal function is defined as cumulative209

squared difference in measurement for each sensor and each time step:210
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5 =

=∑
8=1

)∑
C=1
(2>8 (C) − 2B8 (C))2 (1)211

where = denotes the number of sensors, ) represents the simulation duration with discrete time212

step C, 2> represents the observed concentrations in real contamination event and 2B represents the213

concentrations obtained by the simulation. Since sensors are considered ideal, for the exact solution214

the fitness function must yield zero.215

The proposed procedure is applied to a contamination scenario from Net3 network with four216

sensors as given in Preis and Ostfeld (2007). The contamination scenario is defined as it was217

explained in subsection 2, with node 10 being the contaminant source. For BWSN Network 2, the218

contamination scenario with injection node 12500 is considered with other parameters being the219

same as given in subsection 2. For both networks, the starting time and duration variables range220

from 0 h to 24 h and the concentration value ranges from 10 to 2000 mg/L. The overview of the221

optimization parameters is presented in Table 2.222

RESULTS223

In this section, the search space reduction results are presented for the small, medium and large224

sized water distribution networks with different sensor placements to investigate the efficiency of225

the proposed method. A detailed presentation of the search space reduction process is shown for226

the small sized network. Due to a great number of network nodes in the medium and large sized227

networks, i.e. a great number of investigated contamination scenarios, only a summary of the node228

reductions is presented for those networks.229

Investigation of injection time and location for small network230

In order to enable the definition of the appropriate test-case contamination scenarios, an investi-231

gation of the injection time and location is conducted for Anytown, USA network for scenarios with232

an injection starting time at 5 h (Scenario A), 10 h (Scenario B) and 20 h (Scenario C). The sensors233

are placed in nodes 90, 110 and 140. Table 3 shows chosen contamination scenario conditions234

and simulation results with information on the ability of sensors to detect the contamination. The235
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scenarios in which none of the sensors reported contamination are omitted from the table since236

the awareness of contamination event is non existent. The changes in sensors detection of con-237

tamination for scenarios B and C, comparing with scenario A, are given in bold typeface. Results238

show that fluid flow in the pipe network greatly influences the sensors’ registration of contaminant.239

For example, the contamination detection in sensors can change just by varying the injection time,240

even though the injection duration and concentration value are kept constant. As an illustration,241

when contamination is injected in node 20 at 5 h, all three sensors detect contamination. If, for the242

same injection node, the starting time is changed to 20 h, the sensor in node 140 does not report243

contamination anymore.244

When the injection node changes, different detection in sensors can be observed as well.245

For example, for the scenario A when the injection node is node 20, all three sensors detect246

contamination, while for the simulation with the injection at node 140 only one sensor detects247

contamination. This shows that the investigation of different injection nodes is sufficient to display248

the benefit of the proposed method for different scenario conditions. Therefore, the injection249

starting time, duration and concentration are equal for all scenarios within the investigations of the250

same network.251

Search space reduction for small network252

Injection nodes 20 and 30 are chosen for a detailed presentation of search space reduction253

for scenario A. Extreme scenarios are conducted for all network nodes and sensor detection is254

presented in Table 4. For the extreme scenarios with contaminant injected in nodes 10, 65, 120,255

130, 165 and 170 none of the sensors register contamination and those nodes can be removed256

from the optimization process when the conservative method is applied (underlined in Table 4). If257

the non-conservative method is used, a positive detection of contamination in scenario A must be258

matched with a positive sensor detection in the extreme scenario. For injection node 20, all sensors259

report contamination, hence all sensors must also report contamination in the extreme scenario.260

That is valid only for the extreme scenarios with injection nodes 20 and 110 (given in bold typeface)261

and these nodes should be further considered for the optimization. All other nodes can be excluded262
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from the optimization search space since at least one sensor detection does not match detection in263

the contamination event (marked with star).264

In Table 5, an overview of nodes that can be eliminated for scenarios with different source265

nodes is presented with the indicated reductions of suspect nodes. At least 30% of suspect nodes266

can be eliminated for all considered cases, i.e. no matter where the real source is located. This267

can be observed for multiple injections scenario (conservative method), where the same removed268

nodes are listed as in case of single injection scenario (non-conservative method) for nodes 140,269

150 and 160. However, reduction can be even around 90% for some contamination scenarios, i.e.270

injection locations. The achieved range of suspect nodes reductions indicates that, depending on the271

real contamination event, the optimization process can greatly benefit from the proposed method.272

Even the smallest reduction obtained (32% in this case) is still significantly reducing the number273

of suspect contamination nodes. It must be noted that these results are true only for the considered274

network, sensor layout and considered scenario (injection time, duration and concentration value).275

A different contamination scenario can yield different reduction ranges, hence presented results276

serve only as an illustration of possible benefits of the proposed method.277

Influence of sensors layout278

The efficiency of the proposed source node reduction method depends also on the number279

of sensors and their placement in a network. This is investigated for all networks presented in280

section 2. Since the number of investigated contamination scenarios is equal to the number of281

network nodes for all considered networks and sensor layouts, a wide range of different search282

space reductions is obtained. For that reason, only the greatest and smallest search space reduction283

is presented for each sensor layout. A single injection scenario result (yielding the greatest achieved284

reduction of suspect nodes) and multiple injection scenario result (yielding the smallest reduction285

obtained using conservative method) are presented in the Table 6. For all other scenarios with286

different injection nodes, the search space reduction efficiency is somewhere in a range between287

the presented smallest and greatest search space reduction values.288

The analysis displays that a wide range of reductions can be observed, but a considerable289
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reduction of search space is present for all cases. For example, for Net3 with five sensors, the290

search space reduction ranges from 23% to 83%. However, for the sensor layout with two sensors,291

these reductions increase and are in the range of 60% to 80%. In the case of multiple sources, with292

an increase of the number of sensors, a smaller reduction of search space can be observed (Anytown,293

Net3, BWSN Network1), as expected. With a greater number of sensors, the likelihood that at294

least one sensor will detect contamination increases and there is a smaller number of nodes for295

which contamination event in extreme scenario is not detected. For the majority of the considered296

networks and sensor placements, at least around 25% of suspect nodes can be eliminated, the only297

exception being the BWSN Network 1 with 13% reduction. However, the sensor placement in298

question is in fact the optimal sensor layout with the maximum detection likelihood, as reported299

in Ostfeld et al. (2008) so it is only reasonable that most of the time at least one sensor will300

detect pollution in extreme scenarios. For the largest investigated network, BWSN Network 2, the301

minimum reduction of 64% is achieved which removes 8036 out of 12523 suspect nodes. For some302

scenarios, the reduction efficiency is much higher than the minimum of 64%. For instance, in the303

case of the injection node 12500, the number of remaining suspect nodes was reduced to 23.304

Although a great number of simulations is needed, the overall computation time of the proposed305

search space reduction is fairly short. The results presented in this paper are obtained by utilizing306

the HPC resources of the Center for Advanced Computing and Modelling at the University of307

Rĳeka, specifically one INTEL E7 fat node. For the Net3 network, 4 cores are used for conducting308

proposed search space reduction method which took several seconds to execute. For the BWSN309

Network 2 with 24 cores used, the reduced suspect nodes are obtained within 12 minutes, while310

with 48 cores it takes 7 minutes for the nodes to be obtained.311

Optimization results312

The optimization procedure is conducted for one Net3 and one BWSNNetwork 2 contamination313

scenario. For the Net3 network scenario with injection node 10, 18 suspect nodes remain (the314

number of suspect nodes is reduced by 80%), namely 18 independent optimizations are conducted315

to determine the starting time, duration and concentration of the contamination injection. The316
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graphical overview of suspect nodes is presented in Fig 5 where it can be observed that the proposed317

search space reduction method localizes region where contamination occurs. All 18 independent318

optimizations are run in parallel, where each optimization is conducted on one processor core of319

�#)�! �7 fat node, totally employing 18 processor cores. One independent optimization lasts 9320

minutes, and due to parallel optimization execution, the solutions are obtained in the same time.321

If a smaller number of processor cores are available, e.g. 6, optimizations would need to be run322

sequentially, resulting in 18 minutes required to obtain the solution. To investigate and compare323

success rates of GA and PSO optimizations, a total of 50 optimization runs are repeated.324

For the optimization with injection node 10 (which is a true contaminant source node), the GA325

optimization manages to find the exact solution in 25 runs out of 50, which is only a 50% success326

rate. To obtain the optimal solution, the GA needs 40 generations on average. PSO optimization is327

also used, where the optimal solution is obtained in 41 runs out of 50, which is a 82% success rate.328

To obtain the optimal solution PSO needs 35 iterations on average.329

For the other suspect nodes, the minimum fitness from 50 runs is obtained and compared. It330

is observed that the contamination scenarios with the source node 101 and 105 are the second and331

third best solutions (marked in Fig 5). This is expected since those nodes are topologically near the332

real contaminant source node. It is interesting to note that node 103 (placed just below node 101) is333

also topologically near the source of contamination, but due to hydraulics of the system, in extreme334

scenario for that node contamination is not registered in the sensors at nodes 117 and 143 so it335

is not considered as a potential source node. The sensor measurements for the optimal scenarios336

with nodes 101 and 105 as source nodes are presented in Fig. 6. The sensor measurements for the337

optimal solutions of source node 10 and 101 show a very similar trend, thus indicating multimodal338

nature of the observed problem, while for source node 105, a greater difference is evident.339

For the BWSN Network 2 contamination scenario with injection node 12500, 23 suspect340

nodes remain after pre-optimization reduction procedure, hence 23 independent optimizations are341

conducted in parallel, with 50 repeated PSO runs. For injection node 12500, which is the true342

injection location, the optimization manages to find the exact solution in all runs. To obtain the343
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optimal solution, 30 iterations are needed on average. Three other nodes provide a similar solution,344

all of them being topologically near the true source node (Fig 7). A single optimization run345

conducted on one processor core of �#)�! �7 fat node takes 4 hours, but the optimum is on346

average obtained in 30 iterations, for which not more than half the time is needed. However, the347

simulation parameters greatly influence the optimization time, e.g. for a hydraulic time step of348

10 minutes, the optimal solution is obtained on average in 35 generations, which lasts 5 hours.349

Therefore, the given computation times should only be understood as rough estimates, and further350

study should be made for investigating the computational efficiency on multiple processor cores351

and with fine-tuned optimization parameters.352

DISCUSSION353

The above presented tests show that the proposed search space reductionmethod can successfully354

be applied on different size networks with different sensor layouts. Since hydraulic simulation355

parameters vary for each network, and contamination scenario parameters are chosen arbitrarily,356

it is also shown that they do not influence the method’s performance. Furthermore, for the largest357

investigated network consisting of 12523 nodes and 20 sensors, a considerable reduction is observed358

(ranging from 64% to 99%) indicating that this kind of realistic problems would benefit a lot from359

the proposed method, since most real water distribution networks have a great number of nodes360

and a sparse sensor placement.361

The proposed method can require a considerable number of simulation runs, which is always362

equal to the number of network nodes. However, the proposed method quickly obtains results even363

for large scale networks due to the fast EPANET2 execution of hydraulic simulations. Parallel364

computation of extreme scenarios can be made, accelerating the gathering of required data for365

search space reduction and making the time needed for this process practically negligible even366

for the largest network. Extending the proposed method for parallel computation on multiple367

processors would be fairly straightforward, due to SIMD nature of the method’s computational368

process.369

In this study, the sensor measurements are considered ideal, thus the impact of false positive370
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and false negative sensor detection must be further explored. This problem is also present in the371

backtracking method and discussed in De Sanctis et al. (2009) and Seth et al. (2016). However,372

considering that the presented methodology serves only as a preparation for the optimization-373

based search procedure, using the conservative version of the suspect node reduction method374

(where only nodes for which in extreme scenario contamination is not detected are eliminated)375

these uncertainties exist only inasmuch as they are intrinsic to the entire optimization approach.376

However, as a trade-off for security that true source node is not wrongly eliminated, a smaller377

reduction of suspect nodes is obtained. Until the influence of uncertainties in the single injection378

approach is further investigated, the use of conservative approach should be encouraged, as it379

removes any uncertainty issues associated with the search space reduction method.380

The examples of independently run optimizations for each suspect node display that the source381

identification problem has multiple solutions in terms of fitness, as was previously observed in382

the literature, and that this approach successfully provides those solutions. GA algorithm and its383

variants are usually used for this problem; however, it is observed that for problem formulation with-384

out source node as optimization variable PSO algorithm outperforms GA. The further exploration385

of PSO variants and optimization parameters should be conducted to improve the optimization386

procedure, i.e. decrease the number of needed EPANET simulations.387

It is shown that, for medium sized network, the results can be obtained under 10 minutes when388

each independent optimization is conducted on a single CPU and optimizations are conducted in389

parallel (the number of employed processor cores is equal to the remaining number of suspect390

nodes). As the network size increases, several hours are needed to obtain results, implying that391

all independent optimizations are run in parallel with single processor core dedicated for each392

optimization. However, since the optimization procedure is specific for each network node, it393

can easily be distributed on multiple processors simultaneously, employing a greater number of394

processor cores per optimization and further accelerating the discovery of the optimal result. With395

the use of supercomputers and a simple parallel execution, a rapid response to a water network396

contamination problem would be guaranteed. The main drawback is that the reasonable number397

15 Lučin, December 14, 2021



of remaining suspect nodes is needed. This is especially the case when large scale networks398

are investigated since a limitation of computational resources could be reached. The coupling399

of the proposed search reduction with a probability based method using the reduced number of400

suspect nodes could be explored, which would further refine the list of suspect nodes, resulting in401

a reasonable number of processors needed for parallel utilization of the proposed approach.402

CONCLUSION403

In this work, the detection of source contamination is investigated by the use of suspect source404

nodes reduction as a preparation for the optimization approach detection process. The proposed405

search space reduction method is tested on five benchmark networks of varying size and with406

different sensor placement layouts that are taken from the literature. The results show that a407

considerable reduction in search space can be achieved, thus greatly reducing the complexity of the408

contamination source identification optimization problem. This is especially important considering409

the necessity of the rapid reaction time given the severity of the considered problemofwater network410

contamination.411

The main observations are:412

• The proposed method is applicable for both single and multiple contaminant source scenar-413

ios, where a considerable reduction is present for both cases with a greater benefit in the414

case of single injection location.415

• With an increase in network size, where sensor placement becomes more sparse, a greater416

reduction of search space is observed. This indicates that the proposed method can be417

highly beneficial when applied to a real water distribution network.418

• For some contamination scenarios, a larger number of suspect nodes is eliminated and the419

source of pollution is localized. For these scenarios, a new optimization approach for single420

injection scenario is proposed where independent optimizations are conducted for every421

remaining suspect node as a contamination source.422

• The proposed optimization procedure successfully obtains both the optimal and approximate423
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solutions in a small number of optimization iterations.424

Further study of this work should include the following:425

• The influence of demand uncertainty and imperfect sensors on the efficiency of the proposed426

search space reduction method should be investigated.427

• Enhancing the proposed methodology with probabilistic methods should be explored, as428

it could enable the detection of remaining suspect nodes which are more likely to be the429

sources of contamination.430

• Different optimization algorithms and optimization parameters should be investigated in431

order to minimize the computational effort needed for reaching the optimal solution.432
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TABLE 1. Overview of sensor layouts for investigated networks.

Network Sensor placement Reference
Anytown 70, 160 Ostfeld and Salomons (2004)

Preis and Ostfeld (2007)
90, 110, 140 Ostfeld and Salomons (2004)

Net3 117, 143, 181, 213 Preis and Ostfeld (2007)
115, 119, 187, 209 Zechman and Ranjithan (2009)
113, 120, 147, 211 Liu et al. (2012a)

117, 149, 167, 213, 253 Seth et al. (2016)
117, 173 Yan et al. (2017)

Richmond 123, 219, 305, 393, 589 Preis and Ostfeld (2007)
93, 352, 428, 600, 672 Preis et al. (2008)

BWSN Network 1 10, 31, 45, 83, 118 Preis et al. (2008)
10, 83 Yan et al. (2017)

BWSN Network 2 871, 1334, 2589, 3115, 3640 Wu and Walski (2008)
3719, 4247, 4990, 5630, 6733
7442, 7714, 8387, 8394, 9778

10290, 10522, 10680, 11151, 11519
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TABLE 2. Optimization parameters for Net3 and BWSN network 2 optimization.

GA
Generations Population Crossover rate Mutation probability

100 100 0.95 0.1

PSO
Generations Population Inertia Cognitive rate Social rate

100 100 0.75 1 1
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TABLE 3. Sensors contamination detection for different injection locations of contamination and
for different scenarios for Anytown network.

Scenario A Scenario B Scenario C
(starting time 5 h) (starting time 10 h) (starting time 20 h)

Contamination detection in sensors
Injection node S90 S110 S140 S90 S110 S140 S90 S110 S140

20 yes yes yes yes yes yes yes yes no
30 yes no yes yes no yes no no yes
40 yes no yes yes no yes no no yes
50 yes no yes yes no yes no no yes
60 yes no yes yes no yes yes no yes
70 yes no yes yes no yes yes no no
80 yes no yes yes no yes no no yes
90 yes no yes yes no yes yes no no
100 yes no yes yes no yes no no no
110 yes yes yes no yes yes no yes no
140 no no yes no no yes no no yes
150 no no yes no no yes no no yes
160 no no yes no no yes no no yes
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TABLE 4. Comparison of sensor detection of contamination for scenario A injection in nodes 20
and 30 and for extreme scenarios for Anytown network.

Scenario A Scenario A
Injection node 20 Injection node 30

Sensor 90 Sensor 110 Sensor 140 Sensor 90 Sensor 110 Sensor 140
yes yes yes yes no yes

Injection node Extreme scenario
Sensor 90 Sensor 110 Sensor 140 Sensor 90 Sensor 110 Sensor 140

10 no no no no no no
20 yes yes yes yes yes yes
30 yes =>∗ yes yes no yes
40 yes =>∗ yes yes no yes
50 yes =>∗ yes yes no yes
60 yes =>∗ yes yes no yes
65 no no no no no no
70 yes =>∗ yes yes no yes
80 yes =>∗ yes yes no yes
90 yes =>∗ yes yes no yes
100 yes =>∗ yes yes no yes
110 yes yes yes yes yes yes
120 no no no no no no
130 no no no no no no
140 =>∗ =>∗ yes =>∗ no yes
150 =>∗ =>∗ yes =>∗ no yes
160 =>∗ =>∗ yes =>∗ no yes
165 no no no no no no
170 no no no no no no
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TABLE 5. Node reductions for Anytown network for scenario A (contamination starting time at 5
h).

Single source
Injection node Deleted nodes Search space reduction

20 10 30 40 50 60 65 70 80 90 100 120 130 140 150 160 165 170 89%
30 10 65 120 130 140 150 160 165 170 47%
40 10 65 120 130 140 150 160 165 170 47%
50 10 65 120 130 140 150 160 165 170 47%
60 10 65 120 130 140 150 160 165 170 47%
70 10 65 120 130 140 150 160 165 170 47%
80 10 65 120 130 140 150 160 165 170 47%
90 10 65 120 130 140 150 160 165 170 47%
100 10 65 120 130 140 150 160 165 170 47%
110 10 30 40 50 60 65 70 80 90 100 120 130 140 150 160 165 170 89%
140 10 65 120 130 165 170 32%
150 10 65 120 130 165 170 32%
160 10 65 120 130 165 170 32%

Multiple sources
10 65 120 130 165 170 32%

27 Lučin, December 14, 2021



TABLE 6. Overview of node reductions for investigated benchmark networks and sensor layouts.

Network Sensor placement Single injection Multiple injections
Injection node Reduction Reduction

Anytown 70, 160 20 89% 74%
90, 110, 140 20 89% 32%

Net3 117, 143, 181, 213 10 80% 25%
115, 119, 187, 209 10 80% 38%
113, 120, 147, 211 10 80% 32%

117, 149, 167, 213, 253 10 83% 23%
117, 173 10 80% 60%

Richmond 123, 219, 305, 393, 589 1 96% 82%
93, 352, 428, 600, 672 1 94% 59%

BWSN Network 1 10, 31, 45, 83, 118 15 86% 13%
10, 83 5 81% 60%

BWSN Network 2 871, 1334 ... 11519 87 99% 64%
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Fig. 1. Flowchart of proposed pre-optimization search space reduction method.
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Fig. 2. Anytown network with indicated two considered sensor layouts.
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Fig. 3. Net3 EPANET example with investigated sensor layouts. Markers next to sensor numbers
indicate literature which used those sensors.
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(a)

(b) (c)

Fig. 4. Investigated networks (a) Richmond network, BWSN (b) small network and (c) large
network.
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Fig. 5. Sensor locations, real source of contamination, approximate solutions and eliminated nodes
for Net3 optimization problem.
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(a) (b)

(c) (d)

Fig. 6. Net3 measured concentrations in sensors for (a) exact solution, (b) second best and (c) third
best solution. (d) Comparison of sensor 181 measurements for different injection nodes.
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(a)

(b) (c)

Fig. 7. (a) Real source of contamination, approximate solutions and suspect nodes for BWSN
Network 2 optimization problem. Comparison of (b) sensor 4247 measurements and (c) sensor
6733 for real source and approximate solutions.
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Abstract: In the case of a contamination event in water distribution networks, several studies have
considered different methods to determine contamination scenario information. It would be greatly
beneficial to know the exact number of contaminant injection locations since some methods can only
be applied in the case of a single injection location and others have greater efficiency. In this work,
the Neural Network and Random Forest classifying algorithms are used to predict the number of
contaminant injection locations. The prediction model is trained with data obtained from simulated
contamination event scenarios with random injection starting time, duration, concentration value,
and the number of injection locations which varies from 1 to 4. Classification is made to determine if
single or multiple injection locations occurred, and to predict the exact number of injection locations.
Data was obtained for two different benchmark networks, medium-sized network Net3 and large-
sized Richmond network. Additionally, an investigation of sensor layouts, demand uncertainty, and
fuzzy sensors on model accuracy is conducted. The proposed approach shows excellent accuracy in
predicting if single or multiple contaminant injections in a water supply network occurred and good
accuracy for the exact number of injection locations.

Keywords: water distribution networks; water network contamination; machine learning; random
forest; neural network

1. Introduction

Contamination in water distribution networks can occur due to deliberate or unin-
tentional intrusions and it is of extreme importance to determine the contamination event
parameters so it can be detected which parts of water distribution networks have been
exposed to the contaminant and needed measures can be conducted. This is considered to
be an inverse problem since injection location, injection starting time, injection duration,
and contaminant chemical concentration value needs to be predicted based on sensor
measurements. Numerical simulations are used to determine these parameters, but model
limitations need to be taken into consideration. EPANET [1] is the most commonly used
software for water distribution network simulations and uses an advective approach which
cannot efficiently analyze contaminant dispersion in the networks. Piazza et al. [2] con-
ducted experiments where it was shown that dispersive and diffusive processes must be
incorporated in the transport model for less turbulent fluid flows to achieve more accurate
results than the pure advection model. Also, EPANET assumes complete mixing in all
network junctions, which can be valid only in the case of a single outlet or if there is con-
siderable distance between two junctions. Therefore, EPANET extension EPANET-BAM [3]
was proposed which uses experimentally calibrated mixing model parameter to more
accurately model mixing in network junctions. A number of studies investigated mixing
behavior for different conditions, both experimentally and numerically, to further enhance
these simpler 1D numerical models [4–9].

Sensors 2021, 21, 245. https://doi.org/10.3390/s21010245 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5839-3156
https://orcid.org/0000-0003-0377-686X
https://orcid.org/0000-0001-7469-3135
https://doi.org/10.3390/s21010245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21010245
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/1/245?type=check_update&version=2


Sensors 2021, 21, 245 2 of 15

Huang and McBean [10] investigated a data mining approach for identifying possible
sources of intrusion where single and multiple injection scenarios were considered. In the
case of multiple injection scenario, the method provided a limited number of nodes with
the probability of them being the true contamination source. However, in their work, it is
not predicted what is the true number of injection locations. In Wang and Harrison [11] a
Bayesian approach was coupled with Support Vector Regression to provide a probability
distribution of water network nodes being contaminant sources. However, a single injection
is assumed, and it is noted that multiple contaminant sources should be considered in future
work where the likelihood evaluation needs to be adjusted. Seth et al. [12] investigated
the efficiency of three different methods for source detection; Bayesian probability-based
method, backtracking method (using contaminant status algorithm), and optimization-
based method where accuracy in case of multiple injection locations was investigated for
two and three contamination injection locations. It was noted that the Bayesian method is
designed only for a single contamination location while the contaminant status algorithm
used in De Sanctis et al. [13] provides a list of possible solutions that narrow down search
space for the optimization method; however, it also does not identify the possible number
of injection locations. In Lučin et al. [14] a new search space reduction method was
proposed, which can eliminate a considerable number of source nodes for both single and
multiple injection locations, but with considerably greater reduction for single injection
scenario. A number of different optimization approaches were considered to determine the
contamination source, an overview of proposed methods can be found in Adedoja et al. [15].
Optimization approach can be easily extended to consider multiple contamination sources,
as mentioned in [16–18].

If considering the optimization approach with multiple injection locations, with each
additional source of contamination, the complexity of search space increases with an in-
crease of optimization variables. Since the number of injection locations is not known,
as a precaution, multiple injection locations should be allowed, since optimization can
set variables to zero (which eliminates that source node and eliminates the number of
injection locations), but it cannot add additional variables (injection locations) during the
optimization process. In this way, in the case of a single injection location, optimization can
eliminate other source nodes (all contamination parameters would be set to 0). However,
this considerably increases the complexity of the considered problem since unnecessary fit-
ness function evaluations would be conducted due to greater search space. Thus, it would
be greatly beneficial to determine the number of injection locations before the optimization
algorithm is employed. Also, if it is known that a single injection event occurred, a number
of methods can be used more efficiently to reduce the complexity of the problem. For ex-
ample, the machine learning approach provides probabilities for each network node being
the true contamination scenario, which greatly reduces the number of suspect nodes and
helps in quicker detection of true contamination location. However, in the case of multiple
injections, different likelihood evaluation is needed which increases the complexity of
the machine learning approach. Prediction of the number of contamination sources has
previously been conducted for air pollution in Wade and Senocak [19], but to authors
knowledge was not conducted for water distribution network contamination scenarios.

Machine learning tools have been increasingly used in contamination detection,
where Random Forest has been used for groundwater source of contamination detec-
tion [20] and source detection in a river [21]. In Grbčić et al. [22] Random Forest algorithm
was used to predict contamination event parameters in water distribution networks and in
Grbčić et al. [23] new machine learning-based algorithm was proposed. A great advantage
of prediction models is that they can be constructed before an accident occurs, so when
a contamination event is detected prediction can be made even for large networks in a
computationally efficient way. Thus, the proposed model which predicts number of injec-
tion locations can be used prior to conducting approaches that search for contamination
parameters, without influencing the reaction time needed to contain the contamination
event. However, in accident situations hydraulic conditions can greatly differ from those
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on which model was trained, thus, a wrong prediction could be made. This can be handled
with the preparation of multiple prediction models with different hydraulic conditions
or by using a prediction model that achieves great accuracy with the small number of
inputs so time for prediction also becomes negligible considering the benefit of search
space reduction when redundant optimization parameters are not used.

In this paper, the Random Forest and Artificial Neural Network classifier are used to
predict the number of contamination sources based on contamination sensor measurements
in the water distribution network. Sensor measurements of contamination needed for
model teaching are obtained from contamination scenarios simulated using EPANET2 with
Monte Carlo generated contamination parameters. An investigation was conducted for
two different sized benchmark water distribution networks with different sensor layouts,
to examine the efficiency of the proposed machine learning approach. Investigation of
demand uncertainty and fuzzy sensors is also estimated.

2. Materials and Methods
2.1. Benchmark Water Supply Networks

Prediction of the number of injection sources is conducted for two benchmark different
sized networks. Investigated networks are Net3 EPANET2 example consisting of 92 nodes
and Richmond network consisting of 865 nodes, obtained from The Centre for Water
Systems (CWS) at the University of Exeter [24]. For the Net3 network, two different sensor
layouts are investigated. In first layout four sensors were placed in network nodes 117,
143, 181, and 213 as in [25] and in second layout four sensor were placed in network
nodes 115, 119, 187, and 209 as in [26]. Additionally, an investigation of the number of
sensors was conducted. For the first layout, two sensors were placed in network nodes
117 and 181, and for the second layout sensors were placed in network nodes 119 and
209. For Richmond network five sensors were placed in network nodes 93, 352, 428, 600,
and 672 where sensor layout was taken from [27]. Layout with three sensors placed in
network nodes 93, 428, and 672 was also considered. Considered networks with sensor
layouts can be seen in Figures 1 and 2.

Contamination scenarios are simulated using EPANET2 version 2.0.12. where for both
networks, simulation time is 24 h with a hydraulic time step of 10 min, quality time step
5 min, pattern time step 10 min and report time step 1 h. For all conducted simulations,
the EPANET2 flow paced method is used for the contaminant injection. Contamination
scenario parameters are chosen randomly. The number of injection locations is chosen from
1 to 4 nodes. The starting time and duration of contamination injection are chosen from 0
to 24 h. Concentration was randomly chosen from 10 to 2000 mg/L. For contamination
scenarios with multiple injection locations starting time, duration, and concentration was
kept the same for every injection location.

Prior to simulating multiple injection scenario, independent simulations for each
randomly chosen node as a source of contamination are conducted. If contamination is not
registered for the investigated node with chosen contamination parameters, that node is
eliminated as source location and only nodes for which contamination was detected in at
least one sensor are kept as a source of contaminant. For example, if four source nodes are
randomly chosen to be the source of contamination, but only two source nodes influence
sensor detection of contaminant, the same time series of sensor measurements would be
obtained for two, three, and four injection locations since the latter two do not influence
contamination measurements. If four sources are given to the prediction model as input,
where contamination can be measured only from two sources, that would significantly
reduce the accuracy of the prediction model. Thus, only nodes which contribute to the
contamination measurements in sensors are considered for multiple injection scenario.
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Figure 1. Net3 network with sensor layouts.

Figure 2. Richmond network detail with sensor layout.

An example of the proposed methodology can be seen for arbitrarily chosen Net3
contamination scenario in Figure 3. Randomly chosen contamination scenario parameters
are 3 source nodes (159, 151 and 123), with contamination value of 200 mg/L, starting time
13 h and 20 min and injection duration 2 h. Sensor measurements for chosen contamination
scenario can be seen in Figure 4. It can be observed that for source node 151 contamination
scenario remains undetected in all sensors placed in the water distribution network, thus for
multiple sources scenario only source nodes 123 and 159 are further considered.
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Figure 3. Contours of chemical for randomly chosen Net3 contamination scenario 90 min after injection starting time.
Contamination from source node 151 remains undetected, so the source node is not included for multiple injections scenario.
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(a) (b)

(c) (d)
Figure 4. Sensor measurements for Net3 contamination scenario with (a) injection node 159, (b) injection node 123,
(c) injection nodes 123 and 159 and (d) contamination measurements in the sensor in node 181.

2.2. Demand Uncertainty and Sensor Type

To investigate demand uncertainty, for both Net3 and Richmond networks, for every
network node first it was randomly chosen if demand will be altered or not. If node
base demand was to be altered, the percentage from 0–5% is randomly chosen for each
network node, to reduce or increase base demand by the chosen percentage, resulting in
a random demand span of 10%. To further investigate influence of demand uncertainty,
the percentage from 0–10% is randomly chosen to reduce or increase base demand, resulting
in a random demand span of 20%. All network demand patterns were kept the same,
only base demand was changed. This method was conducted for every contamination
scenario, thus resulting in different hydraulic conditions for each contamination scenario.

For sensor type influence, fuzzy sensor measurements were made where sensor
detection was considered either low, medium, or high. Chemical concentration value C
in range 0 < C < 300 mg/L was considered low, in range 300 < C < 1000 mg/L was
considered medium and high if C > 1000 mg/L. Prediction model input features were
defined as 0 if no contaminant was detected, 1 for low measurements, 2 and 3 for medium
and high measurements, respectively.

2.3. Machine Learning Classifiers

Two different machine learning classifiers, Random Forest and Artificial Neural Net-
work were used to compare the efficiency of the proposed method. Random Forest al-



Sensors 2021, 21, 245 7 of 15

gorithm [28], based on multiple decision trees is used, with 250 estimators (trees) with a
maximum depth of 30 and the minimum number of samples required to split an internal
node 8. An artificial neural network with three hidden layers with 100 nodes in each layer,
with hyperbolic tangent activation function and Adam solver for weight optimization is
used. Proposed parameters were chosen with the grid search hyperparameter optimization
method, while other parameters, which are not mentioned, are kept constant. Imple-
mentation in the Python library Scikit-learn [29] version 0.20.3 is used for both classifiers.
Obtained data was split 70% for teaching and 30% for model testing. Flowchart of the
prediction model can be seen in Figure 5. Data generation and prediction model training
was done using the supercomputing resources at the Center for Advanced Computing and
Modelling, University of Rijeka.

Figure 5. Flowchart of Machine Learning algorithm for prediction of number of contamination
sources.
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Input data for the prediction model is the time series of sensor measurements. For both
Net3 and Richmond network, 25 features per sensor are obtained, which resulted in
100 features for Net3 and 125 features for Richmond network. The output of the machine
learning model is the number of injection locations where two different prediction models
are used. The first prediction model was used to predict the exact number of injection
locations, i.e., 4 different classes are predicted. In the second model it is predicted only if
single or multiple injections occurred, i.e., 2, 3 and 4 injection locations are treated as same,
multiple injections class, thus only 2 different classes are predicted (single and multiple
injections). To further increase the accuracy of the latter prediction model, the threshold
value is introduced. Only if the model predicts a single source scenario with a probability
greater than the chosen threshold value, single source prediction is made. In other cases,
the scenario is treated as multiple sources. Threshold values of 50%, 60%, 70%, 80%, 90%,
and 95% are investigated.

3. Results
3.1. Model Accuracy

The influence of input data on prediction model accuracy is investigated for both
benchmark networks where data ranged from 50,000 to 500,000 inputs (Figure 6). An inves-
tigation is conducted for prediction model with 2 categories (model predicts only if single
or multiple injection locations are present) and with 4 categories (model predicts an exact
number of injection locations). For each model and each number of inputs, 20 runs were
conducted to take into consideration the influence of random seed. For the Net3 network
second sensor layout with sensors placed in nodes 115, 119, 187, and 209 was considered.
For Net 3 results are presented for both RF and NN prediction models. Standard deviation
ranged from 0.63% for 50,000 to 0.33% for 500,000 inputs for NN model, and from 0.33%
for 50,000 to 0.1% for 500,000 inputs. It can be observed that the RF model has slightly
better accuracy for all investigated models. Also, due to the faster execution time of the RF
model, for all further analyses, only RF results will be presented. For Richmond network,
standard deviation ranged from 0.28% for 50,000 inputs to 0.12% for 500,000 inputs which
indicates the stability of the model. Presented results are an average of all 20 runs.

(a)

Figure 6. Cont.
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(b)

Figure 6. Accuracy of prediction models for different number of inputs for (a) Net3 network and
(b) Richmond network.

It can be observed that even for a small number of input data considerable accuracy
can be achieved. For model with 2 categories even with 50,000 inputs accuracy of the model
is above 85% for both considered networks. After 200,000 inputs accuracy of the models
for both networks tend to only slightly increase with the further increase of the number of
input data. For 500,000 inputs accuracy of the Net3 network is 66.83% and for Richmond
network 72.96%. When simplification is made, and the model only needs to predict single
or multiple injection locations, accuracy significantly increases and for 500,000 inputs for
the Net3 network is 91.46% and for the Richmond network 93.4%.

3.2. Threshold Influence

To further increase the accuracy of the prediction model, the threshold value is introduced
for the model which predicts 2 categories. Detailed results are presented for models with
500,000 inputs for Net3 (Tables 1 and 2) and Richmond network (Tables 3 and 4). Presented
results are the average of values obtained from 20 runs. As expected, with the increase in
threshold value accuracy of the prediction model increases. However, with a greater threshold
value, a greater number of single injection scenarios, as a precaution, are classified as multiple
sources, thus a smaller number of true single injection scenarios are detected. For both
networks, when the threshold value is 95%, a very low percentage of correct prediction of
single source scenarios can be observed when prediction model parameters chosen with grid
search optimization method (250 estimators, maximum depth 30, minimum samples for split
8) were used (Tables 1 and 3). Thus, different prediction model parameters (180 estimators,
maximum depth 80, minimum samples for split 10) were also investigated to test its influence
on model accuracy when threshold values are considered. In Tables 2 and 4 it can be observed
that for the greatest threshold value (95%) correct prediction of single sources scenarios greatly
increases, and is around 30% of the total number of single source scenarios. As threshold
value decreases, similar percentages are observed for both models, which indicates that model
accuracy is similar for different RF parameters. However, when greater prediction certainty is
expected, model parameters must be carefully considered.
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For both networks, accuracy with threshold value 95% is above 99.5%. It can be observed
from Table 2 that for Net3 only 36% of total number of single source scenarios are correctly
predicted where for Richmond network (Table 4) that value is 37%. For threshold value 50%
for Net3 94.5% of single injection scenarios are correctly predicted; however, the number of
wrong predictions increases. The same can be observed for the Richmond network where
for threshold value 50%, 97.8% of single injection scenarios are correctly predicted but the
percentage of wrong single injection scenarios increases from 0.8% to 12.7%.

The problem remains with scenarios that are wrongly predicted even for a threshold
value of 95%. With further increase of threshold value, the number of wrongly predicted
scenarios would decrease, but only because ultimately all scenarios would be classified as
multiple sources (this can also be observed in Tables 1 and 3 for first chosen RF parameters).
Thus, optimum threshold value should be chosen to both provide a reasonable number
of single injection scenario predictions but with a high model accuracy. In-depth analysis
of scenarios where the model wrongly predicts a single injection scenario with a high
threshold value should be conducted. Also, it should be investigated how much accuracy
of the model can be further increased with a larger number of inputs and with the usage of
different classifiers.

Table 1. Influence of threshold value on model accuracy for Net3 network (250 estimators, maximum depth 30, minimum
samples for split 8). Percentage indicates number of predicted simulations based on total number of single source scenarios.

Threshold Value Accuracy Single Source Scenarios Correct Prediction Wrong Prediction

95% 99.98% 48,682 3307 (6.8%) 36 (0.07%)
90% 99.73% 48,682 15,388 (31.6%) 405 (0.8%)
80% 98.6% 48,682 34,717 (71.3%) 2085 (4.3%)
70% 97.5% 48,682 41,204 (84.6%) 3683 (7.6%)
60% 96.7% 48,682 44,334 (91.1%) 4914 (10.1%)
50% 95.7% 48,682 46,388 (95.3%) 6390 (13.1%)

Table 2. Influence of threshold value on model accuracy for Net3 network (180 estimators, maximum depth 80, minimum
samples for split 10). Percentage indicates number of predicted simulations based on total number of single source scenarios.

Threshold Value Accuracy Single Source Scenarios Correct Prediction Wrong Prediction

95% 99.7% 48,783 17,458 (35.8%) 508 (1%)
90% 99.4% 48,783 25,426 (52.1%) 863 (1.8%)
80% 98.9% 48,783 35,197 (72.2%) 1667 (3.4%)
70% 98.2% 48,783 40,640 (83.3%) 2636 (5.4%)
60% 96.7% 48,783 43,977 (90.2%) 3737 (7.7%)
50% 95.7% 48,783 46,091 (94.5%) 5072 (10.4%)

Table 3. Influence of threshold value on model accuracy for Richmond network (250 estimators, maximum depth 30,
minimum samples for split 8). Percentage indicates number of predicted simulations based on total number of single
source scenarios.

Threshold Value Accuracy Single Source Scenarios Correct Prediction Wrong Prediction

95% 99.9% 52,911 375 (0.7%) 5 (0.001%)
90% 99.8% 52,911 10,889 (20.6%) 303 (0.6%)
80% 97.9% 52,911 37,463 (70.8%) 3076 (5.8%)
70% 95.8% 52,911 49,149 (92.9%) 6269 (11.9%)
60% 94.8% 52,911 51,427 (97.2%) 7819 (14.8%)
50% 93.9% 52,911 52,198 (98.65%) 9178 (17.3%)
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Table 4. Influence of threshold value on model accuracy for Richmond network (180 estimators, maximum depth 80,
minimum samples for split 10). Percentage indicates number of predicted simulations based on total number of single
source scenarios.

Threshold Value Accuracy Single Source Scenarios Correct Prediction Wrong Prediction

95% 99.7% 52,941 19,499 (36.8%) 435 (0.8%)
90% 99.3% 52,941 30,305 (57.2%) 1085 (2.1%)
80% 98.3% 52,941 42,000 (79.3%) 2567 (4.9%)
70% 97.3% 52,941 47,654 (90%) 4061 (7.7%)
60% 96.4% 52,941 50,433 (95.3%) 5433 (10.3%)
50% 95.5% 52,941 51,775 (97.8%) 6703 (12.7%)

3.3. Sensor Layout

The influence of sensor layout was tested for both Net3 and Richmond networks.
20 runs were conducted for the model with 500,000 inputs and average accuracy for all
runs can be seen in Table 5. It can be observed that for the same number of sensors, their
layout influences the accuracy of prediction models. This is expected, since the same
behavior can be seen when the detection rate of contamination event is investigated for
different sensor layouts. In the paper by Ostfeld et al. [30] for the same network and the
same number of sensors detection likelihood of contamination event greatly differs for
different sensor layouts. Results show that the prediction model for 2 categories (predicts
single or multiple injections) is less influenced by sensor layout and all sensor layouts have
accuracy around 90% or higher.

Interestingly, greater model accuracy can be observed when a smaller number of
sensors is placed for Net3 layout with sensors in nodes 117, 143, 181, and 213 and for
Richmond network. However, it can be explained with the fact that a greater number
of contamination events remain undetected. i.e., with the greater number of sensors,
contamination events from the greater number of network nodes are detected, resulting in
more combinations when considering multiple injection locations. When sensor placement
is sparser, a smaller number of network nodes can be detected when the contamination
event occurs, resulting in a smaller number of combinations for multiple injection locations
and consequently providing better model accuracy with 500,000 inputs.

Table 5. Influence of sensor layout for Net3 and Richmond networks on prediction model accuracy.

Sensors Locations
Accuracy

4 Categories 2 Categories

Net3

117, 143, 181, 213 71% 94%
115, 119, 187, 209 67% 91%

117, 181 75% 89%
119, 209 63% 89%

Richmond 93, 352, 428, 600, 672 73% 93%
93, 428, 672 83% 92%

3.4. Demand Uncertainty and Fuzzy Sensors

Influence of demand uncertainty and fuzzy sensors was investigated for Net3 network
with 4 sensors in nodes 117, 143, 181 and 213 and for Richmond network with 5 sensors
in nodes 93, 352, 428, 600 and 672. 20 runs were conducted for RF models with 500,000
inputs and average accuracy can be observed in Table 6. When demand uncertainty is
considered the accuracy of RF models slightly decreases for both networks. The influence
of fuzzy sensors is more prominent, where the greater reduction in prediction accuracy
can be observed for the Net3 network. When considering both demand uncertainty and
fuzzy sensors in the same model, accuracy further slightly decreases. However, it can be
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observed that for both networks model which predicts 2 categories has accuracy above 90%
for all cases. This shows that the proposed model could be applied in a real case scenario.

Table 6. Influence of demand uncertainty and fuzzy sensors for Net3 and Richmond network on
prediction model accuracy.

Net3

4 Categories 2 Categories

perfect sensors 71% 94%
demand uncertainty (±5%) 69% 93%

demand uncertainty (±10%) 69% 93%
fuzzy sensors 65% 91%

demand uncertainty (±5%) and fuzzy sensors 64% 90%
demand uncertainty (±10%) and fuzzy sensors 63% 90%

Richmond

4 Categories 2 Categories

perfect sensors 73% 93%
demand uncertainty (±5%) 72% 93%

demand uncertainty (±10%) 72% 93%
fuzzy sensors 72% 93%

demand uncertainty (±5%) and fuzzy sensors 71% 93%
demand uncertainty (±10%) and fuzzy sensors 71% 92%

4. Discussion

Accuracy of prediction models for both networks has similar results with small differ-
ences, which shows that the proposed methodology could be successfully applied to other
networks. Further investigation should be conducted for large size water distribution net-
works and different sensor placements, to fully investigate the robustness of the proposed
method. Also, it must be noted that simplification was used in this study, where all source
nodes had the same parameters (injection starting time, duration, and concentration value),
thus, it should be investigated how the model predicts if those parameters are different for
each injection node.

Although slightly, with the increase of input data model accuracy still increases, so in
further study a greater number of data inputs should be investigated. Also, in the proposed
scenarios report time step was chosen to be 1 h, resulting in 25 features per sensor. It should
be investigated if a greater number of features, i.e., smaller report time step would increase
model accuracy and if similar model accuracy could be achieved with a smaller number of
contamination readings. The optimal number of features and inputs should be investigated
to achieve great accuracy but with reasonable execution time. However, to obtain a greater
number of inputs a greater amount of time is needed, so the model should be trained
before the actual contamination event occurs. In that case, the model would be trained
with simulation results with average demand patterns. This surely would mean that true
contamination event will have different demands which would influence the accuracy
of the prediction model. Investigation of demand uncertainty with arbitrarily chosen
demand variation spans showed that small differences of base demands slightly influence
prediction model accuracy. However, it must be taken into consideration that when base
demand variation is defined with percentage, small demand variation is achieved when
base demand is small and greater demand variation only when base demand is greater.
Greater difference in demands should be further investigated since the usual variability
of consumption can be greater than considered in this paper. Different machine learning
models, with different expected demand patterns, can be prepared for contamination
event so prediction can be obtained instantaneously. However, in case of contamination
event, greater oscillations in the hydraulics of water distribution network could occur, such
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as pipe burst or some other unplanned event, which would greatly influence change in
demand patterns. Thus, it would be beneficial to investigate other algorithms that could
increase accuracy with a smaller number of input data. In that case, input data can be
obtained after the contamination event occurred, in a reasonable amount of time. That
would be greatly beneficial since the simulation model can then be calibrated with sensor
measurements from the field and input data would be more precise. The proposed method
can be easily coupled with other machine learning approaches since inputs obtained for
this model can also be used for teaching model that predicts injection location.

Investigation of different sensor layouts, demand uncertainty, and fuzzy sensors
showed that sensor layout and type of sensors have the greatest impact on prediction model
accuracy. Demand uncertainty slightly decreases model accuracy. However, model ac-
curacy can be greatly reduced when a real case event is considered since both demand
uncertainty and measurement errors can be greater than considered in this work. Thus,
a threshold value is introduced which can help increase model accuracy. Greater thresh-
old value increases model accuracy; however, it also leads to a greater number of single
injection scenarios classified as multiple injections. It is also observed that prediction
models are not very sensitive to model parameters; however, when threshold value is
used, i.e., model prediction certainty is evaluated, model parameters are very important
for method efficiency. Thus, the investigation of different machine learning approaches
should be further investigated to increase model accuracy.

When observing presented results it must be taken into consideration that numerical
model simplifications are made, where EPANET was used which assumes complete mixing
in all network junctions and uses pure advection transport model. Also, in the presented
study benchmark networks are used, and numerical simulations are conducted for only
24 h, where more than 24 h are needed to obtain stable contamination scenario results.
However, the functionality of the presented machine learning approach is not dependent
on the numerical model setup, and it is assumed that the same numerical approach that is
chosen for the optimization process is to be also chosen for the prediction model preparation.
In this way, all discrepancies due to numerical model simplifications would be also present
in the optimization and as such are not the result of using the proposed machine learning
approach. Furthermore, network uncertainties were not considered regarding internal pipe
diameter and pipe roughness which should be considered in the further research.

5. Conclusions

In this paper, the machine learning approach is presented which helps identify the
number of injection locations based on sensor measurements. Random Forest classifier and
Neural Network classifier are used on medium-sized benchmark network, where Random
Forest classifier provided better accuracy and faster execution time, thus is used for all
other investigations. Two different sized benchmark networks are considered, where it is
shown that the machine learning approach can be successfully used to predict the number
of injection locations. This can help define the number of optimization parameters, where
redundant parameters can be avoided which needlessly increase the complexity of the
problem. The prediction model shows great accuracy when it predicts only if single or
multiple injection locations occurred. The threshold value is proposed which further
increases model accuracy since the single injection scenario is assumed only if the model
predicts with certainty greater than the threshold value. Lower accuracy is obtained
when the exact number of injection locations is predicted. The accuracy of the prediction
model is investigated for different sensor layouts and in case of demand uncertainties and
fuzzy sensors. Conducted research showed promising results, where exploration of other
algorithms and increased number of input data should be investigated to further increase
the accuracy of both models.
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7. Grbčić, L.; Kranjčević, L.; Lučin, I.; Čarija, Z. Experimental and Numerical Investigation of Mixing Phenomena in Double-Tee

Junctions. Water 2019, 11, 1198. [CrossRef]
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9. Grbčić, L.; Kranjčević, L.; Lučin, I.; Sikirica, A. Large Eddy Simulation of turbulent fluid mixing in double-tee junctions. Ain

Shams Eng. J. 2020. [CrossRef]
10. Huang, J.J.; McBean, E.A. Data mining to identify contaminant event locations in water distribution systems. J. Water Resour. Plan.

Manag. 2009, 135, 466–474. [CrossRef]
11. Wang, H.; Harrison, K.W. Improving efficiency of the Bayesian approach to water distribution contaminant source characterization

with support vector regression. J. Water Resour. Plan. Manag. 2014, 140, 3–11. [CrossRef]
12. Seth, A.; Klise, K.A.; Siirola, J.D.; Haxton, T.; Laird, C.D. Testing contamination source identification methods for water

distribution networks. J. Water Resour. Plan. Manag. 2016, 142, 04016001. [CrossRef]
13. De Sanctis, A.E.; Shang, F.; Uber, J.G. Real-time identification of possible contamination sources using network backtracking

methods. J. Water Resour. Plan. Manag. 2009, 136, 444–453. [CrossRef]
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zcarija@riteh.hr (Z.Č.); asikirica@riteh.hr (A.S.)

2 Center for Advanced Computing and Modelling, University of Rijeka, Radmile Matejčić 2,
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Abstract: In the present paper, a Random Forest classifier is used to detect leak locations on two
different sized water distribution networks with sparse sensor placement. A great number of leak
scenarios were simulated with Monte Carlo determined leak parameters (leak location and emitter
coefficient). In order to account for demand variations that occur on a daily basis and to obtain a
larger dataset, scenarios were simulated with random base demand increments or reductions for
each network node. Classifier accuracy was assessed for different sensor layouts and numbers of
sensors. Multiple prediction models were constructed for differently sized leakage and demand
range variations in order to investigate model accuracy under various conditions. Results indicate
that the prediction model provides the greatest accuracy for the largest leaks, with the smallest
variation in base demand (62% accuracy for greater- and 82% for smaller-sized networks, for the
largest considered leak size and a base demand variation of ±2.5%). However, even for small leaks
and the greatest base demand variations, the prediction model provided considerable accuracy,
especially when localizing the sources of leaks when the true leak node and neighbor nodes were
considered (for a smaller-sized network and a base demand of variation ±20% the model accuracy
increased from 44% to 89% when top five nodes with greatest probability were considered, and for
a greater-sized network with a base demand variation of ±10% the accuracy increased from 36%
to 77%).

Keywords: leak localization; water distribution network; random forest; prediction modeling;
big data

1. Introduction

Leakages in water distribution networks can cause great cumulative losses as small
leakages can remain undetected for long periods of time. Direct losses are typically followed
by the overall reduction of the functionality of the water distribution network, which
usually manifests as a pressure drop on the user end. Moreover, leakages can potentially
cause health hazards since microbiological contamination can enter the water distribution
network and reach end users. Porous soil introduces additional difficulties, as even greater
leakages can remain undetected since water is absorbed in the soil, and there is no evidence
of the leakage on the surface. Thus, different technologies and methodologies have been
proposed for leakage detection and localization. In a work by Jacobsz and Jahnke [1], leak
detection using discrete fiber optic sensing was investigated. In a recent study by Nkemeni
et al. [2], a wireless sensor network application was investigated, where processing for leak
detection is performed at the sensor nodes. In a work by Wu et al. [3], a two-stage method
was proposed, which first detects outliers from flow measurements using a clustering
algorithm and then detects whether burst occurred. In the work of Rajeswaran et al. [4], a
multi-stage graph partitioning algorithm was presented, which uses flow measurements to
indicate a minimum number of additional measuring locations needed to narrow down
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leak location in large-size networks. In the work by Cody et al. [5], a linear prediction
signal processing technique was used to extract features from acoustic data, which can
detect and localize pipe leaks. In a work by Bohorquez et al. [6], an artificial neural network
was applied to detect leak size and location in a single water pipeline.

Problems with leak detection and localization in pipelines that are used for trans-
portation of hydrocarbon fluids are also extensively explored, since leaks can cause serious
damage to people and the environment due to often hazardous fluid that is transported.
A number of investigations were conducted, including a data-driven approach using the
Kantorovich distance [7], feature extraction from acoustic signals [8], application of a least
squares twin support vector machine [9], and a multi-layer perceptron neural network
(MLPNN) [10]. A detailed overview of leak detection technologies in pipelines can be
found in a review paper by Adegboye et al. [11].

Additionally, a number of studies considered strategies for optimal sensor place-
ment since it greatly influences leak detection and localization methods efficiency. The
optimization approach is most widely used, and thus different enhancements were con-
sidered, such as a clustering process prior to optimization [12], hybrid feature selection
method [13], methods that reduce the optimization search space [14], and an investigation
of the influence of measurement uncertainty [15]. A detailed overview of leakage detec-
tion methodologies can be found in review papers by Wu and Liu [16], Chan et al. [17],
and Zaman et al. [18].

Software-based leakage detection methods can be divided into transient-based, model-
based, and data-driven approaches. The transient-based approach is based on various
analyses of pressure signals; the model-based approach analyzes residuals, i.e., compares
pressure measurements with the pressure estimation based on a hydraulic network model;
and the data-driven approach relies on collected data and mathematical operations in order
to determine anomalies in pressure. In recent years, machine learning methods have been
increasingly used for leakage detection and localization. Zhou et al. [19] and Pérez-Pérez
et al. [20] investigated leak detection in a single pipeline. In the Zhou et al. [19]’s work, a
convolutional neural network (CNN) was used to pinpoint leak locations in a 1500 m long
pipe segment for different leak sizes, where the better prediction was obtained for greater
leakages. Pérez-Pérez et al. [20] used a combined artificial neural network (ANN), where
the ANN is first used to estimate the friction factor of the pipe and then to localize leak
location. Tests were conducted for a 64.48 m pipe, for which it was reported that an average
percentage error of 0.47% was achieved. Mounce et al. [21] proposed a system using an
artificial neural network for online detection of bursts in water distribution networks that
was shown to have 44% of alarms when burst really occurred, 32% of alarms in cases of
unusual short-term increased demand, 9% of alarms due to industrial events and only
15% were false alarms, indicating the applicability of the proposed method. In the work
of Jensen et al. [22], a sensitivity analysis of pressure residuals was performed to isolate
possible leakage locations. The proposed methodology was applied to the actual water
distribution network, where only a few false alarms occurred, and frequent alarms occured
during the leakage. It was observed that the proposed methodology can isolate a limited set
of candidate nodes, where better performance was observed for greater flows in the system.
In the work of Zhang et al. [23], a data-driven and model-based approach was utilized,
where large-scale water distribution networks were divided into leakage zones that were
categories for multi-class support vector machine prediction. Large-scale networks were
divided into up to 25 zones, with a classification accuracy of above 90% for a division into
25 zones, which further increased with smaller divisions into leakage zones. However,
it must be taken into consideration that further leak localization needs to be conducted
after the leak zone is determined to provide the exact leak location. Soldevila et al. [24]
used a mixed model-based and data-driven approach in which the K-nearest neighbors
(k-NN) algorithm is used to localize leaks. The proposed methodology was applied to three
different sized networks, with leak, demand, and sensor measurement uncertainties. For
the Hanoi benchmark network, for all considered uncertainties in the study, an accuracy
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greater than 90% was reported for the time horizon of one day using pressure sensor
measurements from two sensors. Additionally, some network nodes were grouped since
leaks from those nodes cannot be distinguished due to similar pressure measurements.
Further study was presented by Soldevila et al. [25], where Bayesian classifiers were applied
and greater accuracy than when using a k-NN approach was obtained. Both proposed
methods were successfully applied to real water distribution network case studies where
leak locations detected by the proposed methods were in the vicinity of the real leak
locations. In the work of Quiñones-Grueiro et al. [26], an unsupervised approach to leak
detection was conducted for the Hanoi distribution network using three pressure sensors,
where the average reported classification accuracy was 85% for leak magnitudes smaller
than 2.5% of the total demand of the network for leaks detected within a time interval of
one day. In the work of Zhou et al. [27], after the burst was detected, additional pressure
sensors were placed at optimal locations and deep learning was employed to identify
burst locations. The proposed methodology was applied to 58 synthetic burst cases, where
in 57 cases the top five most probable pipes were correctly identified, and in 37 cases
the top pipe was correctly located. However, it must be noted that the requirement for
additional measurements can extend reaction time in case of a pipe burst. In the work
of Sun et al. [28], a classification approach was utilized where pressure measurements in
network nodes with no pressure sensors were estimated using the Kriging method. The
Hanoi water distribution network was considered with a wide range of sensors, and it
was reported that in the average case 70% accuracy was achieved; however, for some
sensor layouts the reported accuracy was below 20%, which is believed to be due to the
Kriging interpolation error. Javadiha et al. [29] used a convolutional neural network with
pressure measurements for the Hanoi network, where for a one day time horizon the
model accuracy varied from 56% for four sensors to 94% for 12 sensors considering leak
size uncertainty, sensor noise, and base demand uncertainty. The Kriging method was
also used in work by Soldevila et al. [30] with satisfactory leak localization in a real water
distribution network case; however, when compared with their previous work, the Kriging
method did not provide better results.

The main drawback of the machine learning approach is that only a small amount
of real data measurements can be obtained for leak events. Additionally, when a new
installation is made in the water distribution network, all previous records are not valid,
consequently reducing the number of inputs for the prediction model. This is a com-
mon problem in rapidly developing urban areas. Thus, in this paper, a machine learning
approach is presented, in which a great number of leak scenarios for randomly cho-
sen network nodes and with different leak sizes under different demand conditions were
conducted, to obtain a database of pressure sensor measurements that are inputs for the pre-
diction model. This idea is similar to that proposed by Grbčić et al. [31] and Lučin et al. [32],
where a number of Monte Carlo simulations were conducted to obtain a large number of
inputs for a machine learning prediction model that successfully detects the location of
contamination source and determines the number of contamination sources. To the authors’
knowledge, the currently proposed methodology has not been previously applied to the
leak localization problem to obtain a large amount of synthetic data.

Model-based methods’ accuracy is greatly dependent on model calibration, where
model uncertainties can decrease the method’s efficiency. In this work, model uncertainties
are taken into consideration by including randomness for leak and demand values, so as
to describe as many possible combinations of different leak scenarios. Machine learning
classification is then utilized to detect the most appropriate leak scenario, which will
be utilized to determine leak location. A random forest classifier was tested for leak
localization on two different sized benchmark networks. Investigation of the influence
of sensor layout and number of sensors on model accuracy was conducted. Different
prediction models were constructed for different sizes of leaks and for different ranges of
demand uncertainty to estimate model accuracy. This approach allows for a large number
of varying measurements to be simulated in a short amount of time, thus providing
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relatively quick localization, which is suitable for use in real conditions. Additional model
uncertainties such as pipe diameters, node elevations, etc. can easily be incorporated into
the presented methodology.

The rest of the paper is organized as follows. In Section 2, the problem statement
is defined with a description of the used benchmark water distribution networks and a
description of the proposed methodology using a random forest classifier. In Section 3,
results are presented for both benchmark networks investigating the influence of a different
number of prediction model inputs and features, of different ranges of demand uncertain-
ties and leak sizes, and of sensor layout on model accuracy. Additionally, an example of
the application of the prediction model is presented. In Section 4, the main observations
regarding the obtained results are presented with proposed further research. In Section 5,
final remarks are presented.

2. Materials and Methods
2.1. Problem Statement

Model-based leakage detection methods rely on residuals obtained as a difference
between measured and expected results from the simulation of a calibrated water dis-
tribution network model. Unfortunately, water distribution models used for simulation
typically have estimated nodal demands, which greatly influences the accuracy of residual
values, hence resulting in modeling errors that are the main drawback of this approach.
Additionally, if sensitivity analysis is used with nominal leak values, further uncertainties
are introduced. The basic premise of the currently proposed methodology is that the
prediction model can be constructed from a large database of simulated measurement data,
which should describe a variety of possible leak scenarios. Consequently, if a considerable
amount of data is generated, with a set range of considered uncertainties, it is reasonable
to assume that the real measurements can be determined from simulated events with
randomly chosen leak parameters by the prediction model.

Leak scenarios were simulated using EPANET2 version 2.0.12. [33]. Simulation results
were obtained with randomly chosen leak locations, leak size, and random demands of end
users. Basic assumptions used in this work are that leaks can occur only in network nodes
and that a single leak is present in the water distribution network. Sensor measurements
are considered ideal. The used water distribution network models were considered to
be calibrated, i.e., pipe diameter and roughness were considered to be known and well-
calibrated. However, these uncertainties can easily be incorporated into the data generation
stage and further investigation of these uncertainties is to be evaluated in future work.

The prediction model was constructed using raw pressure sensor measurements
obtained every 15 min for a period of 24 h where different ranges of base demand variation
were investigated. Although in a real case scenario base demands vary greatly on daily
basis, several prediction models can be created with characteristic demand patterns, e.g.,
one for summer weekdays, one for winter weekends, etc. Additionally, a prediction model
can be created specifically for night scenarios where smaller demand variations occur. This
methodology is already used for leak detection when differences in flows are measured
during the night to detect if the leak is present in the network. Prediction model random
forest implementation in the Python library Scikit-learn [34] version 0.20.3 was used. Data
generation and prediction model training were performed using the supercomputing
resources at the Center for Advanced Computing and Modelling, University of Rijeka.

2.2. Benchmark Water Supply Networks

Prediction of the leak location was conducted on two differently sized benchmark
networks. The investigated networks are the Hanoi (Vietnam) network with 31 nodes,
obtained from The Centre for Water Systems (CWS) at the University of Exeter [35], and
the Net3 EPANET2 example consisting of 92 nodes. Both benchmark networks were
considered to be calibrated. To achieve unsteady simulation, demand patterns for the
Hanoi network were taken as in [26] and are presented in the Figure 1. For the Hanoi
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network, two pressure sensors were placed at nodes 14 and 30, as depicted in [24]. In the
Net3 network, two different sensor layouts were considered, with four pressure sensors
placed at network nodes 117, 143, 181, and 213, and for the second layout, four sensors
were placed at network nodes 115, 119, 187, and 209. The considered networks with sensor
placements can be seen in Figures 2 and 3.

Figure 1. Hanoi network pattern demands.

Figure 2. Hanoi network with pattern demands in nodes.
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Figure 3. Net3 network with two sensor layouts.

For the Hanoi network, simulation time was 24 h with a hydraulic time step of 1 h
and report time step of 15 min. For the Net3 network, simulation time was 24 h with
a hydraulic time step of 10 min and report time step of 15 min. To obtain data for the
machine learning model, leak scenarios were simulated using different emitter coefficients
on randomly chosen leak nodes. For both networks, all network nodes were assumed as a
potential location of the burst. The first dataset was constructed with no variation of base
demand and only leak location and emitter coefficients were varied. Different ranges of
emitter coefficients were considered, ranging from 5 to 15. To consider the variation of
base demand, first, it was randomly chosen whether base demand is to be altered or not. If
the base demand was to be altered it was randomly increased or decreased by randomly
chosen percentages of 2.5, 5, 10, 15, and 20%. Scenarios with no base demand variation
were considered to investigate the influence of different ranges of emitter coefficients on
prediction model accuracy.

2.3. Random Forest Classifier

Machine learning algorithms build a model on sample data where the underlying
correlation in the data is found and a prediction can be made for a new set of inputs.
Machine learning algorithms can be divided into regression and classification, where
regression provides information about continuous output values, whereas classification
algorithms return discrete values, i.e., class labels. Since the problem considered in this
paper is a classification problem, the machine learning classifier random forest was used.
The random forest algorithm introduced by Breiman [36] is an ensemble learning algorithm
that consists of multiple decision trees where each decision tree is trained independently
on a random subset of data. Bootstrapping ensures that each decision tree in the random
forest has a different subset of the training data, providing unique decision trees. Followed
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by aggregation, a classification with the most occurrences is chosen by the random forest
and is considered as the class prediction.

Random forest parameters used in this study were chosen with the grid search hy-
perparameter optimization method, which was conducted to optimize the number of
estimators (trees), maximum depth, and a minimum number of samples required to split
an internal node while other parameters were kept constant. The Net3 network with four
sensors placed at network nodes 117, 143, 181, and 213, an emitter coefficient ranging from
5 to 15 and with no demand uncertainty was considered for the hyperparameter optimiza-
tion method. Resulting machine learning parameters chosen for further study include
200 estimators, a maximum depth of 60 and a minimum number of samples required to
split an internal node equal to 2. Obtained data were split into 70% for learning and 30%
for model testing. A flowchart of the proposed method can be seen in Figure 4.

Figure 4. Flowchart of data generation and the machine learning algorithm used for the prediction of leak location.

3. Results
3.1. Data Influence

For both networks, the influence of the number of data inputs was investigated when
only the emitter coefficient varied with no change in base demand. The emitter coefficient
was chosen to be in a range from 5 to 15. For the Hanoi network with 100,000 inputs, 100%
accuracy was achieved. For the Net3 network with the first sensor layout, results can be
seen in the Table 1. For each model, 10 runs were conducted with a random training–test
split to consider the influence of the random seed. Standard deviation ranged from 0.17%
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for a model with 100,000 inputs to 0.03% for 500,000 inputs. It can be observed that the
accuracy of the model was 98% for 500,000 inputs. Thus, all further results are with models
with 500,000 inputs, and due to the small standard deviation, the presented results were
calculated as an average of 5 runs.

Table 1 additionally includes results for the top three nodes with the greatest prob-
ability of being the true leak node. As evidenced by the results, an accuracy of 99% was
achieved with merely 200,000 inputs. Considering the top three nodes can be greatly
beneficial for big networks with dense network node placement where a small distance
between network nodes is present. The prediction model can successfully localize leak
location, where further procedures can be used to exactly detect which network node is a
true leak location.

Table 1. Influence of data inputs on model accuracy without base demand variation for the Net3
network with an emitter coefficient range of 5–15.

Data Inputs 100,000 200,000 300,000 450,000 500,000

Accuracy 88% 93% 96% 97% 98%
Top 3 98% 99% 99% 99% 99%

3.2. Variation of Base Demand and Emitter Coefficient

For the Hanoi network, the influence of variation of base demand was investigated for
the model with an emitter coefficient range of 10–15. Results are presented in Table 2. When
demand variation was ±2.5%, the model accuracy was above 80%. It can be observed that
with the greater demand variation for the same number of inputs, the model accuracy
considerably decreased; however, if the top three and five nodes were considered, model
accuracy greatly increased, where for the top five nodes accuracy was above 90% for the
models with a demand variation of up to ±15%. It is important to note, however, that the
top five nodes for such a small network do not provide a considerable localization, and
thus further study of this approach must be conducted on larger networks.

Table 2. Influence of base demand variation on model accuracy for the Hanoi network with an
emitter coefficient range of 10–15 with 500,000 inputs.

Base Demand Variation ±2.5% ±5% ±10% ±15% ±20%

Accuracy 82% 69% 57% 49% 44%
Top 3 98% 93% 86% 81% 76%
Top 5 99% 98% 95% 92% 89%

Results for the Net3 network with variations of base demand for the emitter coefficient
range of 10–15 are presented in the Table 3. It can be observed that for the same base
demand variation and same emitter coefficient range, the model accuracy for the Net3
network decreased by roughly 20% when compared to the Hanoi network. This is to be
expected, since the Net3 network has a considerably larger number of network nodes.
However, it is evident that the approach that considers the top three and five network
nodes significantly increased model accuracy, which would make it possible to successfully
localize leak location even in large networks. The results indicate that for greater variation
in base demand more data inputs are needed when considering large networks.
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Table 3. Influence of base demand variation on model accuracy for the Net3 network with an emitter
coefficient range of 10–15 with 500,000 inputs.

Base Demand Variation ±2.5% ±5% ±10%

Accuracy 62% 49% 36%
Top 3 92% 80% 65%
Top 5 98% 90% 77%

For the investigation of emitter coefficient variation a ±2.5% base demand variation
was chosen, and the results for the Hanoi network are presented in Table 4. It can be
observed that for the smaller emitter coefficient values, model accuracy was considerably
smaller than for cases with greater emitter coefficient values. This is to be expected, since
a greater emitter coefficient value represents a greater leak where a greater discrepancy
in sensor measurements is present, which is easier to detect with the prediction model.
Additionally, when the emitter coefficient range was narrowed down from 10 (emitter
coefficient range 5–15) to 5 (emitter coefficient range 10–15) it was also observed that model
accuracy increased. This is also to be expected since the smaller emitter coefficient range
has a smaller number of leak combinations and the same number of inputs better describes
the prediction model in that case.

Table 4. Influence of emitter coefficient variation on model accuracy for the Hanoi network with a
demand variation of ±2.5% with 500,000 inputs.

Emitter Coefficient Range 1–5 5–10 5–15 10–15

Accuracy 38% 67% 71% 82%
Top 3 67% 92% 93% 98%
Top 5 81% 98% 98% 99%

Results for the Net3 network are presented in the Table 5. The accuracy of the model,
similarly, decreased when smaller emitter coefficients were used. However, it is interesting
to observe that for greater emitter coefficient values the difference in model accuracy
between the two models increased—e.g., for the emitter coefficient range of 1–5, both
models had low accuracy with a difference around 6%. When the emitter coefficient was in
the range of 10–15, model accuracy increased with the Hanoi network yielding improved
accuracy by around 20% when compared to the Net3 network. When considering the top
five leak candidates, both models achieved high accuracy.

Table 5. Influence of emitter coefficient variation on model accuracy for the Net3 network with a
demand variation of ±2.5% with 500,000 inputs.

Emitter Coefficient Range 1–5 5–10 5–15 10–15

Accuracy 32% 51% 52% 62%
Top 3 59% 83% 84% 92%
Top 5 72% 92% 94% 98%

3.3. Sensor Layout Influence

The influence of sensor layout was investigated for the Net3 network where two
different sensor layouts with four sensors and two different sensor layouts with 2 sensors
were considered. Results are presented in the Table 6. It has been shown that with
no demand variation all sensor layouts achieved exceptional accuracy. When demand
variation was introduced, sensor layout slightly influenced model accuracy. Smaller
number of sensors led to a reduction in model accuracy of around 10%. This is to be
expected and indicates that for greater model accuracy a greater number of sensors should
be used.



Mathematics 2021, 9, 672 10 of 14

Table 6. Influence of sensor layout on model accuracy for the Net3 network for an emitter coefficient
range of 5–10 with 500,000 inputs.

Sensor Locations
Demand Variation

No Variation ±2.5% ±5%

117, 143, 181, 213
Accuracy 98% 51% 37%

Top 3 99% 83% 69%
Top 5 99% 92% 79%

117, 181
Accuracy 96% 41% 27%

Top 3 99% 71% 52%
Top 5 99% 83% 64%

115, 119, 187, 209
Accuracy 98% 54% 37%

Top 3 99% 84% 70%
Top 5 99% 94% 83%

119, 209
Accuracy 97% 40% 27%

Top 3 99% 71% 53%
Top 5 99% 85% 67%

3.4. Feature Influence

To investigate the influence of a number of features, two different report time steps
were considered. For all prediction models and for both water distribution networks,
a report time step of 15 min was used, resulting in 97 features per sensor for each leak
scenario. For the Hanoi network with two sensors, this resulted in 194 features, and for the
Net3 network with four sensors, this resulted in 388 features. In [18], it was reported that
sampling data typically vary between 1 min and 15 min; however, to reduce prediction
model complexity, for both the Hanoi and Net3 networks simulations were conducted for
an emitter coefficient range of 10–15, with ±2.5% demand variation, with a report time
step of 1 h resulting in 25 features per sensor per leak scenario. Results are presented in
the Table 7. It is evident that with a smaller number of features, model accuracy slightly
decreased. This indicates that prediction models with a greater number of inputs but with
a smaller number of features should be investigated to see if greater accuracy could be
achieved with the same computational expense.

Table 7. Influence of number of features on model accuracy for the Hanoi and Net3 networks with
an emitter coefficient range of 10–15 and a demand variation of ±2.5% with 500,000 inputs.

Hanoi Network Net3 Network

Number of Features 194 50 388 100

Accuracy 82% 81% 62% 60%
Top 3 98% 98% 92% 91%
Top 5 99% 99% 98% 97%

3.5. Application of the Prediction Method

To investigate the possibility of application of the proposed method on real case events,
30 simulations were conducted to simulate daily measurements during a one month period
for the same leak location and same leak emitter coefficient. The Hanoi network was
chosen with a leak at network node 26 and with an emitter coefficient value of 10. For each
simulation, if the network node was chosen to be altered, demand was randomly changed
in the range of ±10%. In this way, daily demand variation was simulated. The machine
learning model for the Hanoi network, with an emitter coefficient range of 10–15 and with
a demand variation of ±10% with a model accuracy 57% was used to predict leak location.
Results of the predictions can be observed in Figure 5. It can be seen that for the majority
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of days (16 out of 30) true leak location was successfully detected, which roughly matches
the overall model accuracy. For the remaining days, adjacent network nodes were detected
as leak locations. This shows that the proposed methodology can be successfully used to
approximately localize and detect leak location.

Figure 5. Prediction of leak location for 30 day measurements with percentage of predicted leak nodes.

4. Discussion

Based on the presented results, it can be concluded that the proposed methodology can
be successfully applied to small-sized and medium-sized networks. With the increase in
network size, model accuracy considerably decreases. It is important to note, however, that
this behavior is not unexpected as the same assumptions and amount of data (i.e., inputs)
are utilized for small and larger cases. Despite this, meaningful results and adequate
localization can be achieved when the top three and five network nodes based on leak
location probability are considered. This indicates that leak nodes can be localized on a
more general water distribution network with one prediction model, where exact location
can be detected if coupled with another prediction model that focuses on a specific network
zone or employs a different leak localization methodology. Both approaches should be
further investigated.

It can be observed that the greatest accuracy was achieved for prediction models
trained with smaller demand variation and greater leak coefficients. This is expected since
in the case of no demand variation, 500,000 simulations provide a considerable amount of
combinations of leak events, where the prediction model simply chooses from the most
similar event. When demand variation is introduced, model accuracy decreases as the
demand variation range increases. However, several prediction models can be constructed
with different demand patterns, e.g., a night demand model, a workday demand model,
etc., where in case of a leak event, the prediction model with the most similar demand
pattern can be chosen for leak localization. When considering leak coefficients, independent
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prediction models can also be built; for example, prediction models to detect small, medium,
and large leaks. The greatest accuracy is achieved for the large leaks, which can be greatly
beneficial in the case of large bursts in the water distribution network. This kind of events
needs quick intervention since the water supply to end users is usually interrupted until
the burst is repaired. A prediction model can indicate leak location so rapid intervention
can be achieved.

Another potential issue stems from the fact that the calibrated model relies on data
that might already incorporate leaks. Consequently, predominantly new leaks can be
predicted, as existing leaks are incorporated in the calibrated model itself. As existing leaks
become larger with time and due to the material deterioration, older leak locations can
eventually be detected as well, although they would appear as a comparatively smaller
leak than they actually are; this is not a crucial problem, however. This drawback can be
mitigated by coupling or employing as standalone older calibrated models that predate
the current one.

The study of the influence of the report time step indicates that with a smaller amount
of features, similar accuracy can be achieved, and thus a greater number of inputs can be
considered to achieve better model accuracy. The optimum number of features and inputs
should be further investigated to provide the best accuracy and model complexity ratio.
This is especially important if the proposed methodology is to be used on more complex
water distribution networks. This approach is valid if existing leaks that are undetected
for a longer period of time are to be found. However, in the case of a pipe burst event,
the prediction model with a smaller time step should be considered to reduce reaction
time in case of the event. This should be further investigated since larger pipe bursts
considerably change water distribution network dynamics and the measurement period
should be considerably smaller than one day (as is in the current paper) to provide rapid
reaction. Additionally, techniques for data dimensionality reduction should be explored to
possibly reduce the model complexity.

The sensor layouts considered in this paper can be considered sparse. Improvement in
prediction model accuracy can be achieved if additional sensors are installed in the water
distribution network. Additionally, a combination of pressure and flow sensors should be
investigated since additional data could be beneficial to the model and water distribution
networks have a combination of both types of sensors. Further study should be focused
on investigating other classification models, for example K-NN and ANN, which were
successfully applied in previous literature using model-based approaches, which could
possibly provide greater model accuracy. The coupling of multiple prediction models
should also be investigated, where one model would provide coarse leak localization
and the second model would provide the exact location of the leak. Moreover, future
studies should account for uncertainties such as pipe diameter and pipe roughness with
the methodology tested on real water distribution networks.

Although computationally demanding, the proposed methodology with introduced
randomness can successfully describe a wide range of operating conditions, thus providing
a considerable amount of data that cannot be obtained from field measurements. With
growing computational power, the proposed methodology could be successfully utilized,
as once they are generated, prediction models can be employed to evaluate a network with
a considerably lower amount of computational resources and time.

5. Conclusions

In this paper, a machine learning approach was presented that helps identify leak
locations based on pressure sensor measurements. A random forest classifier is used for
small-sized and medium-sized benchmark networks. The presented results show that the
proposed methodology can be successfully used for leak localization using data obtained
from numerical simulations even for sparse sensor placement. The discrepancy between
synthetic data obtained from numerical simulations and real data can be compensated
for with randomness in the model simulation. Using Monte Carlo random parameters
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of leak events and demands, a significant amount of data can be obtained, which can be
successfully used for building a machine learning prediction model.

Our main findings include:

• Greatest prediction model accuracy was achieved for the largest leaks, with the
smallest demand variation. With the increase in demand variation, prediction model
accuracy considerably decreased.

• Model accuracy increased significantly when the top three and five network nodes
with the greatest certainty of being leak nodes were considered to narrow down the
leak location region.

• Investigation of the application of the proposed methodology on a small-sized network
showed that in the majority of records, true leak location was detected, where in other
cases neighbor nodes were chosen.

The obtained results indicate that the proposed methodology could be successfully
applied to real water distribution networks; however further study should include the
following:

• Investigation of a greater number of inputs should be conducted to increase model
accuracy under greater demand variation, or multiple prediction models should be
used for different demand ranges.

• Validation of the proposed methodology should be conducted on real water distribu-
tion networks.

• Randomness should be incorporated into other model uncertainties, such as pipe
diameter and pipe roughness.

• Further investigation should be conducted to explore other algorithms with an in-
creased number of inputs and an optimized number of features to further increase
model accuracy.
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ABSTRACT In this paper, a Random Forest classifier was used to predict leak locations for two differently
sized water distribution networks based on pressure sensor measurements. The prediction model is trained on
simulated leak scenarios with randomly chosen parameters - leak location, leak size, and base node demand
uncertainty. Leak localization methods found in literature that rely on numerical simulations can only predict
network nodes as leak nodes; however, since a leak can occur at any point along a pipe segment, additional
spatial discretization of suspect pipe is proposed in this paper. It was observed that pipe segmentation of the
whole network is a non-feasible approach since it rapidly increases the number of potential leak locations,
consequently increasing the complexity of the prediction model. Therefore, a novel approach is proposed,
in which a prediction model is trained on scenarios with leaks occurring in original network nodes only,
but with its accuracy assessed against pressure sensor measurements from scenarios in which leaks occur in
points between network nodes. It was observed that this approach can successfully narrow down the suspect
leak area and, followed by additional segmentation of that network area and subsequent prediction, a precise
leak localization can be achieved. The proposed approach enables incorporation of various uncertainties by
simulating leak scenarios under different conditions. Investigation of leak size uncertainty and base demand
variation showed that several different scenarios can produce similar sensor measurements which makes it
difficult to unambiguously determine leak location using the prediction model. Therefore, future approaches
of coupling prediction modeling with optimization methods are proposed.

INDEX TERMS Leak localization, pipe segmentation, prediction modeling, random forest, water distribu-
tion networks.

I. INTRODUCTION
Leaks in water distribution networks can cause considerable
losses, especially in older water distribution networks where
considerable investments are needed for restoration. Smaller
leaks can remain undetected for longer periods causing con-
siderable water losses over time. Also, in the case of older
water distribution networks rapid progression of leak size
can eventually cause pipe burst which leads to water outages
for end users. Therefore, a number of different techniques
are being used to detect and localize leaks. These methods
can be divided into hardware-based and software-basedmeth-
ods. Hardware-based methods use in situ visual observations

The associate editor coordinating the review of this manuscript and

approving it for publication was Ahmed Farouk .

or measurements. Software-based methods rely on different
software for leak detection analysis. Since some methods
have been developed for specialized applications depending
on the transporting fluid (water, oil, gas, etc.) and location
of the pipeline (water distribution network, facility, housing,
etc.), a number of papers analyzed the advantages and limi-
tations of the proposed methods and an overview of some of
these methods is given in papers [1]–[5].

Software-based methods can be further divided into
transient-based methods, model-based methods, and data-
driven methods. Transient-based methods rely on analysis
of transient pressure wave that occurs when leakage hap-
pens. For model-based methods, estimated pressure values
are obtained from simulation with no leaks and in-field
measured pressure values are compared, i.e. subtracted from
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estimated pressure values. Obtained residuals are evaluated
and if residuals are above the chosen threshold it is considered
that a leak is present. Data-driven methods rely on statistical
analysis and processing of raw sensor measurement data to
obtain information about the presence of leaks and possible
locations.

The main problem with the model-based approach is the
assumption of the model being a good representation of the
network. Water distribution networks have a lot of uncertain-
ties that need to be taken into consideration, such as demand
uncertainties, sensor measurement imperfections, pipe diam-
eter uncertainties, etc. Thus, the model-based approach can-
not capture all these parameters. The data-driven approach
using raw sensor measurements could incorporate all these
variations, but the main problem is the number of leak
events which are rather sparse. Since the amount of data
is small compared to the amount of data needed for effi-
ciently employing machine learning algorithms, models can
be advanced by incorporating uncertainties through simula-
tions with varying parameters which can produce additional
data.

Machine learning has been used for a variety of water
distribution system applications. Prediction of failure ofwater
mains was investigated in [6] where artificial neural net-
work (ANN), ridge regression, and ensemble decision tree
were used. Different machine learning algorithms have been
explored for the prediction of leak locations in pipelines, such
as convolutional neural network (CNN) [7], [8] and ANN [9],
[10]. In [11] support vector machine (SVM)method was used
to predict leaks in wall-mounted pipelines.

When considering water distribution networks, in [12],
a deep learning model based on additional pressure meters
installed on optimal places was used to identify pipe burst
locations. In [13], SVM was used for prediction of leak
size and location based on pressure sensors gathered from
EPANET simulations for small size leakages. In [14], leakage
detection was conducted for 1500 m × 1500 m experimen-
tal network using principal component analysis (PCA) and
SVM. In [15], model-based method was used to identify leak
event and data-driven approach using k-Nearest Neighbors
(k-NN) classifier was used in the second stage to determine
leak location. In the further study [16] Bayesian classifier
was used with improved localization accuracy. Both methods
were applied to real water distribution network case studies.
In [17], unsupervised principal component analysis (PCA)
approach for leak detection was conducted for the Hanoi
distribution network. In [18], Kriging method was used to
estimate pressure measurements in the whole network based
on the limited number of sensor measurements and classifi-
cation methods were used to determine leak location. It was
shown that the accuracy of the proposed method was very
low for some sensor layouts due to Kriging interpolation
error. In [19], detection and localization of multiple leak
locations were explored. SVM was used as a classifier for
leak detection using the residual method and a statistical
method was used for leak localization in the Hanoi network.

All mentioned papers assume possible leak locations only in
network nodes.

In order to increase the number of input data, in pre-
vious work [20] it was proposed that a great number of
leak scenarios can be generated by simulating different leak
locations and leak sizes under different demand uncertanties.
The machine learning approach for leak localization was
investigated for variously sized water distribution networks,
various demand ranges, and various sensor placements. How-
ever, considerable simplification was made insomuch that
the prediction model was trained with simulated scenarios
in which leak locations occur only in network nodes while
in reality leaks can occur at any point along a pipe segment.
Thus, in this paper, an approach with pipe segmentation in
suspect areas is investigated. The idea is taken from the
adaptive mesh refinement approach used in computational
fluid dynamics (CFD) simulations, where the area of interest
is refined with additional numerical nodes in order to increase
the accuracy of results. An alternative approach of fault zone
identification has been used in work by [21] and [22]. How-
ever, that approach could be problematic for leak locations
at the borders of leak zones since water distribution network
needs to be divided into zones before using leak localization
method. The approach proposed in this paper identifies sus-
pect nodes from machine learning prediction model, which
then serve as indicators for pipes that need to be further
explored using segmentation. Therefore a possible leak area
is adjusted for each leak event based on prediction results.

In the first part of this paper, it is investigated whether
a prediction model trained only on simulations with leak
locations in network nodes can successfully predict leaks that
occur in-between network nodes. Two differently-sized water
distribution networks, Hanoi and Net3 were used for this,
coupled with various sensor layouts, leak sizes, and demands.
Furthermore, the accuracy of sequential prediction models
in predicting leak location was investigated. The prediction
model performance is investigatedwhen several most-suspect
nodes are considered and segmentation of pipes near those
suspect nodes is performed. The subsequent prediction model
is trained on scenarios with leak locations in most-suspect
network nodes and in nodes added through pipe segmentation
from the previous stage. Limitations of the proposed method
and future work are presented in the discussion section.

II. METHODOLOGY
A. PROBLEM STATEMENT
Leak localization methods based on machine learning meth-
ods require considerable amount of data for model training.
Since the measurements for real leak events are rather sparse,
additional data can be obtained by simulating different leak
scenarios. For this purpose, leak scenarios were simulated
using EPANET version 2.0.12. [23] with various leak sce-
nario parameters. Leak location, leak size, and node demands
were chosen randomly to cover a wide range of possible
leak events. Typically it is assumed that water distribution
network models are calibrated and that leaks can occur only
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FIGURE 1. Demand patterns used for Hanoi network.

in network nodes. The latter assumption can be problematic
for water distribution networks with longer pipe segments
since localization will be a very rough estimate. Therefore,
additional pipe segmentation is introduced which divides a
pipe into smaller sections, allowing better leak localization.
Random Forest machine learning algorithm is trained with
pressure sensor measurements from simulated scenarios and
is then employed to determine most suspect leak locations.

B. WATER DISTRIBUTION NETWORKS
The investigated water distribution networks are small-sized
Hanoi network and medium-sized Net3 network. Hanoi
(Vietnam) network with 31 nodes was obtained from The
Centre for Water Systems (CWS) at the University of
Exeter [24]. For Hanoi network, demand patterns as described
in [17] are adopted (Figure 1). Net3 network is an EPANET
example network for dual-source system that changes over
time, consisting of 92 nodes. For both networks simulation
time was 24 h, hydraulic time step was 10min and report time
step 1 h. To generate a wide range of possible leak scenarios,
emitter coefficient and leak location were chosen randomly.
Additionally, to incorporate demand variation, it was ran-
domly decided whether node base demand was to be changed
or not. If it was chosen to be changed, base demand was
increased or decreased by randomly chosen percentage in the
range ±2.5% or ±5%.

For each water distribution network, two different sensor
layouts were considered. For Hanoi network, the first layout
has two sensors located in network nodes 14 and 30, as given
in [15], and the second layout has three sensors located in
network nodes 8, 20, and 31, as given in [17] (Figure 2).
For Net3 network, the first layout has four sensors located
in network nodes 117, 143, 181, and 213, and the second
layout has two sensors located in network nodes 117 and 181
(Figure 3).

FIGURE 2. Hanoi network, original with indicated sensor locations
(above), and after pipe segmentation with 5 segments per pipe (below).

C. PIPE SEGMENTATION
Discretization of water distribution network pipes was
achieved by inserting additional network nodes, where each
pipe was split on 5 segments of equal length, resulting in
additional 4 nodes for each pipe (Figure 2). Although it
would be more beneficial to define a fixed segment length,
a fixed number of segments was used as a methodological
simplification.

To investigate machine learning efficiency in the localiza-
tion of leak locations in pipe segments, three different models
were analyzed. Model 1 was trained and tested on leak sce-
narios with leak locations in original network nodes. Model 2
was trained and tested on leak scenarios with leaks located
both in network nodes and refinement nodes, resulting in a
significantly increased number of ML output classes. Finally,
Model 3 was trained on scenarios with leaks in original
network nodes, but it was then tested for scenarios in which
leak locations can be both in network nodes and refinement
nodes.

Flowcharts of the proposed models can be observed in
Figure 4. Depending on considered model leak node Ni is
chosen from original network nodes Ni ∈ {N o

0 , . . . ,N o
no}

where superscript o denotes original network nodes, or from
original network nodes and additional nodes generated from
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FIGURE 3. Net3 network with indicated sensor locations for considered
sensor layouts.

segmentation Ni ∈ {N o
0 , . . . ,N o

no,N
s
0, . . . ,N

s
ns} where super-

script s denotes segmentation nodes, subscript no denotes
total number of original network nodes and ns total num-
ber of segmentation nodes. The sensor measurements Si ∈
{S0(t), . . . , Sn(t)}, were n indicates total number of sen-
sors for considered sensor layout, were recorded through
time t , namely 25 timesteps in all considered cases. Since the
model 3 is trained only on the original network nodes it can-
not possibly predict a refinement node. Thus the refinement
nodes are considered to be predicted correctly if their nearest
original network node Ni ∈ {N o

0 , . . . ,N o
no} was predicted.

This simulates a most realistic scenario where leaks can occur
anywhere in the pipe segment, however, the model can be
trained only with scenarios with leaks in network nodes we
have in the model.

D. RANDOM FOREST CLASSIFIER
Machine learning (ML) algorithms are being used to find
underlying correlations or patterns from obtained data. This
ability enables machine learning algorithms to provide a pre-
diction for unseen data, which can be categorized into regres-
sion and classification problems. Regression algorithms are
designed to provide a prediction of the exact value of the
output variable, while classification algorithms separate data
into logical groups, i.e. classes.

Random Forest classifier was first proposed by [25] and
is an ensemble type of algorithm based on multiple decision
trees which are created as independent prediction models.
Decision trees (DT) are constructed in a form of flowchart
structure, where nodes represent attributes used for outcome
prediction. Based on feature values a decision is made at each
node and ultimately based on these decisions classification
is reached. Each tree is defined with tree depth parameter
which defines how many splits can be made before making
a prediction. Random Forest uses bootstrap and aggregation
methods to obtain unique data subsets for the training of each
decision tree and to ultimately count the class with the most

predictions. Increased number of trees increases the preci-
sion of the classifier, albeit also increasing its complexity.
The problem considered in this paper is the classification
problem since each potential leak node represents one class,
thus Random Forest classifier was adopted as a suitable
ML method. Random Forest classifier implementation in the
Python library Scikit-learn [26] version 0.20.3 was used.

The dataset is composed of 500 000 inputs, with
training-testing split 70%-30%, resulting in 350 000 training
records and 150 000 testing records. It was observed in [20]
that a smaller timestep only slightly increases prediction
accuracy so timestep of 1 hr was adopted in order to reduce
number of features and reduce computational time.

Grid search optimization of Random Forest parameters
was conducted for Hanoi network with 100 000 inputs with
leak coefficient range 10 . . . 15 and with ±2.5% demand
variation in order to find optimal number of estimators (trees),
maximum depth, and minimum number of samples required
to split an internal node. It was found that the optimal mini-
mumnumber of samples required to split an internal node is 2,
the optimal maximum depth of the tree is 20, and the optimal
number of estimators (i.e. trees) is 200. These parameters are
kept constant for all investigated prediction models. Other
Random Forest parameters were kept at default values of the
Scikit-learn implementation. For each prediction model, five
runs were conducted to consider the influence of prediction
model parameter randomness and average accuracy values
are reported. Additionally, model accuracy was measured for
true leak node presence in top 3 and top 5 suspect network
nodes with greatest prediction certainties. Even if true leak
node is not correctly predicted, presence of true leak node in
top 3 or top 5 most suspect nodes considerably narrows down
the area of leak location.

III. RESULTS
A. EFFECT OF PIPE SEGMENTATION
Hanoi network with two sensors, emitter coefficient range
10 . . . 15 and different demand variations was investigated
first. In Model 1, where leaks can occur only in the origi-
nal network nodes, 31 prediction classes were obtained. For
Model 2 each pipe segment is divided into 5 segments of
equal length, resulting in 163 prediction classes. Although
Model 3 was used for predicting leak scenarios on segmented
network of Model 2, it was trained on leak scenarios used
for Model 1. Thus, in Model 3 the 31 prediction classes
corresponding to the original network nodes were used, with
leaks in the 135 segmentation nodes expected to be classified
as leaks in their nearest original network nodes.

Results for the conducted investigation are presented in
Table 1. It can be observed that with the increase of demand
variation, model accuracy considerably decreases; indicating
a rapid increase of possible scenarios which are consequently
difficult to predict. However, when top 3 and top 5 suspect
network nodes with the greatest certainties are considered,
model accuracy is high. For Model 2, where 163 network
nodes are possible prediction classes, model accuracy is very

155116 VOLUME 9, 2021



I. Lučin et al.: Detailed Leak Localization in Water Distribution Networks

FIGURE 4. Flowcharts of the considered machine learning approaches.

low, indicating that for greater networks this approach would
require even more data and computational resources, which is
currently not feasible. Model 3 accuracy is reduced compared
to the Model 1 approach, which is expected as segmentation
nodes increase the total number of possible leak locations.
Furthermore, leaking in the segmentation nodes in the middle
of the pipe could provide flow patterns that could be equally
similar to flow patterns produced by leaking on one or the
other edge node of that pipe, thus also contributing to reduced
accuracy. However, when top 3 and top 5 suspect nodes are
considered, the difference in prediction accuracy for Model 1
and Model 3 shrinks to only around a couple of percents.
Although the proposed ML approach demonstrates modest
accuracy in predicting the exact leak locations, the proposed
approach can be successfully used to narrow down the leak
location.

The same investigation was conducted for Net3 network
with 4 sensors, emitter coefficient range 10 . . . 15, and for
different demand variation ranges. Model 1 and Model 3
are created with 92 classes, while Model 2 was also created
with 5 additional segments per pipe, resulting in 544 classes
altogether.

Results for Net3 are reported in Table 2. It can be observed
that prediction model accuracy for the Net3 network is sig-
nificantly lower than for the Hanoi network. For a model
with no demand variation, it is around 7% lower than for the
Hanoi network and with an increase in demand variation this
decline is over 20%. This is expected, since the Net3 network
has a greater number of network nodes and consequently a
greater number of possible leak locations. Model 2 accuracy
is very small, especially for the strongest variation of demand,
as it was observed for the Hanoi network, confirming this

TABLE 1. Influence of Hanoi network refinement on prediction model
accuracy for emitter coefficient range 10 . . . 15 for different ranges of
demand variation. Results are average of 5 runs with 500 000 inputs
(350 000 training records).

approach is not feasible. However, although Model 3 has
reduced accuracy when compared with Model 1, when con-
sidering top 3 and top 5 nodes the accuracy of Model 3 comes
very close to the accuracy of Model 1, indicating that the
Model 3 approach could be successfully used in a real leak
scenario.

Considering these results, only Model 1 and Model 3 will
be considered in further research.

B. SENSOR AND EMITTER COEFFICIENT INFLUENCE
The investigation was conducted for various sensor place-
ments, number of sensors and emitter coefficient ranges. The
results for the Hanoi network are presented in Table 3. It can
be observed that overall prediction model accuracy decreases
with greater coefficient range. This is expected since a greater
coefficient range increases the size of the problem solution
space. On the other hand, with a greater number of sensors,
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TABLE 2. Influence of Net3 network refinement on prediction model
accuracy for emitter coefficient range 10 . . . 15 for different ranges of
demand variation. Results are average of 5 runs with 500 000 inputs
(350 000 training records).

TABLE 3. Prediction model accuracy for Hanoi network for various
emitter coefficient ranges, sensor layouts and demand variations for
model 3.

prediction model accuracy slightly increases. Additionally,
the greatest difference in Model 1 and Model 3 accuracy
appears for scenarios with no demand variation, ranging from
15% to 19%. However, as demand variation increases, the
accuracy difference falls to 8 . . . 12%.
The results for Net3 network are presented in Table 4.

Same as in the Hanoi network case, with a greater range
of emitter coefficient both Model 1 and Model 3 accuracy
decrease, for both sensor layouts. Same as in the Hanoi
case, as demand variation increases the difference between
Model 1 andModel 3 accuracy decreases and again the great-
est difference in model accuracy is for no demand variation.

C. PIPE SEGMENT SEGMENTATION INFLUENCE
In order to investigate pipe segmentation influence in the
Model 3 approach, three different discretizations are con-
sidered for the Net3 network with 4 sensors. Pipes were
divided into 3, 5, and 11 segments, resulting in 318, 544,
and 1222 possible leak locations, respectively. The results
are presented in Table 5. It can be observed that a finer net-
work segmentation slightly reduces model accuracy, which
is entirely expected since the number of prediction classes
rises with greater refinement. Also, it is expected that at
some point further refinement would lead to scenarios with
different leak nodes but almost identical pressure readings,
since these nodesmay happen to be situated very close to each
other. However, the rather small decline in accuracy indicates
that the proposed approach can be successfully used to narrow
down a leak location.

TABLE 4. Prediction model accuracy for Net3 network for various emitter
coefficient ranges, sensor layouts and demand variations.

TABLE 5. Prediction model 3 accuracy for Net3 network for various
number of pipe segments and emitter coefficient ranges.

D. ACCURACY IMPROVEMENT
The number of top suspect nodes which need to be considered
to achieve 99% model accuracy was investigated to increase
accuracy of the prediction model. This approach was already
used in [27] to localize the source of pollution and similarly
in [13] where the correlation between accuracy and distance
between predicted and actual leak node was presented. In this
way, a considerable number of network nodes is eliminated,
thus the leak area can be localized with considerable cer-
tainty even for sparse sensor placement and greatest demand
variation.

Number of needed top nodes for Hanoi network is pre-
sented in Table 6. It can be observed for Model 1 that with the
increase in demand variation, a greater number of top nodes
needs to be considered to achieve 99% accuracy; however,
considerable localization is achieved even for the strongest
demand variation. Similar behavior can be observed with
Model 3, where the greatest number of top nodes needs to be
considered for the greatest demand variation. Also, a number
of top nodes comparing to Model 1 is slightly greater, which
is expected. In Figure 5, the increase of model accuracy with
the increase of considered top nodes is illustrated. It can be
observed that for all models the accuracy of 90% is surpassed
when using only top 4 nodes. Additionally, a rapid increase
in prediction model accuracy is observed when including
the first several top nodes. However, after some threshold
the additional nodes in the top list only slightly improve the
overall model accuracy.

This kind of investigation has also been conducted for
the Net3 network, and the results are presented in Table 7.
The number of top nodes is greatest for Model 3 and for
stronger demand variation, which is expected and consistent
with Hanoi results. It must be noted that even for the worst
performing model, with emitter coefficient range 5 . . . 15 and
demand variation ±5%, 32 top nodes represent only 35% of
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TABLE 6. Number of top nodes needed to achieve 99% accuracy for
Hanoi network with various emitter coefficient ranges, sensor layouts and
demand variations.

TABLE 7. Number of top nodes needed to achieve 99% accuracy for Net3
network for various emitter coefficient ranges and demand variations.

all network nodes, which is still a considerable localization.
Additionally, it must be taken into consideration that the
chosen 99% accuracy threshold is very high, where the strong
model accuracy manifests even for the smaller number of top
nodes (Figure 6). To further evaluate the proposed model, the
sequential prediction modeling approach is evaluated in the
next section.

E. REALISTIC SCENARIO TESTING
To further evaluate the proposed ML approach, an investi-
gation was conducted for a simulated case on Net3 network
with 30 records which represent 30 different days. Scenarios
are generatedwith fixed leak location and leak coefficient, but
with different demands in network nodes obtained through
base demand variation of±2.5%. Two different leak locations
were chosen, first with leak location in network node 159
(Figure 7) with emitter coefficient set to 10, and second with
leak location in a pipe segment between nodes 205 and 207
(Figure 8) and with emitter coefficient set to 15. The initial
prediction was made using Model 1 with emitter coefficient
range 10 . . . 15 and base demand variation of ±2.5%. From
previous investigation (Table 7) it was observed that when
leak locations in pipe segment nodes are allowed, the top 12
nodes achieve 99% accuracy, thus 12 nodes with the greatest
prediction model certainty are considered for further segmen-
tation and secondary Model 3 predictions.

For each of the 30 records different certainties are obtained,
i.e. the top 12 nodes could be different for each record.
Therefore, the average value of all 30 certainties for each
node was chosen as a measure for choosing the top 12 nodes
with the greatest certainty. For leak node 159, the greatest
model certainty is obtained for true leak location, where for
leak node in pipe segment between nodes 205 and 207 the
greatest certainty is obtained for leak location 207 which
is the edge node of the considered pipe segment. Suspect

FIGURE 5. Influence of the number of top nodes on prediction model
accuracy for Hanoi network with two sensors and emitter coefficient in
range 5 . . . 15.

FIGURE 6. Influence of the number of top nodes on prediction model
accuracy for Net3 network with 4 sensors layout and emitter coefficient
range 5 . . . 15.

nodes for both considered cases are presented in Figures 7
and 8, with indicated top 3 nodes with greatest certainty.
It can be observed that the top 3 nodes always include true
leak location, together with network nodes in the immediate
vicinity of the true leak location.

For the next stage, additional pipe segmentation was per-
formed around these top 12 nodes and a prediction model was
created where possible leak locations were the top 12 network
nodes plus the newly inserted nodes. At this stage, for leak
location 159, the most suspect node was node 60, and the
second candidate node was node 159 which is the true leak
node. For leak location in pipe segment between nodes 205
and 207, the most suspect node was node right next to the true
leak node and the second candidate was the true leak node.
Top 3 most suspect nodes for both considered cases can be
observed in Figures 9 and 10.

The third sequential prediction model was trained also on
the top 12 nodes with the greatest average certainty from
the previous stage. Both considered cases have true leak
location as the second most suspect node. Additionally, from
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FIGURE 7. Net3 realistic scenario testing for source node 159 with
indicated suspect nodes and top 3 nodes at first stage.

FIGURE 8. Net3 realistic scenario testing for source node between
network nodes 205 and 207 with indicated suspect nodes and top 3
nodes at first stage.

Figures 9 and 10 variation in top 3 most suspect nodes can
be observed, showing that an unambiguous solution cannot
be obtained. This indicates that for different leak locations,
demands, and emitter coefficients, still a very similar pressure
measurement can be obtained. In other words, there are mul-
tiple solutions to the problem. It is shown that the prediction
model can efficiently localize leak areas for sparse sensor
placement for leak locations which can occur anywhere in
pipe segments. However, due to wide range of leak scenarios
that are used for predictionmodel training, a predictionmodel
for fine localization may not be able to provide a single
solution.

IV. DISCUSSION
It is shown that the proposed ML approach can be suc-
cessfully used for localization of leak area under demand
uncertainty, for different sized networks, and for different
sensor placement layouts. ML model for segmented network
pipes was investigated to take into consideration that leaks
can occur anywhere along a pipe, but it was shown to be
an unfeasible approach. Any pipe segmentation considerably

FIGURE 9. Realistic scenario testing for Net3 network for leak location in
network node 159 with indicated top 3 nodes through refinement stages.

increases the number of network nodes, i.e. number of pre-
diction classes, with consequently rapidly increasing compu-
tational complexity. Additionally, a greater number of inputs
is required, which is a considerable problem for greater net-
works. However, it seems that leaks that occur in pipe seg-
ments can be successfully localized with a prediction model
trained only on scenarios generated for original network
nodes, especially when several top most suspect nodes are
considered. It was also observed that regardless of pipe refine-
ment, similar prediction accuracy can be obtained. However,
as was mentioned before, a simplification was made where
all pipes, regardless of their length, had the same number of
divisions. Therefore in future work, fixed lengths for addi-
tional refinement nodes should be explored to further explore
the presented approach and align the proposed technique with
practical purposes.

Sequential prediction models were tested, where the first
prediction model specified area for further segmentation, and
subsequent models were used to find the exact leak loca-
tion. It was observed that ML has a problem with detecting
fine differences in leak scenarios; the true leak location was
always in top nodes but was not always the node with the
greatest model certainty. This can be explained by the fact
that machine learning models need to cover a large span of
scenarios (different demands, different leak sizes, etc.), thus
it is reasonably expected that several equally good solutions
exist. Similar observation was made in [15] where some leak
locations were grouped in single classes, since distinction
between locations could not be made.

In further research, coupling of ML and optimization
methods needs to be explored. Genetic algorithm (GA) was
explored in [28] for leak localization using the inverse tran-
sient method for a network with 7 nodes. The main problem
with optimization methods in water distribution networks is
the network node variable, which is a categorical variable
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FIGURE 10. Realistic scenario testing for Net3 network for leak location
between network nodes 205 and 207 with indicated top 3 nodes through
refinement stages.

and as such makes the optimization problem very complex
and computationally demanding. However, if ML is used to
localize a leak area, independent optimizations for suspect
nodes can be conducted and thus reduce the optimization
complexity. This was successfully applied in [29] where the
pollution source was localized and independent optimizations
were conducted to obtain a true pollution source. Addition-
ally, if the optimization method is to be employed, network
demands could be more carefully monitored for some period,
for example from 2 to 3 AM as proposed in [13], to eliminate
or reduce demand variation which is shown to considerably
decrease prediction accuracy.

It must be noted that Random Forest classifier was chosen
due to its simplicity and since it allows for a reasonably
reliable prediction without method parameter fine tuning.
For example in [30] RF classifier outperformed SVM, ANN,
k-NN and DT for leak detection using acoustic signals,
however extensive analysis of classifier parameters was not
shown. In [31] six deep neural networks structures and three
RF classifier were compared for source tracking of chemical
leaks and best accuracy was achieved with RF classifier.
Additionally, in [32] Gradient Boosting, DT, RF, SVM and
ANN models were investigated for detection of leaks in
natural gas pipelines where models were tuned to ensure
no false alarm. ANN and SVM showed best performance,
however RF and DTwere most sensitive to detect small leaks.
Therefore, it can be concluded that other models such as ANN
may outperform Random Forest algorithm if fine-tuning of
hyper-parameters is conducted. Novel ANN methods which
deal with this ANN complexity are being developed such
as quantum-inspired neural network Autonomous Percep-
tron Model [33] which showed better performance than
other algorithms, including classic ANN and RF. Therefore,
extensive investigation of other machine learning algorithms
should be conducted in future work to determine which
classifier can provide best model accuracy for leak localiza-
tion problem in water distribution networks. Dimensionality

reduction methods should also be explored to reduce the
number of features, consequently reducing prediction model
complexity which could be important for bigger water distri-
bution networks.

The proposed methodology could provide real-time
support in water distribution network surveillance. The pre-
diction model can be prepared with incorporated demand
uncertainties, and can therefore be continuously used to
detect when a single leak location is repeatedly reported.
However, future work should investigate the possibility of
identification of multiple leak locations, which is also most
often the case. Other uncertainties should also be incorpo-
rated, such as sensor measurement uncertainties and model
uncertainties such as pipe diameter and pipe roughness.
Ultimately, the proposed methodology should be tested on
real-world water distribution network data where all these
uncertainties are present.

V. CONCLUSION
In this paper, machine learning approach using big data
obtained from computer simulations was investigated for
leak localization in water distribution networks. In previous
research, a simplification was made in which leaks were only
occurring in network nodes and here the methodology is
enhanced by allowing for leaks to occur anywhere on any
network pipe. It was observed that global refinement of the
network in which segmentation is performed on all pipes
is not a feasible approach, since the number of potential
leak locations rapidly increases and construction of a capa-
ble machine learning model is currently computationally too
demanding.

However, only a small reduction in model accuracy is
observed when the prediction model is trained exclusively on
scenarios with leaks appearing in network nodes, while the
prediction is then given for leak scenarios with leaks in pipe
segments. Further investigation showed that this reduction
in model accuracy can be compensated by considering sev-
eral most suspect nodes. This approach significantly narrows
down the leak area, especially if larger water distribution
networks are considered. These observations indicate that
the proposed approach could be applicable in real-world
water distribution networks and further study of the proposed
approach should be conducted.

In future research, additional model uncertainties regard-
ing pipe roughness and pipe lengths should be included. Since
it is observed that increasing demand uncertainty rapidly
decreases model accuracy, an additional approach should also
include dimensionality reduction of input data. Sequential
prediction models were also explored, where further pre-
diction models were trained using only leak scenarios for
most suspect leak nodes from the previous prediction model.
This approach was shown not to be beneficial since predic-
tion models provide a generalized model, and further leak
localization needs a specific solution. Coupling the proposed
methodology with an optimization procedure could provide
better results, which should be explored in future work.
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