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ABSTRACT

This thesis proposes a method for classifying noisy, non-stationary signals based on
deep learning algorithms and Cohen’s class of time-frequency distributions (TFDs). The
proposed approach is demonstrated on the challenging task of detecting gravitational-
wave (GW) signals in intensive real-life, non-stationary, non-Gaussian, and non-white
noise. By retrieving real-life measurements from Laser Interferometer Gravitational-Wave
Observatory detectors and performing extensive GW waveform simulations, a diverse time-
series dataset of 100 000 examples was obtained with the signal-to-noise ratio (SNR) in the
range from −123.46 to −2.27 dB. Next, 12 TFDs were calculated from the preprocessed
time series, resulting in 1.2 million TFD images, then used as input to the deep learning
classification algorithms utilizing three state-of-the-art two-dimensional convolutional
neural network (CNN) architectures (ResNet-101, Xception, and EfficientNet).

The results obtained by evaluating each of 36 TFD-CNN models show excellent
classification performance of the proposed approach, with classification accuracy, area
under the receiver operating characteristic curve (ROC AUC), recall, precision, F1 score,
and area under the precision-recall curve (PR AUC) up to 97.100%, 0.98854, 95.867%,
99.507%, 97.029%, and 0.99195, respectively. Moreover, the proposed approach significantly
outperforms the baseline deep learning model trained on the time-series data in terms of
all considered metrics, with the statistical significance confirmed by McNemar’s test.

The obtained results indicate that the proposed technique can improve the classification
of non-stationary GW signals at very low SNRs with the potentials to be extended to
other practical applications.

Keywords: Non-stationary signals, noisy signals, time-frequency signal analysis,
Cohen’s class of time-frequency distributions, deep learning, convolutional neural networks,
gravitational waves.

III





PROŠIRENI SAŽETAK

Analiza nestacionarnih signala predstavlja izazovan zadatak u različitim istraživačkim
područjima zbog vremenski promjenjivog frekvencijskog spektra takvih signala. Pritom
njihova analiza često zahtijeva napredne alate za istovremeni prikaz signala u zajedničkoj
vremensko-frekvencijskoj domeni, a koji nadilaze standardne tehnike zasebne analize
signala u vremenskoj, odnosno frekvencijskoj domeni. Osim toga, nestacionarni su signali
u stvarnim primjenama često višekomponentni, kao i dodatno narušeni šumom.

U sklopu ove doktorske disertacije predložena je i razvijena metoda za klasifikaciju
nestacionarnih signala u intenzivnom šumu temeljena na algoritmima dubokoga učenja
i dvodimenzionalnim vremensko-frekvencijskim distribucijama iz Cohenove klase. Ove
kvadratne vremensko-frekvencijske distribucije posjeduju svojstvo vremenske i frekvencijske
kovarijantnosti, a predložena metoda demonstrirana je na zahtjevnom problemu detekcije
signala gravitacijskih valova u intenzivnom, stvarnom i nestacionarnom šumu koji pritom
nema karakteristike ni bijelog ni Gaussovog šuma.

Predloženi je pristup eksperimentalno provjeren, a razvijeni se postupak sastoji od
triju glavnih faza: pripreme i predobrade odgovarajućeg skupa podataka, treniranja i
testiranja modela dubokoga učenja te evaluacije postignutih performansi navedenih modela.
Korištenjem stvarnih mjerenja iz Laser Interferometer Gravitational-Wave Observatory
(LIGO) detektora i provođenjem iscrpnih simulacija valnih oblika gravitacijskih valova
dobiven je opsežan i raznolik skup podataka koji uključuje 100 000 primjera podataka u
vremenskoj domeni. Pritom se vrijednosti omjera signala i šuma u generiranomu skupu
podataka kreću u rasponu između −123.46 i −2.27 dB. Nakon odgovarajuće predobrade
podataka u vremenskoj domeni izračunano je 12 vremensko-frekvencijskih distribucija
iz Cohenove klase, uključujući spektrogram, Wigner-Villeovu, pseudo Wigner-Villeovu,
izglađenu pseudo Wigner-Villeovu, Choi-Williamsovu, Butterworthovu, Born-Jordanovu
i Zhao-Atlas-Marksovu distribuciju, te distribucije sa smanjenim interferencijama i jez-
grama temeljenima na Besselovoj funkciji, binomnim koeficijentima, Hanningovom otvoru
i trokutastom otvoru. Navedeni izračun rezultirao je s ukupno 1 200 000 slika vremensko-
frekvencijskih distribucija, raspodijeljenima u 12 skupova podataka, a koje su potom
korištene kao ulazi za treniranje i testiranje algoritama dubokoga učenja za klasifikaciju te-
meljenih na trima naprednim dvodimenzionalnim arhitekturama konvolucijskih neuronskih
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mreža (ResNet-101, Xception i EfficientNet).
Rezultati postignuti evaluacijom svakog od 36 dobivenih modela dubokoga učenja

konvolucijskih neuronskih mreža i vremensko-frekvencijskih distribucija pokazuju izvrsne
klasifikacijske performanse predloženoga pristupa. Pritom točnost klasifikacije postiže
vrijednosti do 97.100%, površina ispod krivulje značajke djelovanja prijamnika do 0.98854,
odziv do 95.867%, preciznost do 99.507%, F1-mjera do 97.029% i površina ispod krivulje
preciznost-odziv do 0.99195. Osim toga, usporedba ostvarenih performansi predloženoga
pristupa s performansama referentnoga modela dubokoga učenja, koji kao ulaze koristi
izvorne podatke u vremenskoj domeni, pokazuje da predloženi pristup značajno nadmašuje
referentni model s obzirom na sve korištene pokazatelje kvalitete performansi. Naime,
postignute vrijednosti točnosti klasifikacije više su do 3.953%, površine ispod krivulje
značajke djelovanja prijamnika do 2.067%, odziva do 7.014%, preciznosti do 2.307%, F1-
mjere do 4.190% i površine ispod krivulje preciznost-odziv do 1.475%. Analiza dodatnih
detaljnih pokazatelja kvalitete, uključujući matrice konfuzije, krivulje značajke djelovanja
prijamnika i krivulje preciznost-odziv, također ukazuje na bolje performanse predloženoga
pristupa, pri čemu je statistička značajnost dobivenih razlika u performansama potvrđena
McNemarovim statističkim testom.

Analiza dobivenih rezultata ukazuje na to da predloženi pristup primjene kvadratnih
vremensko-frekvencijskih distribucija iz Cohenove klase u kombinaciji s algoritmima du-
bokoga učenja temeljenima na dvodimenzionalnim konvolucijskim neuronskim mrežama
može postići poboljšanu kvalitetu klasifikacije nestacionarnih signala u vremenskoj do-
meni u uvjetima vrlo niskih vrijednosti omjera signala i šuma. U sklopu ove doktorske
disertacije analizirana je i potvrđena mogućnost praktične primjene predloženoga pristupa
u detekciji signala gravitacijskih valova, pri čemu su postignute vrlo visoke performanse.
Osim navedene primjene, predloženi pristup također ima potencijal za proširenje na druga
područja znanstvenog istraživanja i praktične primjene koje zahtijevaju analizu različitih
vrsta nestacionarnih signala.

Ključne riječi: Nestacionarni signali, signali u šumu, vremensko-frekvencijska analiza
signala, Cohenova klasa vremensko-frekvencijskih distribucija, duboko učenje, konvolucijske
neuronske mreže, gravitacijski valovi.
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CHAPTER 1

INTRODUCTION

This chapter provides introductory information on the research presented in this thesis.
The introductory part describes the scientific motivation, problem formulation, and a brief
note on the previous research. Next, the research hypotheses and the main objectives and
contributions of the thesis are outlined. Furthermore, the methodology of the conducted
research and the overview of the thesis structure are briefly reviewed.

1.1 Scientific Motivation

Time-domain signal representation, showing signal amplitude as a function of time,
is commonly used for signal analysis as it reflects the mode in which the most signal
measurements are acquired. Another commonly used signal representation is Fourier
transform-based frequency-domain representation that provides information about the
signal’s frequency content without information on its time localization. Thus, the time-
domain and frequency-domain representations are standard signal analysis approaches
suitable for analyzing stationary signals characterized by a frequency spectrum constant
in time.

However, these one-dimensional representations are not adequate for analyzing non-
stationary signals, i.e., signals with time-varying frequency content. In addition, non-
stationary signals in practical applications are often multi-component and corrupted by
noise, which further complicates their analysis. Therefore, non-stationary signal analysis
requires advanced and robust tools for the simultaneous signal representation in the joint
time-frequency domain, leading to the development of two-dimensional time-frequency
distributions (TFDs) [36, 64, 207]. TFDs, as more informative signal representations,
provide insight into the signal energy distribution as a function of both time and frequency.

TFDs can be divided into two main categories: linear and quadratic distributions.
The quadratic TFDs with the common properties of time and frequency covariance are
also known under the name of Cohen’s class of distributions, exhibiting many useful
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mathematical properties for non-stationary signal analysis [36, 64, 119].
On the other side, machine learning has recently received rapidly increasing interest

in different research fields and practical applications. This term encompasses different
computational algorithms with the ability to learn from provided data examples [136].
Deep learning, as a subfield of machine learning, includes algorithms utilizing deep artificial
neural networks (ANNs) that can automatically learn from the provided input data without
the need for the previously extracted hand-crafted data features [103, 150]. In recent
years, these algorithms have experienced intensive development and expansion to different
application areas. The special type of feedforward ANNs called convolutional neural
networks (CNNs) have achieved state-of-the-art performances in many fields, especially in
image recognition, classification, and segmentation applications [103, 150].

However, despite the above-mentioned beneficial properties of Cohen’s class of TFDs for
non-stationary signal representation, the utilization of different Cohen’s class TFDs with
the advanced, powerful CNN-based deep learning algorithms used for pattern recognition in
case of intensive noise has not been adequately studied in detail in the literature (especially
applied in the field of physics), to the best of author’s knowledge based on the extensive
literature review. Namely, deep CNNs are primarily applied to classify time-series signals
[86, 137, 203, 268] or their spectrogram representations [27, 270, 277, 281]. On the other
hand, TFDs from Cohen’s class have mainly been used only to extract characteristic
features from the corresponding two-dimensional signal representations, which are then
used as one-dimensional input to the conventional machine learning algorithms [39, 93,
111, 189, 193] or feedforward ANNs [20, 171, 210, 241, 256, 259, 260, 285] for classification
purposes. Nevertheless, selecting the hand-crafted features to be extracted from TFDs
is time-consuming and requires domain-specific expertise. Thus, these approaches fail
to take advantage of the CNN-based deep learning algorithms’ high performance on
two-dimensional input data and their ability to automatically learn and extract useful
features.

Accordingly, this thesis proposes and thoroughly analyzes an approach for classifying
non-stationary signals in intensive noise utilizing various TFDs from Cohen’s class combined
with the deep learning classification algorithms based on the different state-of-the-art
two-dimensional CNNs. The proposed approach is validated on the example of detecting
gravitational-wave (GW) signals in intensive noise.

Detection of GW signals was chosen in this thesis to demonstrate the usefulness and
practical applicability of the proposed approach since it is a challenging task that is in the
focus of many recent studies and research efforts. Namely, the measurements containing
these non-stationary GW signals include non-stationary, non-Gaussian, and non-white
noise [5]. Moreover, the real-life GW data are characterized by very low signal-to-noise ratio
(SNR) values due to their low amplitudes compared to the background noise, rendering
GW detection a demanding data analysis problem.

2
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The existing approaches to GW detection may be divided into three main categories:
matched filtering-based techniques, denoising techniques, and machine learning-based
techniques. However, deep learning techniques have been mostly utilized to classify time-
series GW signals [85, 91, 96, 97, 98] or their spectrogram representations [22, 130, 184],
while the utilization of other two-dimensional signal representations has not been adequately
addressed in the literature [67]. Moreover, after an extensive literature review, no approach
combining deep learning techniques with Cohen’s class of TFDs for GW detection has been
found. A more detailed literature review of the previous research on Cohen’s class of TFDs,
deep learning techniques, GW detection, and deep learning-based signal classification,
with a particular focus on the potential application of Cohen’s class of TFDs, is provided
in the following chapters.

Next, the concrete objectives and contributions of this thesis are defined.

1.2 Research Objectives and Scientific Contributions

of the Thesis

Based on the scientific motivation discussed above, the main objective of the research
presented in this thesis is to develop a method for classifying non-stationary signals in
intensive noise using two-dimensional, quadratic TFDs from Cohen’s class of distributions
and advanced deep learning algorithms based on two-dimensional CNN architectures.
Within this thesis, the performance of the proposed approach is demonstrated on the
example of detecting GW signals in real-life, non-stationary, non-white, and non-Gaussian
noise, which represents a challenging task due to the very low SNR values.

The first hypothesis of the conducted research is that TFDs from Cohen’s class combined
with advanced deep learning techniques can provide high-performance detection of non-
stationary signals in an intensive noise environment. The second research hypothesis
assumes that two-dimensional, quadratic TFDs from Cohen’s class, when combined
with two-dimensional deep CNN architectures, can achieve higher signal classification
performances than the CNN-based deep learning classification utilizing only the original
noisy time-series signals. This performance improvement is expected since these high-
resolution TFDs can provide a signal representation with better-structured information
and enhanced intelligibility compared to the time-series signal representations, which can
then be efficiently utilized by two-dimensional deep CNNs.

The main scientific contribution of the research conducted within this thesis consists
of a developed approach for classifying non-stationary signals heavily corrupted by noise
utilizing their TFDs from Cohen’s class and deep learning algorithms based on state-of-
the-art two-dimensional CNN architectures. The proposed approach is within this thesis
validated on the example of GW signal detection, achieving excellent performances and

3
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demonstrating its practical applicability in this field where it can further contribute to
improved GW detection rates. However, besides the application in GW data analysis,
the proposed approach also has a great potential for many other practical applications in
various fields dealing with non-stationary signal analysis.

The research methodology utilized in developing and validating the proposed approach
is described in the sequel.

1.3 Research Methodology

The proposed approach to detecting non-stationary signals in intensive noise was
developed by combining beneficial properties of Cohen’s class of TFDs as powerful tools for
non-stationary signal analysis with the state-of-the-art deep CNNs for pattern recognition.
The developed technique was experimentally validated through the process involving
three main stages: data generation and preprocessing, deep learning classification, and
performance evaluation.

The time-series dataset containing 100 000 different data examples was generated
by simulating GW waveforms and utilizing the real-life data from the Advanced Laser
Interferometer Gravitational-Wave Observatory (LIGO) detectors as background noise.
The raw time-series data examples within this dataset were characterized by very low SNR
values. After preprocessing the raw time-series data, 12 different TFDs from Cohen’s class
were computed, obtaining 12 TFD datasets, with each dataset containing 100 000 TFD
images (1.2 million TFD images in total).

Each TFD dataset was appropriately divided into three subsets: training, validation,
and test dataset. Next, three two-dimensional deep CNN architectures, including ResNet-
101, Xception, and EfficientNet, were trained and used to classify the TFD images from
12 datasets. Thus, a total of 36 TFD-CNN deep learning models was tested.

The performance of the considered deep learning models was thoroughly evaluated
using several evaluation metrics. Moreover, the obtained performance was compared to
the one obtained by the baseline deep learning model using CNN to classify the time-series
data. Finally, the classification improvement achieved by the proposed technique was also
supported by statistical significance results examined using McNemar’s test.

1.4 Organization of the Thesis

This thesis is organized into seven chapters and two appendices, providing a structured
presentation of the conducted research. A short outline of the thesis chapters is given
next.

Chapter 1 discusses the scientific motivation of the presented research, outlines the main
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objectives and contributions of the thesis, and briefly describes the research methodology.
Moreover, this chapter also gives a brief overview of the thesis structure.

The main concepts of non-stationary signal analysis, with a particular focus on the
benefits of time-frequency representation, are introduced in Chapter 2. The quadratic
TFDs of Cohen’s class are defined, and their mathematical properties are discussed. The
concept is also demonstrated in the non-stationary signal examples.

Chapter 3 provides a brief overview of the deep learning field and explains the main
concepts of ANNs, with special emphasis on CNNs. The chapter additionally reviews the
recent studies on deep learning-based signal classification, particularly focusing on the
potential utilization of Cohen’s class of TFDs.

Chapter 4 introduces the main concepts and challenges of GW research and provides
a literature review of the existing approaches to GW detection, divided into three main
categories: matched filtering-based techniques, denoising techniques, and machine learning-
based techniques.

Chapter 5 represents the central part of the thesis, presenting the proposed method for
detecting GW signals in intensive noise based on deep learning algorithms and Cohen’s
class of TFDs. The developed approach and the experimental setup are elaborated on
in detail, including the data generation procedure, TFD computations, input datasets,
deep learning models, and performance evaluation methodology based on the evaluation
metrics and statistical significance test.

The results obtained by the proposed method are presented in Chapter 6, accompanied
by a detailed analysis and discussion.

Finally, the main findings and conclusions are summarized in Chapter 7. Next, based
on the research presented in this thesis and the obtained results, the directions for future
work are addressed.
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CHAPTER 2

TIME-FREQUENCY SIGNAL
ANALYSIS

This chapter explains the main concepts of non-stationary signal analysis and empha-
sizes the importance of the joint time-frequency signal representations. The TFDs are
introduced by defining the mathematical framework and reviewing the main properties,
with a particular focus on the quadratic distributions from Cohen’s class. All introduced
concepts of time-frequency signal analysis are also demonstrated on the examples of the
multi-component non-stationary signals.

2.1 Non-Stationary Signals

The time-domain representation of the signal s(t) presents the signal amplitude as a
function of time t. The time-domain representation is a commonly used signal represen-
tation because it represents the way most natural phenomena signals are measured. In
addition, the squared signal amplitude |s(t)|2 represents the instantaneous power of the
signal, which provides information on the distribution of signal energy over time.

On the other hand, the frequency-domain representation provides insight into the
frequency components contained in the signal. The spectral analysis of the signal is based
on the Fourier transform F , which is for the signal s(t) defined as

S(f) =
t→f
F {s(t)} =

∫ ∞
−∞

s (t) e−j2πftdt, (2.1)

where f denotes the frequency.
The complex Fourier transform consists of the magnitude spectrum and the phase

spectrum. The squared magnitude spectrum |S(f)|2 represents the signal energy spectrum
that shows the distribution of the signal energy over the frequency domain.

The described time-domain representation and frequency-domain representation are
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standard tools for one-dimensional signal analysis. These tools are appropriate for analyzing
stationary signals, i.e., signals that have a constant frequency spectrum. However, non-
stationary signals are characterized by a time-varying frequency spectrum, which makes
the separate analysis of the traditional representations in the time and frequency domain
insufficient.

Moreover, analyzing the time-domain representation of the signal whose frequency
content changes with time represents a challenging task. Likewise, the frequency-domain
representation offers information on the frequency components contained in the signal but
does not provide any information on their time localization.

Furthermore, non-stationary signals are also often multi-component, and their com-
ponents may have different, linear or non-linear, frequency modulations with different
time supports. The classical approaches that treat the signal representations in the time
and frequency domain separately cannot provide information on the number of signal
components, the frequency modulations, or time supports.

These drawbacks of the one-dimensional signal representations are demonstrated here in
the example of the synthetic multi-component non-stationary signal with two components.
The first signal component in the example has a parabolic frequency modulation with
the normalized frequency values in the range 0.2− 0.5, while the normalized frequency of
the second component changes linearly in the range between 0.0 and 0.2 (linear frequency
modulation (LFM)). The signal representations are provided in Figure 2.1, where Fig-
ure 2.1(a) shows the time-domain representation in the form of the instantaneous power
|s(t)|2, while Figure 2.1(b) depicts the frequency-domain representation in the form of the
energy spectrum |S(f)|2. The normalized frequency is obtained by dividing the signal
frequency by the sampling frequency value.

Additionally, non-stationary signals acquired in real-life applications are often corrupted
by noise, complicating their analysis using standard techniques. The influence of the noise
on the one-dimensional signal representations is illustrated in Figure 2.2, which provides
the time-domain representation and the frequency-domain representation of the previously
analyzed signal, but, in this case, the signal is additionally corrupted by the additive
white Gaussian noise with a 5 dB signal-to-noise ratio (SNR). As seen in Figure 2.2(a)
and 2.2(b), the presence of the noise makes the analysis of the considered non-stationary
signal even more challenging, making the separate time-domain representation and the
frequency-domain representation impractical tools to interpret the noisy signals with the
time-varying frequency content.

Due to the above-described disadvantages of representing the signal separately in
the time and frequency domain, the analysis of the non-stationary signals requires more
advanced tools for the simultaneous signal representation in both the time and frequency
domain. Therefore, the TFDs are developed to show the distribution of the signal energy as
a function of two variables - time and frequency. This way the joint signal representations
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(a) (b)

Figure 2.1 Example of a two-component non-stationary signal s(t) with a parabolic and
a linear frequency modulated component: (a) Time-domain representation, |s(t)|2; (b)
Frequency-domain representation, |S(f)|2.

(a) (b)

Figure 2.2 Example of a noisy two-component non-stationary signal s(t) with a parabolic
and a linear frequency modulated component (SNR = 5 dB): (a) Time-domain representa-
tion, |s(t)|2; (b) Frequency-domain representation, |S(f)|2.

in the two-dimensional time-frequency plane are obtained [36, 64, 119, 207].

The ideal TFD of the multi-component non-stationary signal would show the instan-
taneous frequency laws of each signal component in the time-frequency plane [36]. The
instantaneous frequency fi(t) describes the variation of signal frequency in time and is
defined for the mono-component signal s(t) as [36, 64]

fi (t) =
1

2π

d

dt
[arg s(t)] =

1

2π

dφ (t)

dt
, (2.2)

where φ(t) is the instantaneous phase of the signal.
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The dual of the instantaneous frequency is the time delay that shows the dominant
time when a given frequency occurs [36]. The time delay τd(f) of the signal s(t) is defined
as [36, 64]

τd (f) = − 1

2π

d

df
[argS(f)] = − 1

2π

dθ (f)

df
, (2.3)

where θ(f) is the phase of the Fourier transform of the signal.

The group delay τg(f) of the signal s(t) is defined in the same way as the time
delay τd(f) in (2.3) [36]. The difference between these two definitions is that the time
delay corresponds to an impulse, while the group delay corresponds to the envelope of a
narrowband signal [36].

The ideal TFD of the considered example of the noise-free two-component non-
stationary signal is shown in Figure 2.3. As seen in Figure 2.3, the ideal TFD provides
clear information on the number of signal components, their instantaneous frequency laws,
the frequency ranges, and time supports.

Figure 2.3 Ideal TFD of the considered example of a two-component non-stationary
signal s(t) with a parabolic and a linear frequency modulated component.

The calculation of the ideal TFD is based on the formula given in (2.2), which requires
knowledge of the analytic expression for the signal phase. However, the analytic expressions
for the signals are not available in practical, real-life applications, thus rendering this
approach to determine the instantaneous frequency unsuitable for the TFD calculation.

Therefore, various techniques for the numerical calculation of the TFDs are developed.
These techniques are discussed in detail in the next section. The main requirement placed
on thus obtained TFDs is to provide the two-dimensional signal representation in which
the signal energy is concentrated around the instantaneous frequency laws of the signal
components.

Before proceeding to define the TFD methods, the analytic signal associated with the
real signal r(t), or the analytic associate, needs to be defined. The analytic associate s(t)
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is a signal that has no negative frequency components [36, 64]

S(f) = 0, f < 0. (2.4)

Namely, since the real signal r(t) has the frequency spectrum that shows Hermitian
symmetry, R(−f) = R∗(f), the negative frequency components can be removed without
losing information. As it will be seen in the next section dealing with the quadratic TFDs,
the absence of the negative signal frequencies is a desirable property because it eliminates
the cross-terms between the signal’s positive and negative frequency components, thus
enhancing the time-frequency representation readability and interpretation [36]. Therefore,
the analytic associate form of the signals will be used throughout this thesis.

The complex-valued analytic associate s(t) of the real signal r(t) is obtained using the
Hilbert transform H as [36, 64]

s(t) = r(t) + jH{r(t)}. (2.5)

The Hilbert transform is defined as [36]

H{r(t)} =
t←f
F−1

{
(−j sgn(f))

t→f
F {r(t)}

}
, (2.6)

where F−1 denotes the inverse Fourier transform, j is the imaginary unit, and sgn() is the
signum function, defined as

sgn(x) =


−1, x < 0,

0, x = 0,

1, x > 0.

(2.7)

2.2 Time-Frequency Distributions

The two-dimensional TFDs, developed as tools for the simultaneous signal analysis
in both the time and frequency domain, are presented next. First, some mathematical
properties of TFDs are defined.

2.2.1 Desirable Properties of Time-Frequency Distributions

The following mathematical properties of TFDs, denoted as ρs(t, f), are often considered
desirable in various practical applications [36]:

1. Non-negativity - TFD has non-negative values:

ρs(t, f) ≥ 0, ∀t, f. (2.8)
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2. Realness - TFD is real for all s, t, and f :

ρs(t, f) ∈ R, ∀t, f. (2.9)

3. Time-shift invariance (time covariance) - a time shift in the signal results in the
same time shift in the TFD:

sts(t) = s(t− t0) =⇒ ρsts(t, f) = ρs(t− t0, f). (2.10)

4. Frequency-shift invariance (frequency covariance) - a frequency shift in the signal
results in the same frequency shift in the TFD:

sfs(t) = s(t)ej2πf0t =⇒ ρsfs(t, f) = ρs(t, f − f0). (2.11)

5. Time marginal - the instantaneous power |s(t)|2 is obtained by integrating the TFD
over the frequency: ∫ ∞

−∞
ρs(t, f)df = |s(t)|2. (2.12)

6. Frequency marginal - the energy spectrum |S(f)|2 is obtained by integrating the
TFD over time: ∫ ∞

−∞
ρs(t, f)dt = |S(f)|2. (2.13)

7. Instantaneous frequency - the instantaneous frequency fi(t) is obtained as the first
moment of the TFD with respect to frequency:∫∞

−∞ fρs(t, f)df∫∞
−∞ ρs(t, f)df

= fi(t) =
1

2π

d

dt
[arg s(t)] . (2.14)

8. Group delay - the group delay τg(f) is obtained as the first moment of the TFD
with respect to time:∫∞

−∞ tρs(t, f)dt∫∞
−∞ ρs(t, f)dt

= τg(f) = − 1

2π

d

df
[argS(f)] . (2.15)

9. Time support - the duration of the signal s(t) limits the time support of the TFD:

s(t) = 0 for t < t1, t > t2 =⇒ ρs(t, f) = 0 for t < t1, t > t2. (2.16)

10. Frequency support - the bandwidth of the signal s(t) limits the frequency support of
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the TFD:

S(f) = 0 for f < f1, f > f2 =⇒ ρs(t, f) = 0 for f < f1, f > f2. (2.17)

11. Reduced interferences - the TFD suppresses the interference terms (cross-terms) in
comparison to the signal components (auto-terms).

2.2.2 Spectrogram

The first step towards the joint time-frequency signal representation is an intuitive and
straightforward method called the short-time Fourier transform (STFT). This method
calculates the Fourier transform of the signal s(τ) segment inside the sliding window
function h(τ) centered at that time instance t for each t, thus obtaining the signal
frequency spectrum as a function of time t [18, 64]. The STFT is calculated as [18]

STFTs(t, f) =

∫ ∞
−∞

s (τ)h (τ − t) e−j2πfτdτ. (2.18)

The STFT decomposes the signal into the elementary components well localized in
time and frequency [119]. As seen in (2.18), the STFT calculation is based on the signal
amplitude s(τ). Therefore, the STFT belongs to the group of the linear TFDs.

In addition to the linear TFDs, another approach to the time-frequency signal represen-
tations includes the methods whose calculations exploit the quadratic dependence on the
signal amplitude. This group of quadratic signal transforms represents the distributions of
the signal energy in the joint time-frequency domain [64].

The transition between the linear and the quadratic group of the TFDs is obtained by
the spectrogram (SP), which is calculated by taking the squared modulus of the calculated
STFT [13, 89, 119]

SPs(t, f) = |STFTs(t, f)|2 =

∣∣∣∣∫ ∞
−∞

s (τ)h (τ − t) e−j2πfτdτ
∣∣∣∣2 . (2.19)

The spectrogram satisfies the following mathematical properties: non-negativity,
realness, time-shift invariance, frequency-shift invariance, and reduced interferences
[36, 119, 135]. Besides the relatively simple implementation, the main advantage of
the SP is the signal representation with a low level of unwanted interference terms. On the
other hand, despite this desirable property, the usefulness of the SP is limited due to the
poor resolution property. Namely, the SP representation cannot provide a simultaneously
good resolution in both the time and frequency domain [119]. The SP will always exhibit
the trade-off between the time and frequency resolution caused by using the sliding window
of a fixed size [36, 64, 119]. The time resolution can be increased by using smaller-size
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windows, but, consequently, the frequency resolution will be decreased. On the other hand,
longer windows provide better frequency resolution and lower time resolution.

Due to the above-described limitations of the SP, the alternative approaches to the TFD
calculation are investigated. The work presented in this thesis focuses on the quadratic
TFDs belonging to Cohen’s class, characterized by the time and frequency covariance
properties [36, 64, 119].

2.2.3 Wigner-Ville Distribution

The Wigner-Ville distribution (WVD) [264] represents a fundamental TFD of Cohen’s
class. The WVD is obtained by applying the Fourier transform to the instantaneous
autocorrelation function (IAF) of the signal s(t) [36]. The IAF Ks(t, τ) of the signal s(t)
is defined as [36]

Ks(t, τ) = s
(
t+

τ

2

)
s∗
(
t− τ

2

)
, (2.20)

where s∗(t) denotes the complex conjugate of the signal s(t).
Therefore, the WVD is obtained as [35]

WVDs(t, f) =

∫ ∞
−∞

s
(
t+

τ

2

)
s∗
(
t− τ

2

)
e−j2πfτdτ. (2.21)

As seen in (2.21), the representation in the time-frequency (t, f) domain is obtained by
calculating the Fourier transform of the representation in the time-lag (t, τ) domain with
respect to lag τ . The lag variable τ represents a time shift [36]. Another domain widely
used in the design of the quadratic TFDs is the Doppler-lag (ν, τ) domain, also known as
the ambiguity function domain [36]. The Doppler variable represents a frequency shift
[36]. The Doppler-lag domain is defined as the Fourier transform of the time-lag domain
with respect to time t, i.e., the ambiguity function As(ν, τ) is obtained by applying the
Fourier transform to the IAF Ks(t, τ) with respect to time t [36, 64]

As(ν, τ) =

∫ ∞
−∞

Ks(t, τ)e−j2πνtdt. (2.22)

When transformed to the Doppler-lag domain, the signal components exhibiting slow
variation in the time-frequency domain will be located near the origin of the new domain
[36]. On the other hand, the rapid-varying signal components will be located farther away
from the origin of the Doppler-lag domain [36].

The WVD, defined in (2.21), satisfies almost all previously defined mathematical
properties that are desirable for the TFDs, including realness, time-shift invariance,
frequency-shift invariance, time marginal, frequency marginal, instantaneous frequency,
group delay, time support, and frequency support [36, 61, 119, 135]. Thus, the only two
properties that the WVD does not satisfy are non-negativity (as it takes negative values)
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and reduced interferences [36, 119, 135]. In addition, the WVD also satisfies the following
properties [36, 119]:

1. Global energy - the signal energy Es is obtained by integrating the TFD over the
entire time-frequency plane:∫ ∞

−∞

∫ ∞
−∞

ρs(t, f)dtdf = Es. (2.23)

2. Convolution invariance - the TFD of the time-convolution of two signals s1(t) and
s2(t) is equal to the time-convolution of the TFDs of these two signals:

s3(t) = s1(t)
t
∗ s2(t) =⇒ ρs3(t, f) = ρs1(t, f)

t
∗ ρs2(t, f). (2.24)

3. Modulation invariance - the TFD of the frequency-convolution of two signals s1(t)
and s2(t) is equal to the frequency-convolution of the TFDs of these two signals:

s3(t) = s1(t)s2(t) =⇒ ρs3(t, f) = ρs1(t, f)
f
∗ ρs2(t, f). (2.25)

4. Invertibility - the signal s(t) can be reconstructed from the TFD up to a constant
phase as: ∫ ∞

−∞
ρs

(
t

2
, f

)
ej2πftdf = z(t) z∗(0). (2.26)

5. Inner-product invariance (unitarity property) - the TFD preserves the inner product
from the time-domain to the time-frequency domain:∫ ∞

−∞

∫ ∞
−∞

ρs1(t, f)ρs2(t, f)dtdf =

∣∣∣∣∫ ∞
−∞

s1(t)s
∗
2(t)dt

∣∣∣∣2 . (2.27)

Moreover, the WVD provides a high time-frequency resolution of the true signal
components. The WVD is perfectly localized in the time-frequency plane for mono-
component LFM signals [36, 119]. However, the quadratic nature of the mathematical
expression used to calculate the WVD is the cause of the interference terms, also known
as cross-terms, that occur between the true signal components (auto-terms) in the time-
frequency representation of the multi-component signals [36, 119, 120]. The cross-terms
are located in the middle between the two auto-terms and oscillate orthogonally to the
line connecting these auto-terms, with an oscillation rate proportional to the distance
between them [36, 119, 120]. The cross-terms include the outer terms that appear between
the different signal components, and the inner terms that occur due to the non-linear
frequency modulation of the individual signal component [36, 120].
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The cross-terms can make a visual interpretation of the TFD challenging. Therefore,
in order to obtain interpretable time-frequency representations, the unwanted cross-terms
need to be attenuated. The attenuation of the cross-terms is possible by smoothing the
WVD using the filtering functions, also known as kernels [36, 64].

2.2.4 Reduced-Interference Distributions

The Doppler-lag domain, defined in (2.22), is convenient for the design of the TFD
kernels [36]. The kernels in this domain can be designed as two-dimensional low-pass filters
[36]. Namely, as previously stated, the highly oscillatory cross-terms are located away
from the origin of the Doppler-lag domain and can thus be removed using the low-pass
filter [36, 64, 240]. However, the low-pass filtering also removes a part of the auto-terms
located around the origin, thus reducing the resolution of the signal auto-terms in the
time-frequency representation [36, 265]. This filtering is causing the trade-off between the
obtained time-frequency resolution of the signal auto-terms and the level of the cross-term
attenuation [36, 64]. The TFDs obtained with the kernels used to smooth the WVD are
referred to as the reduced-interference distributions [36, 64, 135].

Windowing the IAF by the time window h(t) and applying the same procedure defined
in (2.21) for the WVD, the pseudo Wigner-Ville distribution (PWVD) is obtained [61].
Multiplying by the window function in the time domain is equivalent to the smoothing
of the WVD in the frequency domain [119, 120]. The frequency smoothing has two
consequences: the first is the desirable attenuation of the cross-terms oscillating in the
frequency direction, while the second is the unwanted decrease in the frequency resolution
of the signal auto-terms [25, 119]. The PWVD is calculated as [61, 90]

PWVDs(t, f) =

∫ ∞
−∞

h(τ) s
(
t+

τ

2

)
s∗
(
t− τ

2

)
e−j2πfτdτ. (2.28)

The PWVD is known to satisfy the following properties: realness, time-shift invariance,
frequency-shift invariance, time marginal, global energy, instantaneous frequency, time
support, and reduced interferences [36, 119].

As mentioned above, the PWVD suppresses the cross-terms oscillating in the frequency
direction but does not affect those oscillating in the time direction. The issue of the
remaining cross-terms is addressed by the smoothed pseudo Wigner-Ville distribution
(SPWVD). This TFD additionally applies the time-smoothing window g(t), thus smoothing
the PWVD in the time direction [88]. Therefore, by choosing the lengths of the windows
h(t) and g(t) in the SPWVD, the smoothing of the WVD may be adjusted independently
in the time and frequency domain [88, 119, 120]. Nevertheless, there remains a trade-off
between the level of the cross-terms in the representation and the obtained time-frequency
resolution, which is characteristic of reduced-interference distributions [25]. The SPWVD
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is defined as [88]

SPWVDs(t, f) =

∫ ∞
−∞

h(τ)

∫ ∞
−∞

g(u− t) s
(
u+

τ

2

)
s∗
(
u− τ

2

)
du e−j2πfτdτ. (2.29)

The SPWVD is known to have the following properties: realness, time-shift invariance,
frequency-shift invariance, global energy, and reduced interferences [66, 119, 121].

The Choi-Williams distribution (CWD) is a reduced-interference distribution designed
with an exponential kernel [57]. The exponential kernel’s width σ controls the trade-off
between the attenuation of the cross-terms and the achieved time-frequency resolution
[57, 240]. The smaller values of σ allow better suppression of the cross-terms, whereas larger
values provide better resolution of the signal auto-terms [57, 240]. However, independent
control over the smoothings in the time and frequency domains is not possible using
the CWD [121]. Moreover, the time-frequency representation obtained with the CWD
exhibits higher levels of cross-terms when applied to the signals whose components have
overlapping time or frequency supports [121]. The reduction of the low-frequency cross-
terms is prevented by the relatively slow decay of the exponential kernel [206]. Furthermore,
the auto-terms can be distorted due to the not very flat passband of the exponential kernel
[206]. The CWD is obtained as [26, 57, 119]

CWDs(t, f) =

∫ ∞
−∞

∫ ∞
−∞

√
σ

π

1

2 |τ |
e−

σu2

16τ2 s
(
t+ u+

τ

2

)
s∗
(
t+ u− τ

2

)
du e−j2πfτdτ.

(2.30)

Some of the properties satisfied by the CWD are: realness, time-shift invariance,
frequency-shift invariance, time marginal, frequency marginal, global energy, instantaneous
frequency, group delay, reduced interferences, and invertibility [36, 119, 121, 135].

Next, the Butterworth distribution (BUD) uses the kernel in the form of a two-
dimensional low-pass filter in the ambiguity function domain whose parameters of the
variably flat passband and the narrow transition region can be adjusted [24, 206]. Thus,
the BUD upgrades the CWD, simultaneously better preserving the resolution of the signal
auto-terms and better suppressing the low-frequency cross-terms in the representation
[206]. The BUD is defined as [26, 206]

BUDs(t, f) =

∫ ∞
−∞

∫ ∞
−∞

√
σ

1

2 |τ |
e−
√
σ|u|
|τ | s

(
t+ u+

τ

2

)
s∗
(
t+ u− τ

2

)
du e−j2πfτdτ.

(2.31)

The BUD preserves useful properties of the CWD, i.e.; it has the following proper-
ties: realness, time-shift invariance, frequency-shift invariance, time marginal, frequency
marginal, instantaneous frequency, group delay, and reduced interferences [206].

Another reduced-interference distribution with the property of preserving the time and
frequency supports is the Born-Jordan distribution (BJD) [63]. The BJD is based on the
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narrowband sinc kernel in the ambiguity function domain and results in a time-frequency
representation in which the cross-terms are well attenuated [65, 135]. However, at the
same time, the time-frequency resolution of the signal auto-terms is reduced [65, 135]. The
BJD is calculated as [88, 135]

BJDs(t, f) =

∫ ∞
−∞

1

|τ |

∫ t+
|τ |
2

t− |τ |
2

s
(
u+

τ

2

)
s∗
(
u− τ

2

)
du e−j2πfτdτ. (2.32)

The BJD is known for the following properties: realness, time-shift invariance, frequency-
shift invariance, time marginal, frequency marginal, global energy, instantaneous frequency,
group delay, time support, frequency support, and reduced interferences [36, 119, 135].

By smoothing the BJD in the frequency direction, the Zhao-Atlas-Marks distribution
(ZAMD) is obtained [64, 286]. The ZAMD is designed with a cone-shaped kernel that
contributes to the cross-term attenuation while simultaneously providing a good time-
frequency resolution, especially for the multiple sinusoidal burst signals characterized by
the quasi-stationary instantaneous frequencies [120, 201, 286]. The cone-shaped kernel
performs the directional band-pass filtering of the WVD [120]. The ZAMD is defined as
[201, 286]

ZAMDs(t, f) =

∫ ∞
−∞

h(τ)

∫ t+
|τ |
2

t− |τ |
2

s
(
u+

τ

2

)
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2

)
du e−j2πfτdτ. (2.33)

Some of the properties of the ZAMD are: realness, time-shift invariance, frequency-shift
invariance, time marginal, time support, and reduced interferences [36, 119].

The reduced-interference distribution with a kernel based on the first kind Bessel
function of order one (RIDB) is another distribution having a property of efficiently
attenuating the cross-terms in the time-frequency representation while simultaneously
maintaining a high time-frequency resolution [110, 230]. The RIDB is calculated as
[26, 110]

RIDBs(t, f) =∫ ∞
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(
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2

)
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(
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2

)
du e−j2πfτdτ. (2.34)

Another reduced-interference distribution, designed with a kernel based on the binomial
coefficients (RIDBN), can be defined as [26, 36, 275]

RIDBNs(t, f) =
∞∑

τ=−∞

|τ |∑
u=−|τ |

1

21+2|τ |

(
1 + 2 |τ |

1 + u+ |τ |

)
s [t+ u+ τ ] s∗ [t+ u− τ ] e−j4πfτ .

(2.35)
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Next, the reduced-interference distribution that uses a Hanning window-based kernel
(RIDH) is given by [26, 135]

RIDHs(t, f) =∫ ∞
−∞

h(τ)

∫ |τ |
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− |τ |
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)
s
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)
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2

)
du e−j2πfτdτ.

(2.36)

Finally, the reduced-interference distribution with a kernel based on the triangular
window (RIDT) is obtained as [26, 135]

RIDTs(t, f) =∫ ∞
−∞

h(τ)

∫ |τ |
2

− |τ |
2

2g(u)
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)
s
(
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2

)
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(
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2

)
du e−j2πfτdτ. (2.37)

Note that most of the above-presented TFDs of Cohen’s class do not satisfy non-
negativity property and thus cannot be considered energy distributions. Namely, the joint
time-frequency representations cannot be considered probability density functions in a
strict mathematical sense due to the time and frequency being non-commuting variables
[180]. Nevertheless, the TFDs still represent powerful analysis tools providing useful
insights into the time-frequency characteristics of the non-stationary signals.

The above-described properties of the quadratic TFDs from Cohen’s class are demon-
strated on the considered synthetic signal example. Figure 2.4 shows the 12 different
quadratic TFDs (BJD, BUD, CWD, PWVD, RIDB, RIDBN, RIDH, RIDT, SP, SPWVD,
WVD, and ZAMD) calculated for the example of the two-component non-stationary signal
s(t), while Figure 2.5 gives the TFDs of the noise-corrupted signal version. As seen in
Figure 2.4, the considered TFDs provide different levels of time-frequency resolution and
cross-term attenuation. Moreover, the presence of noise introduces additional cross-terms
between the signal components and the noise, as can be seen in Figure 2.5.
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Figure 2.4 TFDs of the considered example of a two-component non-stationary signal
s(t) with a parabolic and a linear frequency modulated component: (a) BJD; (b) BUD;
(c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j) SPWVD;
(k) WVD; (l) ZAMD.
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Figure 2.4 (cont.) TFDs of the considered example of a two-component non-stationary
signal s(t) with a parabolic and a linear frequency modulated component: (a) BJD; (b)
BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD.
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Figure 2.5 TFDs of the considered example of a noisy two-component non-stationary
signal s(t) with a parabolic and a linear frequency modulated component: (a) BJD; (b)
BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD.
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Figure 2.5 (cont.) TFDs of the considered example of a noisy two-component non-
stationary signal s(t) with a parabolic and a linear frequency modulated component: (a)
BJD; (b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i)
SP; (j) SPWVD; (k) WVD; (l) ZAMD.
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CHAPTER 3

DEEP LEARNING

This chapter presents a brief insight into the field of machine learning, considering
recent trends, general principles, theory, and application. The particular focus is given
to the subset of machine learning, called deep learning. This chapter also introduces
the main concepts and principles of ANNs. CNNs, representing the type of deep neural
networks that form the core of the non-stationary GW signal detection method proposed
in this thesis, are discussed in more detail. Finally, a brief overview of recent deep
learning approaches for signal classification is provided, emphasizing the utilization of
two-dimensional time-frequency signal representations based on Cohen’s class of TFDs.

3.1 Machine Learning Algorithms

The term artificial intelligence (AI) refers to the computer algorithms and systems that
mimic cognitive processes characteristic for humans, including the ability to learn from
experience, reason, and generalize, in order to make decisions and deal with problems that
humans struggle to describe formally but can easily solve intuitively [103]. The alternative
definition of AI states that this research field deals with the construction of intelligent
agents that can make decisions in order to achieve the best expected outcome, i.e., to do
the right thing according to the provided objective [224]. Today, AI represents a rapidly
developing field with numerous real-world applications.

Machine learning is a subfield of the AI that encompasses algorithms that can auto-
matically learn from provided data examples to solve new tasks [136]. Learning is defined
as the improvement of the algorithm’s performance at some tasks with experience, which
is measured by some performance measure [103, 188]. Some of the machine learning tasks
include classification, classification with missing inputs, regression, transcription, machine
translation, structured output, anomaly detection, synthesis and sampling, imputation of
missing values, denoising, density estimation, and many more [103].

The generalization to the new problems is achieved without the need for reprogramming
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of these algorithms, in contrast to the classical task-specific algorithms based on strictly
defined rules [103]. Thus, machine learning algorithms can be applied to problems in
different fields by providing different data during the training procedure [103]. This
property has led to the expansion of machine learning in recent years to various research
and technology fields and commercial applications, such as speech recognition, computer
vision, data analysis, robot control, natural language processing, and other [136].

Machine learning can be divided into two main categories: supervised and unsupervised
learning [103, 136, 229]. As the most commonly used form of machine learning, supervised
learning is based on providing algorithms with correctly labeled data [103, 136, 150]. The
algorithm receives an input during the training and produces an output based on the
learned mapping between input and output [136, 150]. Some mapping types include neural
networks, support vector machines (SVMs), logistic regression, decision forests, decision
trees, Bayesian classifiers, and kernel machines [136]. These mappings are estimated using
different learning algorithms based on optimization theory [136].

The outputs predicted by the machine learning algorithm can be of different types.
For example, the output can take on one of two labels in binary classification, while in
multiclass classification, the output can assume one of the multiple considered labels [136].
Moreover, other problems tackled by machine learning include multilabel classification
where the output of the algorithm can be assigned with multiple labels simultaneously,
ranking problems where the output provides the order of some elements in the set, and
general structured prediction problems where the output represents some combinatorial
object [136]. The error between the obtained output and the desired (known) output is
calculated using an objective function [150]. The algorithm then modifies its parameters to
reduce the error [150]. After the training, the machine learning algorithm’s performance,
i.e., its generalization ability, is then checked on the test dataset containing different data
examples than those provided during the training [103, 150].

On the other hand, in unsupervised learning, machine learning algorithms are provided
with unlabeled data for learning, assuming some structural properties of these data
[103, 136, 229]. These assumptions are represented by a criterion function which is then
optimized [136]. Some unsupervised machine learning algorithms are designed to learn the
probability distribution of the provided dataset, while others perform the clustering of the
dataset into groups of similar data examples [103].

However, despite their success in a wide variety of applications, traditional machine
learning algorithms are limited in their capacity to process raw data directly [103, 150].
Namely, the application of these types of learning systems requires transforming the
data to the appropriate representation using a domain-specific feature extractor, i.e.,
the data must frequently be manually reduced into a representation appropriate for a
particular task [103, 150]. In addition to requiring domain expertise, determining the
appropriate hand-crafted representation is challenging and time-consuming, even for the
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subject specialists [103]. Therefore, the applicability of these conventional algorithms is
severely limited, which has motivated the development of representation learning and deep
learning.

Representation learning is a subfield of machine learning that seeks to overcome this
issue of traditional machine learning algorithms by developing algorithms that can take raw
data as input and learn on their own to create appropriate representations of the data and
automatically extract important features that will be used for detection or classification
[32, 103, 150]. Compared to hand-crafted representations, learned representations allow
rapid adaptation to new problems, often with improved performance [103].

Deep learning is a subfield of representation learning with numerous emerging applica-
tions, achieving state-of-the-art performance in image recognition, speech recognition, and
many other fields [103, 150]. The recent trend in the expansion of deep learning to various
fields is due to several developments. The most important one is the increased availability
of big data, i.e., large datasets that can be used to train deep learning algorithms [103].
These datasets of numerous images, videos, audios, and other formats have become widely
available due to the increasing digitalization of modern society [103]. Another important
reason is that today’s computational resources allow training larger deep learning models
than before [103]. The increased computational capabilities are based on hardware devel-
opment, including faster and more powerful central processing units (CPUs) and graphics
processing units (GPUs), the application of distributed computing, and the improved
software infrastructure and network connectivity [103].

Deep learning algorithms are characterized by their ability to extract multiple levels of
features for each task automatically, thus identifying relevant representations of the raw
input data and building the hierarchy of concepts [103, 150]. The algorithms are based
on deep computational architectures, composed of multiple interconnected processing
layers of simple but non-linear modules, combined with advanced optimization algorithms
[103, 150]. Each layer transforms the data representation, where initial network layers
learn simpler features while deeper layers utilize the outputs of the previous layers to
learn more abstract representations [103, 150, 229]. By composing hierarchical internal
representations, these deep learning algorithms can capture complex non-linear functions
[103, 150, 229]. The key advantage of deep learning algorithms is that these representations
are learned automatically from the data during the training process, thus eliminating the
need for manual design done by engineers [150].

Deep neural networks are computational models that form the basis of deep learning
applications. Their name comes from the fact that they are loosely based on neurological
processes and that they are composed of various functions forming chain structures, which
can be represented as a network with multiple layers whose number determines the depth
of the model [103]. Deep networks may express functions of increasing complexity by
adding more layers and more units inside each layer [103]. Deep feedforward networks,
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also known as feedforward neural networks or multilayer perceptrons, are the type of
deep learning models with no feedback connections that would feed outputs of the model
back into its structure, i.e., information propagates through these models from the input,
through the intermediate computation functions, to the output [103]. Feedforward neural
networks are used to approximate a function mapping an input to output [103]. On the
other hand, deep neural networks that include feedback connections are called recurrent
neural networks (RNNs) [103].

ANNs represent building blocks of deep neural networks, and their basic concepts are
presented next.

3.2 Artificial Neural Networks

ANNs are computational models composed of fundamental units called artificial neurons
[197, 229]. These models are able to learn from provided data examples [197]. Artificial
neurons are based on perceptrons whose biologically inspired concept [106] was first
introduced in [219] in 1957. The perceptron represents a linear binary classifier used in
supervised learning that operates on the input vector x to produce the weighted output
f(x) [106, 197]. This process can be modeled as [197]

f(x) = w · x + b, (3.1)

where w is the vector of real-valued weights determining the importance of the respective
inputs to the output and b is the bias representing the offset value.

Weight and bias parameters are tuned during the training procedure while the algorithm
learns from the provided data. Although the potential application of the algorithms based
on the single perceptron is severely limited [187], combining multiple interconnected
artificial neurons into multiple layers, and thus forming ANNs, opens a much larger range
of applications [229]. Moreover, it was shown in [123] that a multilayer feedforward network
with a linear output layer and only one hidden layer represents a universal approximator
if there is a sufficient number of hidden units, i.e., the network can approximate any Borel
measurable function to any desired degree of accuracy.

ANNs generally consist of an input layer, at least one hidden layer, and an output
layer. Figure 3.1 depicts the architecture of an example of a simple feedforward neural
network with three neurons in the input layer, five neurons in the hidden layer, and two
neurons in the output layer. ANNs utilize non-linear activation functions applied to the
outputs within the hidden layers and the output layer [150]. Commonly applied activation
functions include the rectified linear unit (ReLU) activation function mathematically
defined as max (0, x), the logistic sigmoid activation function defined as 1/ (1 + e−x), and
the hyperbolic tangent activation function defined as tanh(x) = (ex − e−x) / (ex + e−x)
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[150]. The ReLU is currently the most popular activation function option as it has provided
notable results in many applications of deep neural architectures [101, 132, 194].

Figure 3.1 Example of a simple feedforward neural network architecture with one hidden
layer.

In addition to defining the appropriate input data and the model architecture, another
important factor in applying ANNs is the learning algorithm. The most dominantly used
learning algorithm is the backpropagation algorithm, proposed in [222], combined with
some gradient descent methods [151, 229]. The training procedure usually starts with
randomly initializing the weights of the ANN to the small values and then performing the
backpropagation over multiple epochs to minimize the cost function using the calculated
gradient of the cost function with respect to the weight and bias parameters [103]. The
backpropagation procedure is based on the chain rules for derivatives and consists in
propagating the errors from the output layer, through the hidden layers, back to the input
layer of the ANN each time the performance of the model is evaluated [103, 150, 151]. In
this procedure, each artificial neuron’s weights and biases are adjusted to reduce the cost
function using the gradient-based optimization methods [103, 151].

The stochastic gradient descent (SGD) method has been conventionally used for this
purpose [150, 220]. The SGD method is based on the noisy estimate of the average gradient
of the cost function over all data examples, where this estimate is obtained using only a
smaller subset of the total data available for the training [103, 150, 220]. These randomly
chosen training data examples are called mini-batches [103, 220]. After all training data
examples are used in this procedure, an epoch of the training is completed [197]. The
learning rate parameter controls the magnitude of changes applied to the weight values in
each iteration of the gradient descent [197]. Recently developed methods based on the
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adaptive learning rates have shown improved performance in various tasks [220].

The appropriate initialization of the weights [100] and the selection of the optimal
hyperparameter values is significant to enable the successful training of the neural network
[31, 103, 197]. The selection of hyperparameters is often made using heuristic approaches
based on human expertise [197]. The hyperparameter selection can also be made by
conducting an extensive grid search in the hyperparameter space [31], but some more
sophisticated, automatic selection techniques are also used [33, 237]. Moreover, there
are also many techniques to improve and speed up the training process [31], such as
appropriate choice of the cost function [197], and regularization methods that increase
the ability of the model to generalize beyond the provided training data [103]. Some of
regularization methods include L1 and L2 regularization [103, 197], dataset augmentation
[232], dropout [118, 238], bagging (ensemble methods) [42], and early stopping the training
[278]. Other techniques that prevent the overfitting of the neural network to the training
data include adversarial training [104, 242], batch normalization [131], pretraining [83],
transfer learning [205], one-shot learning [87], and zero-shot [204] or zero-data learning
[147].

CNNs represent special types of deep feedforward networks. Some of the fundamental
concepts of CNNs are described next.

3.3 Convolutional Neural Networks

CNNs [148, 149], sometimes called only convolutional networks or ConvNets, are loosely
inspired by the biological structure of the mammalian visual cortex [103, 128]. This type
of neural network is specially designed to deal with data in the form of multidimensional
arrays by utilizing their spatial structure [77, 108, 150, 197]. A typical example of such
data are color images composed of three two-dimensional arrays with pixel intensities,
where each array represents one color channel (red, green, blue (RGB)) [77, 150].

The name of CNNs comes from the fact that they use a mathematical operation called
convolution in their layers [103]. The convolution is a linear transformation performed
between the multidimensional array of input data and the multidimensional array called
kernel or filter, producing the output called the feature map [77, 103]. These multidimen-
sional arrays are referred to as tensors [103]. The kernel slides across the input, and the
product between each kernel element and the input element it overlaps is calculated [77].
The obtained results are added together to produce the output at the considered location
[77]. In CNN applications, the operation performed usually does not correspond to the
definition of the convolution operation in the strict signal processing sense but refers to
the cross-correlation operation in which no kernel flipping occurs [103]. This operation is
for the two-dimensional input data (image) X and the two-dimensional kernel K defined
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in the discrete form as [103]

Y (m,n) = (X ∗K) (m,n) =
∑
i

∑
j

X(m+ i, n+ j)K(i, j). (3.2)

Three main ideas utilized by CNNs are sparse connectivity, shared parameters, and
equivariant representations [103, 149, 150, 197]. In contrast to traditional ANN layers
where each input unit is connected to each output unit, CNNs have sparse connectivity,
which is achieved by using the kernel whose size is smaller than the input size [103]. In this
way, each output unit is affected by the region of a smaller number of input units, known
as its receptive field [103, 108, 197]. The reduced number of parameters reduces memory
requirements and computational costs and increases statistical efficiency [103]. In CNNs,
kernels in shallow layers allow detection of smaller and simpler features, such as edges
and corners, while units in deeper layers build more complicated interactions by indirectly
processing larger portions of the input data, i.e., these units have larger receptive fields
than those in shallow layers [103, 149].

In traditional ANNs, each weight is used only once while computing the layer’s output,
while in CNNs, the same kernel is used at all input locations to obtain a feature map
[103, 108, 149]. Different feature maps in a layer use different kernels to extract different
features [77, 108, 149, 150]. The kernel weight and bias parameters for each feature map are
learned automatically according to the learning algorithm based on the backpropagation
of gradients, similarly to traditional deep ANNs [103, 150]. The parameter sharing
additionally reduces memory requirements and increases statistical efficiency [103, 149]. In
addition, shared weights allow CNN layers to deal with the spatially translated input data
automatically [103, 150]. Namely, if convolution is applied to the translated input, the
convolution output will be translated in the same manner [103]. This property is called
equivariance to translation [103]. For equivariance to the scaling and rotation of the input
data, CNNs require other techniques [103, 150].

A typical CNN architecture contains two types of layers: convolutional and pooling
layers [103, 150]. The convolutional layer performs multiple convolution operations in
parallel, which results in a set of linear activations, i.e., feature maps [103]. An element-wise
non-linear activation function, most often the ReLU, is then applied to each obtained linear
activation to which bias is usually also added [77, 103, 108]. The pooling layer applies a
pooling function to the output of the nonlinearity [103]. The described convolutional and
pooling layers are in the literature also sometimes considered as a single layer with three
stages: convolution, detector (non-linear activation), and pooling stage [103].

The convolutional layer performs multiple convolutions in parallel to extract multiple
features at multiple input locations [103]. Moreover, CNNs usually utilize multi-channel
convolution as the input is usually a grid of vector values, e.g., color images are considered
three-dimensional tensors [103]. In deep CNNs, thus obtained output of one layer represents
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the input to the next layer [103]. The stride is a parameter of convolution operation that
defines the distance between the two consecutive positions of the kernel over the input [77].
The stride can be used for downsampling of the convolution output, resulting in reduced
computational costs and somewhat reduced precision of feature extraction [77, 103].

Zero padding is another important convolution parameter, which implies padding
zeroes to the input to increase its dimensions [77, 103]. When applying the convolution
without zero-padding, the width of the output shrinks at each convolutional layer by the
number of pixels equal to the kernel width reduced by one [103]. Therefore, zero padding
can prevent shrinking the representation with depth and thus allow the design of deep
CNNs with the desired number of layers [103].

There are three special cases of zero-padding applications [103]. The first one is where
no zero padding is applied, and the kernel slides only over those positions for which the
whole kernel is within the input image [103]. This case is known as valid convolution and
results in the output pixels where each pixel is a function of the same number of input
pixels [103]. The obtained output has the width of m− k+ 1, where m is the width of the
input image and k is the width of the kernel [77, 103]. Therefore, this case of zero padding
causes the output shrinkage at each CNN layer and thus limits the maximum number of
convolutional layers [103]. The second case of zero-padding application, also known as
same convolution, consists in adding zeroes to the input to keep the output the same size
as the input [77, 103]. This case removes the constraints on the number of convolutional
layers in the network, but the border input pixels have a less effect on the output pixels
than those in the image center [103]. Finally, the third case, known as full convolution,
results in the output of width m+ k− 1, which is achieved by adding enough zeroes to the
input so that each input pixel is taken into account by the kernel k times in each direction
[77, 103]. However, the border output pixels are a function of a smaller number of pixels
than those close to the center [103].

Several recently developed concepts, such as dilated convolutions [279], improve the
performance of CNNs even further. The dilated convolutions allow aggregation of multi-
scale contextual information over larger regions without losing resolution, which is achieved
by increasing the size of kernels by inserting the spaces between their elements [279]. The
dilation rate is defined by the parameter dr, where dr − 1 spaces are inserted between the
kernel elements [77]. In this way, the receptive field of output units is increased without
increasing the kernel size [77, 108].

Pooling consists of sliding a rectangular window across the input and applying a
pooling function that substitutes the output of nonlinearity at a particular location by
summarizing the subregion of the neighboring outputs [77, 103]. Thus, pooling reduces
the resolution of the feature maps [108]. The most commonly used pooling technique
is the max pooling that selects the maximum output value within a rectangular region
[40, 77, 103]. Alternative pooling functions include the average, the weighted average, and
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the L2 norm of the neighboring values within the pooling region [103]. Pooling makes the
representation invariant to small local translations of the input, as the values obtained
by pooling do not change much when the input is translated by a small amount [77, 103].
This invariance property is beneficial in applications that prefer the information on the
existence of some feature over its exact location [103, 149, 197].

Moreover, pooling over multiple features obtained as the outputs of the convolutions
with separate learned parameters can allow CNNs to learn to be invariant to various
transformations of the input data [103]. Furthermore, pooling reduces the feature map
size as fewer pooling units are needed than the detector units when a stride between
pools greater than one is used [103, 197]. Thus, pooling makes CNNs more robust to
the small shifts, distortions, and noise in the input data, while simultaneously lowering
computational costs [103, 108, 149, 150].

In a typical CNN architecture, several convolutional and pooling layers are stacked
and followed by the fully connected layers, also called the dense layers [103, 108, 150].
Fully connected layers are traditional neural network layers that are connected deeply, i.e.,
each unit in the layer is connected to all units in the previous layer. The tensor output
of the convolutional layers needs to be flattened, i.e., reshaped to the one-dimensional
vector, to be used as the input to the fully connected layers [103]. Fully connected layers
perform high-level reasoning [108]. A typical CNN architecture is depicted in Figure 3.2.
The example architecture shown in Figure 3.2 consists of two convolutional layers (C1 and
C2 feature maps), two pooling layers (P1 and P2 feature maps), a fully connected layer,
and an output layer.

Figure 3.2 Typical CNN architecture.

The modern framework of CNNs was established in [152] and later improved in [148].
In these studies, a multilayer ANN called LeNet-5 was used to classify handwritten digits.
However, CNNs have been mostly neglected in the field of computer vision [153] until
the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [223] in 2012. In this
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competition, a deep CNN, known as AlexNet, was used to classify 1.2 million images from
the ImageNet dataset into 1000 classes, considerably outperforming the state-of-the-art
methods having won the previous competitions [145]. These results were achieved due
to several improvements and novel techniques, including the efficient implementation
of convolution operations on GPUs, ReLU activation functions, dropout regularization
technique, and dataset augmentation [145, 150]. Consequently, CNNs have gained increased
popularity in various image and video processing applications, obtaining state-of-the-art
performances and becoming the dominant technique for object detection and recognition
[108, 145, 150]. This type of deep neural network is most efficient for the implementation
on modern computer hardware, allowing rapid training and evaluation [150].

The following section presents a brief overview of the recent applications of deep learning
for signal classification utilizing two-dimensional time-frequency signal representations.

3.4 Deep Learning-Based Approaches for Signal

Classification

The conventional pattern recognition and traditional machine learning algorithms for
time-series signal classification, based on the carefully selected and manually extracted
signal features, can achieve high classification accuracy [51, 217, 251, 258]. Nevertheless,
extracting hand-crafted signal features appropriate for a particular application represents
a tedious task requiring domain-specific knowledge. With its recent intensive development,
deep learning has also been applied to time-series signal classification in various domains,
allowing automatic feature extraction [86, 137, 203, 268].

On the other hand, two-dimensional signal representations open up possibilities for
applications with two-dimensional CNNs with superior performance in image recognition
tasks. Most recent studies have addressed the use of CNNs with spectrogram representa-
tions in different applications, including classification of speech [27], electrocardiogram
(ECG) [277], electroencephalogram (EEG) [281], and radar [270] signals.

However, alternative TFDs from Cohen’s class have mainly been applied to time-series
signals to extract characteristic features from time-frequency representations, which are
then used as input to traditional machine learning [39, 93, 111, 189, 193] or ANN-based
deep learning classification algorithms.

The SPWVD in [259] and several other Cohen’s class TFDs in [260] were used to
extract features from the corresponding time-frequency representations of EEG signals.
The dimensionality of the extracted features representing the fractional signal energy in the
specific time-frequency area was reduced by principal component analysis. The obtained
features were then used as input to the simple, shallow, feedforward ANN to detect EEG
signals containing epileptic seizure activity. The TFDs from Cohen’s class were utilized in
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[256] to extract features from ECG signals, with these features then fed to the shallow ANN,
enabling arrhythmia detection. In [241], the vibration signal features extracted by the
WVD were used to detect gearbox faults based on the shallow ANN. The complex image
processing consisting of several stages was applied in [285] to the CWD images to extract
features for Elman neural network-based classification of low-probability-of-intercept (LPI)
radar signals. In [210], the ZAMD of vibration acceleration signals was decomposed by
non-negative matrix factorization and used to detect faults by the neural network ensemble.
The study in [171] used spectral kurtosis values calculated from the BUD as input to the
radial basis function network to classify transient power quality disturbances. Finally, the
WVD was applied in [20] to extract features from the electromyogram (EMG) signals to
allow their ANN-based classification.

Recently, several studies on directly applying TFDs with CNNs for classification
purposes have also been conducted. The binary images obtained by applying the image
processing techniques to the CWD of the cognitive radio signals were used as the CNN
input in [284]. The study in [109] reported using the CWD for the LPI radar signal
recognition system with the pretrained deep CNN for feature extraction and the SVM
for classification, while the study in [75] utilized the CWD and the CNN for detecting a
single line-to-ground fault in distribution systems. The CWD was also used in the simple
CNN-based algorithm for radar emitter signal detection described in [170]. Additional
applications of the CWD included the study in [233] that discussed LPI radar signal
recognition based on the binary CWD images and dense CNN; the study in [92] where the
method for partial discharge pattern recognition based on the CWD, variational mode
decomposition, and optimized CNN with the cross-layer feature fusion was proposed; and
the study in [129] with the CNN-based classification of the CWD images of the LPI radar
signals.

Moreover, the WVD was applied to classify the power quality disturbances in [48],
the radar signals in [266], and wiring faults in electric vehicles in [55], following a similar
CNN-based approach. The utilization of the WVD and deep geometric convolutional
network for signal modulation classification was studied in [155]. The WVD and CWD
were also combined with the deep CNNs in [269] to classify the radar signals obtained
from soils with different moisture values, whereas the WVD and BJD were used in [280] in
the feature fusion algorithm for automatic target recognition based on the radar-generated
high-resolution range profiles and the CNN for feature extraction.

Furthermore, the approach combining the PWVD and CNN was applied to detect
arrhythmia from the ECG signals in [276] and anterior cruciate ligament injury from the
EMG signals in [113]. Moreover, the SPWVD was used in [168] to obtain input images
to the triplet CNN for radar signal classification. The SPWVD of the EEG signals was
utilized as input to the deep CNNs for emotion recognition in [140], schizophrenia detection
in [142], and Parkinson’s disease detection in [141]. In [247], the SPWVD was applied with
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the SP and RIDH representations for radar signal classification based on the mixed CNN
consisting of three two-dimensional CNNs and one three-dimensional CNN. In addition,
several TFDs from Cohen’s class combined with the simple CNN were studied in [29] in
the application of identifying emitters of Internet of Things wireless devices.

A new kernel function for the TFD with the form characteristic for Cohen’s class
was introduced in [212] and thus obtained TFD images were heavily preprocessed before
being utilized for the CNN-based classification of radar signals. The proposed TFD was
also applied in [213] for radar signal recognition based on the convolutional denoising
autoencoder used to denoise and repair the TFD images, and the deep CNN used to
classify these processed images. In [211], radar signals were classified using preprocessed
TFDs with multiple kernel functions of Cohen’s class type as input to the simple CNN for
feature extraction and the deep Q-learning network for classification.

However, the above-discussed recent studies mainly focus on particular TFDs in a
specific application. Furthermore, these approaches are often based on classical CNNs
with custom configurations for the studied applications. Thus, the existing research lacks
a comprehensive and detailed analysis of different TFDs from Cohen’s class combined
with the advanced, state-of-the-art two-dimensional CNN architectures (especially in the
field of physics like GW detection). Moreover, to the best of the author’s knowledge, the
existing studies do not address the problem of classifying non-stationary signals with very
low SNR values, which is one of the main contributions of this thesis.

Before proceeding to the developed approaches and obtained results, the next chapter
introduces the basic insight to GWs and presents the problem of their detection in intensive
noise.
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CHAPTER 4

GRAVITATIONAL-WAVE SIGNALS
AND OVERVIEW OF EXISTING
APPROACHES FOR THEIR
DETECTION

This chapter defines GW signals, presents the fundamental concepts in GW research,
and addresses three main groups of approaches for GW data analysis. Existing techniques
for GW detection may be divided into the following categories: matched filtering-based
techniques, denoising techniques, and machine learning-based techniques.

4.1 Gravitational Waves

GWs are ripples in the curvature of space-time caused by massive accelerating objects
that represent some of the most energetic events in the Universe [159, 179, 249]. These
ripples propagate in the form of waves in all directions outward from the source at the
speed of light [159, 179, 249]. There are four main types of GWs with respect to their
sources: compact binary coalescence (CBC), bursts, continuous, and stochastic GWs
[158, 249]. Each type of GWs generates a characteristic signal pattern.

CBC GWs are generated by pairs of orbiting massive and compact objects [158, 179].
This type of GWs is the only one that has been successfully observed on Earth so far.
There are three categories of binary systems that represent sources of this type of GWs:
binary black hole (BBH), binary neutron star (BNS), and neutron star - black hole binary
(NSBH) [158]. Although all three source types share the same GW generation mechanism,
each source is characterized by a specific GW pattern [158].

The coalescence includes three main phases: the inspiral, the merger, and the ringdown
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[179]. The inspiral is a process that involves a pair of dense objects orbiting each other
while emitting GWs and thus gradually losing their orbital energy [158, 179]. The orbital
frequency gradually increases, as does the amplitude and frequency of the radiation,
resulting in a characteristic chirp waveform [179]. Over millions of years, this process
results in two objects progressively accelerating, getting closer together, and eventually
colliding [158, 179]. The ground-based detectors cover the frequency range from about 15

Hz up to a few kilohertz, and thus only the final stage of the inspiral phase is observed, in
addition to the merger and the ringdown phase [3, 158, 179]. The duration of the final
stage of the inspiral is much shorter for the merging black holes than for the neutron stars
[158]. The merger phase includes two objects merging to form a single black hole [179].
Finally, the resulting black hole radiates the extra energy during the ringdown phase and
settles into the fundamental state [179].

The examples of the noise-free CBC GW signals obtained by the simulation models
for each of the three source types mentioned above (BBH, BNS, and NSBH) are shown
in Figure 4.1 for illustration purposes. Figure 4.1 shows a longer time interval for each
simulated CBC signal example, including the inspiral, the merger, and the ringdown
phase. In addition, a shorter time interval around the merger is also shown where the
merger and the ringdown phase can be seen in more detail. The BBH, BNS, and NSBH
signal examples were generated using the LIGO Algorithm Library (LALSuite) [163] and
PyCBC [198, 261] waveform models (approximants) SEOBNRv4 [37], SEOBNRv4T [117],
and IMRPhenomNSBH [248], respectively. Moreover, the BBH, BNS, and NSBH signal
examples were simulated based on the mass and distance parameters of the observed real-life
GW events GW150914 [3], GW170817 [3], and GW191219_163120 [10], respectively.

Burst GWs are generated by the short-duration unknown or unexpected sources
[158, 249]. The detection of these GWs represents a challenging task due to many unknowns,
including insufficient knowledge about underlying physics and waveforms generated [158].
One possible source of burst GWs are supernovae, i.e., the explosions of massive stars at
the end of their life cycles [158, 179, 249].

Continuous GWs are considered to be caused by a single spinning massive object, such
as a neutron star (remnants of a massive supergiant star), that deviates from the ideal
spherical shape [158, 179, 249]. This type of GWs is characterized by having the constant
amplitude and frequency due to the constant spin rate of its source [158, 249].

Stochastic GWs will be the most challenging type of GWs to detect [158]. Namely,
stochastic GWs consist of numerous small GWs coming from all directions and different
sources, including the GWs originating from the Big Bang [158, 227, 249]. These various
GWs are then randomly mixed into a stochastic signal [158, 249].

Albert Einstein predicted the existence of GWs in 1916 within his general theory of
relativity [80, 81, 82]. However, their existence was confirmed only mathematically or
through indirect observations until 2015 [158]. On September 14, 2015, the Advanced
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Figure 4.1 Examples of the simulated noise-free CBC GW signals: (a) BBH; (b) BBH -
merger phase; (c) BNS; (d) BNS - merger phase; (e) NSBH; (f) NSBH - merger phase.

LIGO detectors [1] made the first direct detection of the CBC GW signal GW150914

[6]. This detection sparked intensive research in the GW data analysis, and the 2017

Nobel Prize in Physics was awarded to Professors Barry C. Barish and Kip S. Thorne
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from the California Institute of Technology (Caltech) and Professor Rainer Weiss from
the Massachusetts Institute of Technology (MIT), who were the leading scientists in the
development of LIGO.

In addition to the two Advanced LIGO detectors located in the USA (Hanford, Wash-
ington and Livingston, Louisiana), the European Gravitational Observatory (EGO) runs
the Advanced Virgo detector near Pisa, Italy [11, 12]. The aerial views of these three
GW detector sites are shown in Figure 4.2. Moreover, two new GW detectors are ex-
pected to join the detection network, including LIGO-India and the underground Kamioka
Gravitational Wave Detector (KAGRA) [15] in Japan that became operational in 2020.

(a) (b)

(c)

Figure 4.2 GW detector sites: (a) LIGO Hanford [160]; (b) LIGO Livingston [161]; (c)
Virgo [162]. Courtesy Caltech/MIT/LIGO Laboratory and Virgo Collaboration.

The first observing run (O1) of the Advanced LIGO detectors ran from September 12,
2015, to January 19, 2016, and led to the detection of the GWs from three BBH mergers
[3]. Additionally, the second observing run (O2) of the Advanced LIGO and Advanced
Virgo detectors enabled the detection of seven BBH mergers and one BNS merger between
November 30, 2016, and August 25, 2017 [3]. Moreover, the first part of the third observing
run (O3a) of the Advanced LIGO and Advanced Virgo detectors reported 44 CBC GW
candidate events in the period between April 1, 2019, and October 1, 2019 [8, 9]. Finally,
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the second part of the third observing run (O3b) of the Advanced LIGO and Advanced
Virgo detectors ran from November 1, 2019, to March 27, 2020. The analysis of the O3b
data, released on November 7, 2021, within the third Gravitational-Wave Transient Catalog
(GWTC), reported 35 CBC GW candidates, including the first confident observations of
NSBH events [10].

In addition to the data obtained so far, a further increase in the GW detection rate is
expected due to the improvements in the detector sensitivity and new detectors joining the
network [7]. Due to the large amount of data collected, various specialized data processing
algorithms have to be developed to identify the GW events embedded in high instrumental
and environmental noise. The accurate identification of the GW events allows researchers
to study the astrophysical properties of the GW sources, measure cosmological parameters,
and compare the obtained results with those predicted by the general theory of relativity,
to name a few.

4.2 Gravitational-Wave Detectors

The primary role of the GW detectors is to detect GW events in real-life noisy
measurements and calculate their parameters. These detectors are L-shaped interferometers,
with two light-reflecting mirrors placed at each end of the two orthogonal arms [157].
The length of each arm is 4 km in the Advanced LIGO detectors, while the Advanced
Virgo detector consists of 3 km long arms [1, 11]. The layout of the GW interferometer is
depicted in Figure 4.3. The incoming GW lengthens one arm of the interferometer while
simultaneously shortening the other due to the space-time strain [6]. The interferometer
measures the resulting difference in the arms’ lengths ∆L(t), observed as the phase
difference between the two returning laser beams and recorded by the output photodetector
[6]. The acquired optical signal is proportional to the GW strain amplitude hGW (t), defined
as [6]

hGW (t) =
∆L(t)

L
, (4.1)

where L is the length of the detector’s arm.
Due to the very small magnitudes of the GWs that can be observed on Earth, the GW

interferometers need to detect extremely small variations in the arms’ lengths, even those
up to 10 000 smaller than the width of a proton [157]. This requires building state-of-the-
art measuring equipment with high measurement sensitivity and improving the standard
structure of the base Michelson interferometer. First of all, the GW interferometers are
much larger than the standard ones because longer interferometer arms allow the detection
of smaller length changes [157]. Moreover, the GW interferometers include Fabry-Perot
optical cavities formed by installing the additional mirrors in the detector’s arms near the
beam splitter [1, 6, 34, 157]. These mirrors enable multiple laser beam reflections, thus
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Figure 4.3 The layout of the GW interferometer.

extending the traveled distance and consequently increasing the measurement sensitivity
[1, 6, 34, 157].

Furthermore, the resolving power of the detector is improved by increasing the input
laser power using the power recycling mirrors that continuously reflect laser beams back
into the interferometer’s arms [1, 6, 157]. The obtained interference optical signal is
additionally enhanced at the output by the signal recycling mirrors [1, 6, 157]. The
high measurement sensitivity requires using the extremely precise 1064 nm Nd:YAG laser
system in the ultrahigh vacuum, with the laser amplitude and frequency being stabilized
to reduce the photon shot noise [1, 6, 146, 156].

In order to enable highly sensitive measurements in the interferometers, the influence
of vibration, seismic, and thermal noise on the mirrors (often referred to as test masses in
the literature) needs to be reduced as much as possible [6, 156]. The GW interferometers
use two systems to protect against unwanted environmental vibrations: the active and
passive damping systems [6, 156, 182]. The active damping system, also known as the
internal seismic isolation system, includes the position and vibration sensors, the control
system, and the actuators whose movements cancel the sensed environmental vibrations
[156, 182]. On the other hand, the passive damping system consists of using the quadruple-
pendulum system for each mirror [6, 156, 182]. The influence of the thermal noise on the
measurements is reduced by designing the mirrors with materials characterized by low
mechanical losses [105].

However, despite the above-described efforts directed towards noise reduction, various
environmental and instrumental noise sources still affect the GW measurements. Figure 4.4
shows the amplitude spectral density (ASD) curves representative of the strain noise data
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of the LIGO Hanford, LIGO Livingston, and Virgo detector during the O2 run. The data
for the ASD curves representing the detectors’ sensitivities reported in [3] were retrieved
from [133, 134, 165].
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Figure 4.4 The representative ASD curves of the strain noise data of the Advanced LIGO
and Advanced Virgo detectors during the O2 run.

The environmental noise sources include uncorrelated and correlated noise sources [5].
The uncorrelated noise sources include seismic noise caused by earthquakes at the frequency
range from 0.03 Hz to 0.1 Hz, vibration and acoustic noise caused by human activity at
the detector or the more distant locations, blip noise transients occurring between 30 Hz
and 250 Hz, and magnetic noise sources [5, 79]. The correlated noise sources, representing
those occurring in multiple GW detectors simultaneously, include electromagnetic noise
sources, such as radio-frequency communication, lightning, and various solar events [5].
On the other hand, the instrumental noise sources include thermal noises manifesting as
displacement noises, noise from the electrical power system (60 Hz in the USA and 50

Hz in Europe), calibration signals injected into the interferometer, electronic elements
noise, mechanical resonances of the system, noises related to the laser and optical system,
quantum noise, and gas noise [181].

Based on the above discussion, it is clear that the GW measurements are characterized
by non-white, non-stationary, and non-Gaussian noise [5]. Moreover, due to the extremely
low GW magnitudes observed at the ground-based detectors, the obtained GW signals are
weak in comparison to the background noise, thus resulting in the measurements with very
low SNR values. This makes the task of detecting GW signals in high, real-life noise rather
challenging. Hence, the main research effort in the GW data analysis is the development of
algorithms and methods for the detection of the GW events in the low SNR environments,
with specific algorithms being developed for different types of GW signals. The rest of this
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chapter gives a brief overview of the three main categories of the GW detection algorithms
found in the recent literature (elaborated in the following three sections).

4.3 Matched Filtering-Based Detection of

Gravitational Waves

Matched filtering techniques search for the known signal pattern in noisy data [116].
The application of matched filtering in the GW data analysis is based on correlating
the noisy strain data obtained by measurements in the GW detectors to a large bank of
waveform templates, i.e., reference signal waveforms, generated by GW simulations [227].
The main task is to find the optimal template (also referred to as a filter) that would
maximize the correlation of the template with the noisy detector data when the GW signal
is present in those data [227]. Thus selected template provides the maximum SNR [227].

It is clear from the described procedure that the databases of the simulated waveform
templates need to be extensive enough to cover different astrophysical scenarios and ample
parameter space. The matched filtering-based technique is primarily used in the Advanced
LIGO and Advanced Virgo detectors to detect CBC GW candidates [199, 227]. Namely,
these types of GW signals are thoroughly studied with established and highly accurate
physical models.

The most recent GW catalog (GWTC-3) [10] described three matched filtering-based
pipelines to search for CBC signals in the analyzed GW data: GstLAL [49, 50, 112, 185],
Multi-Band Template Analysis (MBTA) [14, 23], and PyCBC [16, 17, 69, 70, 200, 261].
These pipelines were used for online and offline searches, i.e., low and higher latency
searches [10]. Online analyses are performed in near-real-time as GW measurements are
acquired, thus rapidly detecting GW candidates [10]. On the other hand, offline analyses
are able to be more sensitive as they are conducted on the calibrated and cleaned GW
data [10]. Moreover, offline analyses can afford to apply more computationally expensive
algorithms [10].

The GstLAL search pipeline is based on matched filtering in the time domain and
detects triggers for GW events using its waveform template bank [10, 185]. Triggers are
generated by maximizing the matched-filter SNR (MF-SNR) over one-second time windows
for each template and detector, with the defined MF-SNR threshold of 4.0 [10, 185]. The
GW event candidates are formed by triggers time-coincident in more than one detector
and generated by the same template [10, 185]. The event candidates are then ranked by
the likelihood ratio statistic comparing the probabilities of the signal and noise hypotheses
[10]. The likelihood ratio is calculated based on the MF-SNR from each GW detector,
detector sensitivities, and time and phase differences between triggers [10].

The MBTA pipeline includes a preprocessing stage where GW data are downsampled,
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and intervals with poor data quality are identified [10]. MBTA performs independent
searches in three regions of its template bank, corresponding to the BBH, BNS, and NSBH
sources [10]. Triggers occurring in a single detector are ranked based on the statistic taking
into account the MF-SNR, the consistency with the template signal, and the local data
quality [10]. On the other hand, triggers coincident in multiple detectors are ranked based
on the statistic taking into account the calculated ranking statistics of single-detector
triggers [10].

The PyCBC pipeline searches for triggers time-coincident in two or more GW detectors
and calculates the ranking statistics [10]. Next, the calculated statistics are used to
compute the significances, then combined into a single value [10]. The PyCBC statistics
consider the ratio of the estimated signal event rate density and the noise event rate
density [10, 70]. Moreover, there are two more PyCBC configurations used – PyCBC-BBH
[71] and PyCBC Live [199], where the first one focuses on searching for BBH signals, while
the second one is used for online searches [10].

Nevertheless, although efficient and widely used in pipelines for searching for CBC
GW signals, the matched filtering technique has several drawbacks. First of all, matched
filtering can be considered an optimal approach only in applications where signals are
corrupted by Gaussian noise [116, 199]. However, as previously elaborated, the GW signals
are embedded in high levels of non-stationary and non-Gaussian noise. Moreover, this
approach is computationally expensive, and thus it is not the optimal solution for the
real-time detection of the GW candidate events. Also, matched filtering is unsuitable for
detecting burst and continuous GW events as it requires large databases of the expected
signal waveforms. These databases are difficult to obtain for burst and continuous GWs
because their numerical-relativity simulation models are highly computationally demanding
or even imperfect in some cases due to limited knowledge of the potential GW sources
and the underlying physical processes, thus rendering matched filtering ineffective [227].
Consequently, detecting these types of GWs requires the development of highly specialized
algorithm pipelines [177, 218].

4.4 Denoising Techniques Applied to Gravitational

Waves

Another research direction in GW data analysis includes denoising of the acquired noisy
measurements. There were several studies on the application of machine learning-based
techniques to GW data denoising. Various proposed denoising approaches included the
application of the enhanced deep recurrent denoising auto-encoders on the noisy time
series [231], the sparse signal reconstruction based on the dictionary learning algorithms
[255], the subtraction of the non-stationary noise from the time-series GW data using deep
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learning algorithms [202, 262], the removal of the noise using CNNs trained on the raw
time-series data [271], and the subtraction of the noise transients (glitches) from the GW
data using dictionary learning [252].

Moreover, denoising techniques are designed to remove noise, or reduce it as much
as possible, without requiring a priori information on the underlying GW signals or the
properties of their astrophysical sources. Thus, there has recently been a growing interest
in adjusting noise removal methods and incorporating the existing efficient denoising
methods into the advanced pipelines for GW data processing and analysis.

The recently proposed GW denoising approaches found in the literature focus on
applying the total variation (TV)-based techniques. These techniques have been widely
used in image processing, with the mathematical framework based on the Rudin-Osher-
Fatemi variational model and the minimization of the L1-norm [52, 53, 102, 221]. The
TV-based denoising technique was applied in [254] to the simulated noisy GW signals,
including BBH signals and burst signals originating from the core-collapse supernovae
(CCSN). This study showed the efficiency of TV-based denoising in GW applications.
Nevertheless, the analysis included only GW signals embedded in the additive Gaussian
noise, which does not correspond to the real-life situation where non-stationary and non-
Gaussian noise is present. Therefore, the study was expanded in [253] to include the
simulated GW signals corrupted by the real-life noise data retrieved from the Advanced
LIGO detectors. Moreover, the study in [253] also provided a detailed insight into selecting
the optimal regularization parameter of the denoising model.

On the other hand, the application of the denoising technique combining the local
polynomial approximation (LPA) and the RICI algorithm to the noisy burst GW signals
was discussed by the author of this thesis and his collaborators in [174]. This locally
adaptive and data-driven denoising technique uses the LPA as a filter design tool by fitting
an appropriate polynomial to the noisy GW signal samples within a sliding window of
varying size [139]. The optimal size of the sliding window is calculated by the algorithm
based on the RICI rule [154] developed by Jonatan Lerga et al., which represents an
upgrade of the original intersection of confidence intervals (ICI) rule [138]. The study
presented in [174] applied the LPA-RICI technique to the simulated CCSN burst GW
signals injected into the actual noise data collected at the Advanced LIGO detector at the
different SNR values. The higher orders of the LPA method were also considered and tested.
The study showed that the LPA-RICI technique efficiently reduces the noise in the realistic
GW data with the low SNR values while simultaneously preserving the characteristic
signal morphologies. Furthermore, the LPA-RICI technique was shown to outperform
several other denoising techniques applied to the noisy burst GW signals, including the
LPA-ICI technique, the TV-based technique, and the wavelet-based techniques.

The study presented in [174] was extended in [176] by the author of this thesis and
the collaborators by providing a detailed performance analysis of the ICI and RICI-based
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denoising techniques applied to the burst GW signals in intensive noise and a discussion
on the selection of the optimal algorithm’s parameters. The utilization of the evolutionary
metaheuristic optimization algorithms represents a potential solution for the efficient
selection of denoising technique’s parameters [173, 175].

The above-described denoising techniques are efficient tools for reducing the noise
present in the GW strain measurements. These techniques can be utilized at the initial
stages of the GW data analysis pipelines to reduce the noise and thus improve the
opportunities for successfully detecting the GW events. However, denoising techniques do
not represent standalone solutions for the GW detection but must necessarily be coupled
with different classifiers (for example, machine learning-based methods).

4.5 Machine Learning-Based Detection of

Gravitational Waves

As mentioned in Chapter 3, machine learning has attracted tremendous interest in
recent years, with diverse applications in numerous research areas. The GW research is no
exception to this trend, with many recent studies on the application of machine learning-
based techniques, and deep learning-based techniques in particular, for various tasks in the
GW data analysis [67]. These techniques are beneficial for GW data analysis due to their
powerful algorithms’ ability to generalize, the scalability, and the intensive computation
process being concentrated in the initial training stage. Namely, once adequately trained,
the machine learning and deep learning algorithms can provide real-time processing of the
GW data at vastly reduced computational costs.

First of all, machine learning-based techniques have been used to estimate the GW
source parameters [59, 60, 107, 195]. Most of these applications were based on the deep
neural networks trained on the simulated time-series GW data. Moreover, as mentioned
above, there were several studies on the application of machine learning-based techniques
to GW data denoising [231, 255, 262, 271].

Another area of application of the machine learning-based techniques in the GW
research includes classification of the glitches, i.e., the transient noise anomalies that
occur in the GW detectors and heavily affect the quality of the obtained data. The study
in [192] proposed using the difference-boosting neural network on the relative wavelet
energy and entropy obtained by one-dimensional wavelet decomposition of the raw time-
series GW data. The approach utilizing the machine learning algorithm, called Gaussian
mixture model, for the unsupervised clustering of the wavelet coefficients obtained by
the wavelet transform of the time-series glitch data, was presented in [208, 209]. The
study in [28] provided a comparison of several machine learning algorithms used to classify
the time-frequency spectrogram images obtained by the Q-transform [56] applied to the
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glitch data. The tested machine learning algorithms included the multinomial logistic
regression, the SVM, the CNNs, and the ensemble framework. In [215] and [283], the
simpler CNN architectures were used to classify the spectrograms of the glitches, while
the study in [99] reported on the use of transfer learning, i.e., several pretrained advanced
deep CNN architectures (VGG [235], Inception [243], and ResNet [114]) were used for the
same classification purpose.

Finally, the most studied area is the application of machine learning techniques,
particularly those based on deep learning algorithms, to detect the GW events in the noisy
background. There have been several studies on the detection of different types of GW
signals. Some of these studies considered classifications based on the time-series GW data
[54, 144, 228], while some utilized the two-dimensional spectrogram representations of the
data [22, 130].

In [74], the deep neural network based on the modified one-dimensional version of
the ResNet architecture was used to detect continuous GWs from spinning neutron stars
by taking the frequency representation of the GW strain data as input. Based on the
two-dimensional input vector containing the real and imaginary part of the fast Fourier
transform of the data, the neural network classified the input data example as the noise or
the GW signal embedded in the noise. Although using two input vectors, this architecture
is still considered one-dimensional as each vector represents one input channel. This
study was extended in [73] by considering a network of GW detectors and realistic noise
conditions and testing several neural network architectures modified to accept multiple-
channel one-dimensional inputs, including the ResNet and the Inception-ResNet [244]
CNN architectures. In [144], the deep CNN was shown to successfully detect the BNS
GW signals based on the input time-series strain data classification. Another study on
detecting the BNS GWs based on the CNN and the simulated noisy time-series strain
data was provided in [228]. Additionally, the detection of the CCSN burst GW signals
was considered in [54], where the simulated time-series strain data were used as input
to the CNN that distinguished between the two categories of the data examples: those
containing the GW signal embedded in the noise and those containing only the noise.

Moreover, two-dimensional signal representations were also used for the machine
learning-based detection of different types of GWs. The study in [186] provided insight
into detecting the long GW signals from the isolated neutron stars. The GW detection
in this study was set as a binary classification problem utilizing the CNN trained on the
reduced time-frequency maps of the noisy strain data. On the other hand, the detection of
the CCSN burst GWs was studied in [22] and [130]. The study presented in [22] proposed
using the simple CNN for the binary classification of the time-frequency images obtained
by the wavelet transform applied to the noisy simulated strain data. The spectrogram
images from three GW detectors were combined into a single RGB image used as input
to the CNN. In [130], the wavelet detection filter operating on the wavelet coefficients
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obtained from the simulated strain data was proposed as an event trigger generator. After
finding the GW candidates, the time-series data around the generated trigger times were
used to calculate the spectrograms, then fed as input to the two-dimensional CNN that
performed the classification.

Nevertheless, the research efforts have been primarily focused on applying machine
learning-based techniques to detect the BBH GW signals. The reasons are their well-known
models and the fact that the BBH signals represent the majority of the real-life GW
signals that have been successfully detected by the Advanced LIGO and Advanced Virgo
detectors so far.

The deep learning-based approach was introduced to the GW detection in [97] by
adopting the one-dimensional deep CNN for the supervised binary classification of the
raw time-series data examples containing the BBH signal templates embedded in the
simulated Gaussian noise and those containing only the noise. The proposed CNN-based
technique, named Deep Filtering, was applied to the 1 s long time-series data examples
sampled at 8192 Hz. The technique was also shown to outperform several traditional
machine learning classification algorithms, including the shallow neural network, the
logistic regression, the naive Bayes, the random forest, the SVM, the hidden Markov
model, and the k -nearest neighbors. This study was extended in [98] using a similar CNN
architecture with four convolutional layers and two fully connected layers, trained on the
time-series data containing the actual noise retrieved from the Advanced LIGO detectors
instead of the simulated Gaussian noise utilized in [97]. The study in [85] reported an
extension of the deep learning-based technique proposed in [97] to allow its application
with a detection network formed by three GW detectors.

The study in [91] showed that the sensitivity of the conventionally applied matched
filtering search could be closely reproduced by utilizing the deep CNN trained on the raw
strain time series. This study considered the binary classification of the simulated BBH
merger signals embedded in the synthetic additive Gaussian noise. A detailed analysis
of the CNN-based binary classification approach to the detection of the BBH signals in
the noisy strain time series was provided in [96], discussing its advantages, limitations,
and potential challenges. Moreover, this study also proposed the extension of the binary
classification approach in order to be utilized as a trigger generator for the GW events
in the long stretches of the streaming real-life strain data acquired at the Advanced
LIGO and Advanced Virgo detectors. The proposed technique was based on the fully
convolutional CNN architecture, which does not contain fully connected layers and thus
makes no assumptions on the size of the input data. Moreover, the data from multiple
detectors were used as channels of a multidimensional input to the CNN. This study was
an extension of the technique initially proposed in [94].

Another study on the CNN-based detection of the BBH signals was presented in [216]
using a similar approach as those described above but providing a preliminary analysis
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of using higher-order multipole waveforms as template signals. In [267], some minor
adjustments were made to the conventional CNN architectures used in previous studies,
such as those in [97] and [98], by adding a sensing layer and setting its coefficients according
to some template waveforms used in matched filtering-based detection technique. The
study in [167] proposed using Bayesian neural networks [196] for the detection of the BBH
merger events in the noisy strain time series by integrating the Bayesian approach into the
convolutional, long short-term memory, fully connected deep neural network (CLDNN)
classifier [225]. The CLDNN combines the CNN, the long short-term memory RNN [122],
and the deep neural network into a single architecture. In [272], the deep learning ensemble
was proposed to detect the BBH signals in the strain time-series data. The proposed
approach consisted of two WaveNet-based neural network models [263] simultaneously
processing the data from two Advanced LIGO detectors.

As seen from the above overview, the studies on the machine learning-based detection
of the BBH GW signals have dominantly focused on utilizing the time-series representation
of the noisy strain data. However, the application of the deep learning techniques to the
two-dimensional time-frequency representations of the strain data has not been adequately
addressed in the literature. Namely, only three recent papers providing preliminary studies
on the use of the CNN-based classification of the two-dimensional transformations of the
GW data containing BBH signals have been found during the extensive literature review.
However, these do not use two-dimensional transforms from Cohen’s class, utilized in
this thesis. Namely, in [184], the ResNet-50 CNN architecture was applied to classify the
two-dimensional time-frequency spectrogram images obtained by the Q-transform [43] of
the data examples with the noisy CBC GW events and the data examples containing only
background noise. Moreover, the study in [19] proposed using the modified ResNet CNN
architecture for classifying the spectrograms obtained by the Q-transform of the strain
data containing only background detector noise and the data containing the BBH GW
signals embedded in the noise. Two cases were considered: classification of the spectrogram
images obtained from one GW detector and classification of the RGB spectrogram images
produced by combining the spectrograms from each of three GW detectors forming a
detector network. In the second case, the spectrogram image from a single detector
represented one color channel of the final RGB image. Finally, in [190], the CNN was used
for the binary classification of the reduced-size time-frequency images generated by the
Morlet wavelet transform [191] of the strain time series with injected BBH GW signals.

In addition to the previous discussion, an extensive literature review has not identified
any method of GW detection that would be based on the deep learning techniques using
Cohen’s class of TFDs of the time-series strain data as input.

Hence, this, as a novel approach, is proposed and analyzed in the thesis. The next
chapter presents the details of the developed method for the detection of GW signals in
noise.
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CHAPTER 5

PROPOSED METHOD FOR
DETECTING
GRAVITATIONAL-WAVE SIGNALS
BASED ON DEEP LEARNING AND
TIME-FREQUENCY
DISTRIBUTIONS

This chapter presents the method for detecting GW signals in intensive noise developed
within the research presented in this thesis, recently published by the author in an
international peer-reviewed journal [172]. The proposed method based on Cohen’s class of
TFDs and the deep learning algorithms is discussed in detail, starting with the description
of the experimental setup. Next, each step of the proposed method and the utilized
experimental setup is described in detail, including the data generation, the calculation
of TFDs from Cohen’s class, the input dataset, and the deep learning models used for
classification. Moreover, the evaluation metrics and the statistical significance test used to
analyze and interpret the obtained results are defined and explained.

5.1 Experimental Setup

The experimental setup, whose flowchart is provided in Figure 5.1, includes three main
stages: the data preparation, the training and testing of the deep learning models, and
the evaluation of the deep learning model performances.

The data preparation stage of the proposed approach includes data generation and
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Figure 5.1 Experimental setup.

calculation of TFDs. The data generation procedure involves retrieving the real-life
measurements from the LIGO detectors and the extensive GW simulations. The real-life
LIGO data are used as the background noise in the generated data examples, while the
synthetic GW signals obtained by the simulations are used as realistic models of the BBH
merger waveforms. The generated dataset consists of 100 000 time-series data examples.
After appropriate preprocessing, the time-series input data are obtained. Twelve different
TFDs from Cohen’s class are then calculated from the time-series data, resulting in 12
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datasets, each containing 100 000 TFDs.
Next, the deep learning algorithms are applied to classify the TFDs, distinguishing

those containing the GW signals in the background noise and those containing just noise.
For this purpose, three different state-of-the-art deep CNN architectures (ResNet-101,
Xception, and EfficientNet) are trained on 12 different TFD datasets, thus obtaining 36
different TFD-CNN combinations. The performance of each TFD-CNN model is evaluated
on the test dataset and compared to the performance of the baseline model [98] trained
on the original time-series input data. Finally, McNemar’s statistical significance test is
performed to verify the statistical significance of the obtained results.

The whole data generation procedure was conducted on the personal computer with
the Intel Core i7-4720HQ CPU @ 2.60 GHz and 8 GB RAM. On the other hand, the TFD
computations and the training and testing of the deep learning models were performed on
the workstation with the Intel® Xeon® CPU E5-2620 v4 @ 2.10 GHz (two processors),
128 GB RAM, and three Nvidia® GeForce® RTX 2080 Ti GPUs.

In the following sections, each part of the proposed experimental setup is described in
more detail.

5.2 Data Generation

Extensive and diverse datasets, representative of the studied phenomena, are required
for the successful training and the proper evaluation of the deep learning models. Therefore,
the dataset realistically modeling the physics of the BBH GW events was generated within
this research. The data generation procedure consists of two key steps: collecting the actual
data from the LIGO detectors and simulating the BBH merger waveforms to generate the
synthetic GW signals. The approach to the GW dataset generation followed is similar to
the one in [95, 96]. The utilized data generation procedure is visualized by the flowchart
in Figure 5.2.

Many studies on GW detection use simulated Gaussian noise as background data.
However, due to this simplified approach, in these cases, the background data do not
contain characteristic detector glitches that represent some of the main challenges in the
GW data analysis. Therefore, in this research, the real-life recordings from the LIGO
detectors were used as the background noise, thus obtaining a more realistic model of the
GW data recordings. The retrieved LIGO recordings were acquired during the O2 run [3].
The collected O2 data [164] were retrieved from the publicly available repositories at the
Gravitational Wave Open Science Center (GWOSC) website [214].1

1“This research has made use of data, software and/or web tools obtained from the Gravitational
Wave Open Science Center (https://www.gw-openscience.org/ ), a service of LIGO Laboratory, the
LIGO Scientific Collaboration, and the Virgo Collaboration. LIGO Laboratory and Advanced LIGO are
funded by the United States National Science Foundation (NSF) as well as the Science and Technology
Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of

53

https://www.gw-openscience.org/


PROPOSED METHOD FOR DETECTING GW SIGNALS

Figure 5.2 Data generation procedure.

For the purpose of this research, the data segments have to satisfy several criteria
imposed on the retrieved LIGO data to be used as the background noise. The first
criterion refers to the operating state of the LIGO detectors, where both the Hanford
and Livingston detectors had to have data available during the considered time interval.

Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation
of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research
Council. Virgo is funded, through the European Gravitational Observatory (EGO), by the French Centre
National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale di Fisica Nucleare (INFN), and
the Dutch Nikhef, with contributions by institutions from Belgium, Germany, Greece, Hungary, Ireland,
Japan, Monaco, Poland, Portugal, Spain.”
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Moreover, the considered data segment must satisfy all data quality requirements defined
in LIGO for CBC searches. More precisely, the data segment must meet the minimum
data quality level CBC-CAT3, as defined by the GWOSC. Furthermore, all data segments
containing the confidently-detected real-life GW events are excluded based on the available
GWTC. Finally, those data segments containing the hardware injections, i.e., the simulated
transient signals emulating the real GW signals, injected into the LIGO measurement
system for testing purposes, are also discarded. This way, it is ensured that the background
data contain only the detector noise.

The background data selection procedure starts with randomly choosing a Global
Positioning System (GPS) time value within the time interval defined by the start and
end date of the O2 run. Next, the symmetric time interval of 16 s around the chosen
GPS time is evaluated according to the above-defined criteria for the background data. In
case the considered data segment meets the criteria, it is extracted for further processing.
The original sampling frequency of the retrieved LIGO data is 4096 Hz. However, the
extracted data segment is downsampled to the sampling frequency of 2048 Hz to reduce the
computational cost and memory resources. According to the Nyquist-Shannon sampling
theorem, the sampling frequency of 2048 Hz allows the reconstruction of frequencies up to
1024 Hz. Considering that BBH signals generally occur in the frequency range of up to a
few hundred Hertz, the obtained Nyquist frequency of 1024 Hz allows their detection.

In parallel with the above-described extraction of the real-life LIGO data, extensive
simulations of the BBH merger waveforms are conducted. This parallelization of the data
generation procedure enables the reduction of the required execution time. The simulations
of the BBH waveforms are performed using the LALSuite [163], and the PyCBC software
package [198, 261]. LALSuite is a codebase containing all GW waveform simulation models
and GW data analysis algorithms and pipelines used in the Advanced LIGO and Advanced
Virgo analyses. PyCBC is a Python-based software package including algorithms for the
detection of CBC GW events and the measurement of the parameters of their astrophysical
sources. The algorithms provided by these two software packages are routinely used for the
analysis of the GW data by the research groups within the LIGO and Virgo collaborations.

The simulations are conducted using the state-of-the-art effective-one-body (EOB)
waveform model SEOBNRv4 in the time domain [37]. The utilized SEOBNRv4 model
is suitable for simulations of the spinning, non-precessing BBH events. Parameter space
is defined for the simulations according to the recommendations, and the characteristic
parameter values of the detected real-life GW events [96]. The parameter values are
independently and uniformly drawn at random from the defined distributions for each
waveform simulation. There are three main groups of parameters: parameters describing
the astrophysical source of the waveform, parameters describing the source’s position
and orientation in the sky, and a parameter determining the distance of the source. The
parameters describing the characteristics of the source include masses and z-components
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of the spins of the merging black holes. Moreover, the parameters describing the source’s
position and orientation in the sky include polarization, right ascension, declination,
coalescence phase angle, and inclination. Finally, the distance of the source is modeled by
injection SNR representing the desired network optimal matched-filter SNR (NOMF-SNR),
whose definition will be given later in this section.

The masses of the two merging black holes are for the simulations independently and
uniformly drawn from the range between 10 and 80 solar masses, whereas the z-components
of the black hole spins are sampled from the range of 0− 0.998. Moreover, the polarization
angle, representing one of the three Euler angles that connect the detector’s reference
frame with the radiation frame (the reference frame in which the GW propagates in the
z-direction) [96], is drawn from the range of 0− 2π. Furthermore, the right ascension and
declination parameters, which determine the source’s position in the sky [96], are sampled
jointly from the uniform distribution over the sky. In addition, the coalescence phase and
the inclination, which represent the angles defining the detector’s location in the sky as
seen from the source reference frame whose z-axis is perpendicular to the plane with the
two black holes orbiting each other [96], are taken together from the uniform distribution
over the sphere. Finally, the desired injection SNR (the desired NOMF-SNR), related to
the distance between the source and the detector [96], is taken at random from the range of
8− 30 dB. This range was chosen for the simulations based on the network matched-filter
SNR (NMF-SNR) values of the real-life GW events observed in the Advanced LIGO and
Advanced Virgo detectors during the O1, O2, and O3a runs whose data were available at
the time of research done in this thesis.

The waveforms obtained by the LALSuite simulations are then windowed by the
one-sided Tukey (tapered cosine) window [257] to suppress any potential amplitude
discontinuities in the simulated waveforms. Each waveform consists of two time-series
signals: h+ and h×, where h+ represents the + (plus), and h× the × (cross) tensor
polarization mode of the GW. These two signals are then projected onto the antenna
patterns of the Advanced LIGO detectors based on the source location in the sky and the
polarization angle using the available PyCBC functions. The antenna patterns define the
directional sensitivity of the GW detector, i.e., the GW signal is detected with a different
amplitude and phase in each detector due to their relative position and orientation [178].
Thus, noise-free detector signals are obtained.

The simulated noise-free GW signals are then injected into the selected real-life
background noise to produce the data examples containing the GW signals in the noise. In
contrast, the data examples containing only the background noise are obtained by skipping
the signal injection step.

The simulated GW signals need to be appropriately scaled before being injected into
the noise, so the desired injection SNR is obtained for each data example. The procedure
for adjusting the injection SNR consists of several steps based on the calculation of the
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MF-SNR. The MF-SNR is conventionally applied as a metric in all GW data analyses found
in recent studies. For the matched-filter template ht(t) and the strain sGW (t) measured
by the GW detector:

sGW (t) = hGW (t) + n(t), (5.1)

where hGW (t) represents the GW signal and n(t) the detector noise, the complex matched-
filter output zMF (t) is defined as [17]

zMF (t) = 4

∫ ∞
0

SGW (f)H∗t (f)

Sn(f)
ej2πftdf, (5.2)

where SGW (f) is the Fourier transform of the measured GW strain sGW (t), Ht(f) is the
Fourier transform of the filter template ht(t), and Sn(f) is the estimated one-sided power
spectral density (PSD) of the detector noise.

The MF-SNR ρMF (t) is then obtained as [17]

ρMF (t) =
|zMF (t)|
σMF

, (5.3)

where σMF is the normalization constant representing the sensitivity of the detector. The
normalization constant is calculated for each template ht(t) as [17]

σ2
MF = 4

∫ ∞
0

|Ht(f)|2

Sn(f)
df. (5.4)

The NMF-SNR ρNMF can then be obtained by combining the MF-SNR of each detector
in the detector network as [68]

ρNMF =

√∑
i

ρ2MFi
. (5.5)

The optimal matched-filter SNR (OMF-SNR) represents the maximal MF-SNR obtained
using the time-inverted GW signal itself as a filter template [68, 236]. The NOMF-SNR is
then calculated based on the OMF-SNR values of each detector using the same principle
as in (5.5).

The definitions provided above are used for adjusting the injection SNR in the data
generation procedure. First, the selected noise segment and the simulated GW signal
are added together. Next, the OMF-SNR of the injection is calculated for both LIGO
detectors. The calculated OMF-SNR values are used to compute the NOMF-SNR. The
GW signal is then scaled by the ratio of the desired injection SNR and the calculated
NOMF-SNR. Finally, the scaled GW signal is injected into the background noise, thus
ensuring the desired NOMF-SNR of the data example. The desired NOMF-SNR range of
8− 30 dB set during the simulations resulted in the OMF-SNR range of 0.10− 30.46 dB
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for the data examples from the Livingston detector, whose data were employed to generate
the dataset further used in the experimental procedure.

The generated time-series data examples are then preprocessed using the established
whitening and filtering procedures. First, the strain time-series data are whitened by
weighting their Fourier transforms with the inverse of the local estimate of the ASD (the
square root of the PSD) of the detector noise [4]:

SGW,w(f) =
SGW (f)√
Sn(f)

, (5.6)

where SGW,w(f) denotes the Fourier transform of the whitened strain time series sGW,w(t).

The whitening procedure ensures the equal significance of the data in each frequency
bin by down-weighting the frequencies with high noise. By suppressing the extra noise at
the low frequencies and the specific frequencies with the instrumental spectral lines, the
whitening allows the weak GW signals to be detected more easily. The local PSD estimate
is obtained by the Welch method [274] that divides the data into the overlapping windowed
segments, calculates the Fourier transforms on these segments, and then averages the
power spectrum obtained as the squared modulus of the Fourier transform of each segment.
This study applies the Welch method to the 16 s long data examples with the Fourier
transforms calculated on the overlapping 4 s long windowed segments, each spaced by 2 s.

The whitened data are then transformed back to the time domain (sGW,w(t)) using
the inverse Fourier transform and high-pass filtered at 20 Hz using the finite impulse
response filter. The high-pass filter is used to remove the low-frequency artifacts that the
simulations might have generated. Moreover, the LIGO detectors are not calibrated for
frequencies below 10 Hz, and the frequencies below approximately 20 Hz are removed in
GW data analyses due to high-amplitude noise [4].

Both edges of the data examples obtained after the above-described preprocessing
are corrupted by calculating the Fourier transform included in the whitening procedure.
Therefore, the data examples are truncated to discard the corrupted data at the edges.
The 0.5 s length of the truncated data examples was chosen to reduce the required memory
resources and computational cost of training the deep learning models. Nevertheless,
the chosen data example length is sufficient for the proper detection of BBH signals as
these signals are characterized by short duration, i.e., the most prominent part of the
BBH signal representing the coalescence is expected to be contained within the chosen
example length. Moreover, for each data example, the amplitude peak of each BBH signal
is randomly placed within the 0.1− 0.4 s interval to eliminate any possibility of the deep
learning classification models’ overfitting due to the same location of the signals in the
data examples.

The above-described data generation procedure finally resulted in 100 000 time-series
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data examples, each with a length of 0.5 s (1024 samples). Half of the generated time-series
data examples contain GW signals in the real-life noise, while the other half contains no
GW signals, i.e., only the noise is present. Considering the standard SNR, defined as
the ratio of the signal power to the noise power, the SNR values of the 0.5 s long raw,
noisy time-series data examples with injected GW signals range from −123.46 to −2.27

dB. Figure 5.3 shows the histogram of the SNR values of the raw, noisy time-series data
examples, i.e., the time-series data examples prior to applying the whitening and high-pass
filtering procedures.

Figure 5.3 Histogram of the SNR values of the raw, noisy time-series data examples.

In order to illustrate the results of the data generation procedure, the following figures
show examples of the time-series strain data containing only the real-life detector noise
and those containing the GW signals injected into the noise. First, Figure 5.4 shows a
randomly chosen time-series data example containing the noise only, including the plots of
the raw time series, i.e., the time series obtained from the GW detector, and the whitened
and high-pass filtered time-series.

Next, Figures 5.5, 5.6, and 5.7 show three time-series data examples obtained by
setting the desired NOMF-SNR during the data generation procedure to the respective
values of 8, 19, and 30 dB. These values were chosen for illustration purposes as they
represent the minimum, mean, and maximum values of the 8− 30 dB range utilized for the
data generation. The desired NOMF-SNR values of 8, 19, and 30 dB for these examples
resulted in the single detector’s OMF-SNR values of 6.55, 14.92, and 25.82 dB, respectively.
Moreover, the respective SNR values of −85.24, −81.46, and −60.12 dB were obtained for
these raw, noisy time-series data examples. Each provided figure contains the plots of the
raw noise time series obtained from the GW detector, the noise-free GW signal obtained
by the simulations, the GW signal injected into the noise, and the noisy GW signal after
applying the whitening and high-pass filtering procedures.

As shown in Figures 5.5, 5.6, and 5.7, the GW signal amplitudes are several orders of
magnitude less than the noise amplitudes. Thus, it is impossible to visually detect the
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Figure 5.4 Time-series data example containing only noise: (a) Raw noise; (b) Whitened
and high-pass filtered noise.

GW signal in the background noise from the plots of the raw time-series data obtained
by the measurements, even at higher NOMF-SNR values. Moreover, it can be seen that,
even after the whitening and high-pass filtering, the detection of GW signals in the noisy
background using the time-series data, i.e., distinguishing between the time-series data
examples containing GW signals from those containing only noise, represents a rather
challenging task.

The time-series data examples obtained by the data generation procedure described in
this section are also transformed into two-dimensional Cohen’s class TFDs, as described
in the next section.
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Figure 5.5 Time-series data example containing the GW signal in the noise, obtained
for the desired NOMF-SNR of 8 dB (OMF-SNR = 6.55 dB, SNR = −85.24 dB): (a) Raw
noise; (b) Noise-free GW signal; (c) Noisy GW signal; (d) Whitened and high-pass filtered
noisy GW signal.
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Figure 5.5 (cont.) Time-series data example containing the GW signal in the noise,
obtained for the desired NOMF-SNR of 8 dB (OMF-SNR = 6.55 dB, SNR = −85.24 dB):
(a) Raw noise; (b) Noise-free GW signal; (c) Noisy GW signal; (d) Whitened and high-pass
filtered noisy GW signal.
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Figure 5.6 Time-series data example containing the GW signal in the noise, obtained for
the desired NOMF-SNR of 19 dB (OMF-SNR = 14.92 dB, SNR = −81.46 dB): (a) Raw
noise; (b) Noise-free GW signal; (c) Noisy GW signal; (d) Whitened and high-pass filtered
noisy GW signal.
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Figure 5.7 Time-series data example containing the GW signal in the noise, obtained for
the desired NOMF-SNR of 30 dB (OMF-SNR = 25.82 dB, SNR = −60.12 dB): (a) Raw
noise; (b) Noise-free GW signal; (c) Noisy GW signal; (d) Whitened and high-pass filtered
noisy GW signal.
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5.3 Cohen’s Class Time-Frequency Distributions

Twelve TFDs from Cohen’s class, described in Chapter 2, have been applied to the
100 000 generated time-series data examples. First, the Hilbert transform is applied to
these time series to obtain their analytic form. Next, the following TFDs are computed:
BJD, BUD, CWD, PWVD, RIDB, RIDBN, RIDH, RIDT, SP, SPWVD, WVD, and
ZAMD.

Thus, twelve different datasets are obtained, one for each TFD. Each dataset comprises
100 000 TFDs, resulting in a total of 1.2 million TFDs. Each TFD in the dataset contains
information about the time-frequency representation of the input time-series data example,
with the time range of 0− 0.5 s, and the frequency range of 0− 1024 Hz. For calculation
of considered TFDs, Hamming windows were utilized. The TFD computations were
implemented using the Time-Frequency Toolbox [25, 26] in MATLAB® R2017a.

Figure 5.8 shows the twelve TFDs obtained for the randomly chosen whitened time-
series data example containing only noise, whose time-series form is shown in the previous
section in Figure 5.4. Moreover, Figures 5.9, 5.10, and 5.11 show the TFDs calculated
on the three whitened time-series data examples containing the GW signals embedded in
the background noise. These data examples correspond to the desired NOMF-SNR values
of 8, 19, and 30 dB, and their time-series forms are provided in the previous section in
Figures 5.5, 5.6, and 5.7, respectively.

As shown in the provided figures, TFDs of Cohen’s class provide improved intelligibility
of the signal representation compared to the original time-series signal form, i.e., the
characteristic chirp pattern generated by the GW signal can be detected more easily
from the time-frequency representation than from the time domain, especially at higher
NOMF-SNR values, such as those shown in Figures 5.10 and 5.11. Thus, the utilization of
Cohen’s class TFDs in combination with deep learning algorithms is expected to provide
high classification performance. The improved performance is expected even for the data
examples with low NOMF-SNR values, such as the one shown in Figure 5.9, where it is
more challenging to detect the characteristic GW pattern in the background noise, i.e.,
distinguish the data examples containing GW signals from those containing just noise.
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Figure 5.8 TFDs of the time-series data example containing only noise: (a) BJD; (b)
BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD.
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Figure 5.8 (cont.) TFDs of the time-series data example containing only noise: (a) BJD;
(b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD.
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Figure 5.9 TFDs of the time-series data example containing the GW signal in the noise,
obtained for the desired NOMF-SNR of 8 dB (OMF-SNR = 6.55 dB, SNR = −85.24 dB):
(a) BJD; (b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i)
SP; (j) SPWVD; (k) WVD; (l) ZAMD.
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Figure 5.9 (cont.) TFDs of the time-series data example containing the GW signal in
the noise, obtained for the desired NOMF-SNR of 8 dB (OMF-SNR = 6.55 dB, SNR =
−85.24 dB): (a) BJD; (b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH;
(h) RIDT; (i) SP; (j) SPWVD; (k) WVD; (l) ZAMD.
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Figure 5.10 TFDs of the time-series data example containing the GW signal in the noise,
obtained for the desired NOMF-SNR of 19 dB (OMF-SNR = 14.92 dB, SNR = −81.46
dB): (a) BJD; (b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h)
RIDT; (i) SP; (j) SPWVD; (k) WVD; (l) ZAMD.
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Figure 5.10 (cont.) TFDs of the time-series data example containing the GW signal in
the noise, obtained for the desired NOMF-SNR of 19 dB (OMF-SNR = 14.92 dB, SNR =
−81.46 dB): (a) BJD; (b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH;
(h) RIDT; (i) SP; (j) SPWVD; (k) WVD; (l) ZAMD.
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Figure 5.11 TFDs of the time-series data example containing the GW signal in the noise,
obtained for the desired NOMF-SNR of 30 dB (OMF-SNR = 25.82 dB, SNR = −60.12
dB): (a) BJD; (b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h)
RIDT; (i) SP; (j) SPWVD; (k) WVD; (l) ZAMD.
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Figure 5.11 (cont.) TFDs of the time-series data example containing the GW signal in
the noise, obtained for the desired NOMF-SNR of 30 dB (OMF-SNR = 25.82 dB, SNR =
−60.12 dB): (a) BJD; (b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH;
(h) RIDT; (i) SP; (j) SPWVD; (k) WVD; (l) ZAMD.
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5.4 Input Dataset

The time-series dataset contains 100 000 data examples of the 1024 samples length,
where each example represents a unique realization of both the simulated GW signal and
the real-life noise.

Moreover, each of the twelve obtained TFD datasets consists of 100 000 TFDs, stored as
the 8-bit Portable Network Graphics (PNG) grayscale images with the 256×256 resolution.
This image resolution was selected to reduce the required memory resources and adjust
the image size to the size of the input layers of the utilized CNN architectures.

Each dataset is divided into three subsets: training, validation, and test dataset, where
the training dataset includes 70%, the validation dataset 15%, and the test dataset 15% of
the examples in the complete dataset. The training, validation, and test datasets keep
the same ratio of the data examples with GW signals to those with only noise as in the
complete dataset.

The time series and the TFD images are normalized before being used as input to
the deep learning classification algorithms. Each data example is scaled independently to
obtain the values in the range of [0, 1]:

In =
I − Imin

Imax − Imin
, (5.7)

where In is the normalized value, I is the value being normalized, whereas Imin and Imax
represent the minimum and maximum data example values, respectively.

Figures 5.12 and 5.13 provide the examples of the images used as input to the deep
learning models. These images show the TFDs of the previously considered data examples,
where Figure 5.12 provides the TFD images obtained from the data example containing
only noise, and Figure 5.13 those obtained from the data example containing the GW
signal embedded in the background noise at the NOMF-SNR of 19 dB. The original TFDs
of these data examples are shown in the previous section in Figures 5.8 and 5.10.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12 Examples of the input images showing the TFDs of the data example
containing only noise: (a) BJD; (b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN;
(g) RIDH; (h) RIDT; (i) SP; (j) SPWVD; (k) WVD; (l) ZAMD.
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(g) (h)

(i) (j)

(k) (l)

Figure 5.12 (cont.) Examples of the input images showing the TFDs of the data example
containing only noise: (a) BJD; (b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN;
(g) RIDH; (h) RIDT; (i) SP; (j) SPWVD; (k) WVD; (l) ZAMD.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13 Examples of the input images showing the TFDs of the data example
containing the GW signal in the noise, obtained for the desired NOMF-SNR of 19 dB
(OMF-SNR = 14.92 dB, SNR = −81.46 dB): (a) BJD; (b) BUD; (c) CWD; (d) PWVD;
(e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j) SPWVD; (k) WVD; (l) ZAMD.
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(g) (h)

(i) (j)

(k) (l)

Figure 5.13 (cont.) Examples of the input images showing the TFDs of the data example
containing the GW signal in the noise, obtained for the desired NOMF-SNR of 19 dB
(OMF-SNR = 14.92 dB, SNR = −81.46 dB): (a) BJD; (b) BUD; (c) CWD; (d) PWVD;
(e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j) SPWVD; (k) WVD; (l) ZAMD.
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5.5 Deep Learning Classification Models

This section presents the baseline deep learning model and the two-dimensional CNN-
based deep learning models utilized within this research.

5.5.1 Baseline Model

For a baseline model, a deep learning model based on the one-dimensional CNN is
used to classify the time-series data examples representing either noisy, non-stationary
GW signals or pure noise. This model serves as a reference point to be used in comparison
with the method proposed in this thesis. The baseline model, as an adapted version of the
deep learning model proposed in [98], represents the state-of-the-art method for the deep
learning-based detection of GW signals in noise, with high classification performances
and the corresponding paper having the highest number of citations in the field of deep
learning-based GW detection.

The model described in the original paper had the input time-series vector with a
length of 8192 samples. On the other hand, in this thesis, the input time-series vector
of 1024 samples is used. Therefore, the model adaptation consists of modifying network
layer sizes by reducing the sizes of convolution kernels to reflect the used input vector
with eight times fewer samples. The baseline model used in this thesis is depicted in
Figure 5.14. As seen in Figure 5.14, the baseline model consists of four one-dimensional
convolutional layers, each followed by a max-pooling layer and a ReLU activation function.
Moreover, the model also contains two fully connected layers and an output layer. The
fully connected layers contain 128 and 64 units, respectively, with the ReLU activation
functions, while the output layer consists of one unit with a sigmoid activation function.

The model in the original paper used the convolution kernels of the sizes 16, 16, 16, and
32, respectively. The baseline model in this thesis uses the kernels whose sizes have been
reduced by a factor of eight, thus obtaining the kernel sizes of 2, 2, 2, and 4, respectively.
The other model parameters are kept the same as in the original model in [98]. Thus,
the kernel size of 4 is used for all pooling layers. Moreover, the baseline model uses
the unit stride for the convolutional layers and the stride of 4 for the pooling layers.
Furthermore, the four convolutional layers have 64, 128, 256, and 512 kernels (channels),
respectively. The dilations for the corresponding convolutional layers are set to 1, 2, 2,
and 2, respectively. The sizes of the fully connected layers have also remained the same
as they were in the original model. Additionally, the output layer has been adapted to
the one neuron with a sigmoid activation function to obtain the probability of the input
time-series vector representing the GW signal embedded in the noise.

The cross-entropy loss function [47] was used during the training of the baseline model.
The cross-entropy loss, also called the log-loss, is suitable for binary classification problems
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Input (size: 1×1024)

Convolution (size: 64×1023)

Max Pooling (size: 64×255)

ReLU (size: 64×255)

Convolution (size: 128×253)

Max Pooling (size: 128×63)

ReLU (size: 128×63)

Convolution (size: 256×61) 

Max Pooling (size: 256×15)

ReLU (size: 256×15)

Convolution (size: 512×9)

Max Pooling (size: 512×2)

ReLU (size: 512×2)

Flatten (size: 1024)

Fully connected (size: 128)

ReLU (size: 128)

Fully connected (size: 64)

ReLU (size: 64)

Output - Sigmoid (size: 1)

Figure 5.14 Baseline model for the deep learning classification of the time-series GW
data examples.

and is based on the cross-entropy, i.e., the negative log-likelihood, between the training
data and the predictions provided by the model. The binary cross-entropy cost function
is for one output neuron that provides a probability value between 0 and 1 defined as
[47, 197]

J = − 1

Nx

Nx∑
i=1

(yi ln (ai) + (1− yi) ln (1− ai)) , (5.8)

where Nx is the total number of training data examples, x is the training input, y is the
desired output, and a is the output predicted by the model.

Moreover, the Adam optimizer [143] was utilized for training the baseline model. Adam
is an adaptive learning rate optimization algorithm whose name comes from the adaptive
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moment estimation [103, 143]. Namely, Adam calculates adaptive learning rates for the
individual parameters based on the estimates of the first and second moments of the
gradients [143]. It combines the advantageous properties of the two other optimization
algorithms [103, 143]: AdaGrad [76] and RMSProp [250]. The Adam algorithm updates
the exponential moving averages of the gradient and the squared gradient that represent
the estimates of the first moment (the mean) and the second raw moment (the uncentered
variance) of the gradient, respectively [143]. The exponential decay rates are controlled by
two hyperparameters [143]. The algorithm also introduces the correction terms to prevent
the initialization bias [143].

Furthermore, the learning rate was set to ε = 1 × 10−5, while the batch size of 32

was chosen. This learning rate value was selected as optimal for the optimizer based on
the evaluation of the baseline model on the validation dataset, where the set of values
ε ∈ {1× 10−1, 1× 10−2, . . . , 1× 10−6} was considered.

5.5.2 Two-Dimensional Convolutional Neural Network Models

Next, the deep learning models based on the three different state-of-the-art two-
dimensional CNN architectures are used in this thesis to classify the TFDs of the time-series
GW data examples. The schematic overview of the proposed classification approach is
provided in Figure 5.15. The inputs to the classification procedure are the TFD images
which contain either the non-stationary GW signal in the noisy background or the noise
alone. The three different CNN architectures perform the classification, and the output of
the proposed procedure is the probability that the input TFD image contains the GW
signal.

P

Input

TFD images

CNN models

ResNet-101, Xception, 

EfficientNet

Output

Signal

probability

.
k

Conv.
block

Conv.
block

Conv.
block

Conv.
block

Figure 5.15 Deep learning classification of the TFDs of the time-series GW data based
on the two-dimensional CNN architectures.

The CNN architectures considered in this thesis include ResNet-101 [114], Xception
[58], and EfficientNet [246]. Except for the adaptations made to the last (prediction) layers,
all three architectures are used in the same forms proposed in their respective papers.
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Namely, each of these architectures in their original form contains 1000 softmax [169] units
in the last layer for the classification of 1000 classes of images from the ImageNet dataset.
In this thesis, the prediction layer of each considered CNN architecture was modified to
include only one unit with a sigmoid activation function.

Moreover, the binary cross-entropy loss function was used during the training of all
considered deep learning models based on the two-dimensional CNN architectures. For
each model, the optimal learning rate was chosen based on the experimental evaluation
on the validation dataset, where the following learning rates were considered: ε ∈ {1×
10−1, 1× 10−2, . . . , 1× 10−6}. Furthermore, the transfer learning techniques utilizing the
pretrained models were not used in this thesis, i.e., each considered deep learning model
was trained from scratch.

5.5.3 ResNet-101

The first considered deep CNN architecture is ResNet-101 [114]. The ResNet class
of CNN architectures allows the training of extremely deep CNN models with increased
accuracy by introducing deep residual learning [114]. Residual learning helps to overcome
the vanishing gradient problem commonly occurring during the training of such deep
models [114]. Namely, the increased network depth, i.e., the increased number of network
layers, is expected to allow learning of more complex concepts, thus leading to increased
accuracy. However, it has been shown that as the network depth increases, not only does
saturation occur in the increase of accuracy, but after a certain number of layers, the
accuracy decreases. In addition, not only is there an increased error on the test dataset,
but there is also an increase in the error on the training dataset, which means that this
problem is not caused by overfitting [114, 115, 239].

Residual learning implies that stacked non-linear layers learn residual functions instead
of directly learning the underlying mapping [114]. Residual learning is achieved using
shortcut connections that directly propagate the layers’ input to their output, where the
element-wise addition is performed on each channel of two feature maps [114]. The layers’
input and output must be of the same dimensions to perform the element-wise addition
[114]. If considered feature maps are of different dimensions, i.e., have a different number
of channels, shortcut connections performing a linear projection are used instead of identity
connections [114]. In this case, linear projection is achieved by 1× 1 convolutions, and
shortcut connections are performed with a stride of 2 [114].

Figure 5.16 shows the examples of two types of residual blocks used in ResNet architec-
tures. For each depicted convolutional layer in the residual block, the number of kernels
and their dimensions are indicated, e.g., 3× 3, 128 denotes the convolutional layer with
128 kernels of 3 × 3 dimensions. Figure 5.16(a) shows the standard residual block that
consists of two layers with standard 3 × 3 convolutions and an intermediate non-linear
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ReLU activation function [114]. The second ReLU activation is performed after adding
the layers’ input to their output using the shortcut connection [114].

On the other hand, in networks with more than 50 layers, the modified version of
the residual block, whose example is shown in Figure 5.16(b), is used to reduce the
computational cost [114]. This residual block contains three layers performing 1× 1, 3× 3,
and 1× 1 convolutions, respectively [114]. The first 1× 1 convolutions are used to reduce
the number of channels in the input, so the 3 × 3 convolutions are performed on the
reduced number of channels, thus reducing the number of mathematical operations [114].
Finally, the second 1 × 1 convolutions again increase the number of channels to match
the dimensions of the input and output feature maps [114]. Since the 3× 3 convolutional
layer has reduced dimensions, it is often called a bottleneck [114]. Therefore, this type of
residual block is known as a bottleneck residual block [114].

3×3, 512

3×3, 512

ReLU

ReLU

+

512

(a)

1×1, 128

3×3, 128

1×1, 512

ReLU

ReLU

ReLU

+

512

(b)

Figure 5.16 Residual blocks used in ResNet CNN architectures: (a) Standard residual
block; (b) Bottleneck residual block.

The most commonly used ResNet architectures are ResNet-50, ResNet-101, and ResNet-
152, where the number in the architecture name denotes the corresponding number of
layers. By taking into account the available computational resources, the ResNet-101

architecture was chosen for this research. The schematic overview of the ResNet-101

architecture is shown in Figure 5.17.
The network begins with the layer performing 7× 7 convolutions with 64 channels and

a stride of 2, followed by the 3× 3 max pooling layer with a stride of 2 [114]. Next, the
four groups of residual blocks are used, where each group contains a different number of
stacked bottleneck residual blocks, each performing 1× 1, 3× 3, and 1× 1 convolutions
[114]. These four groups comprise 3, 4, 23, and 3 bottleneck residual blocks, respectively
[114]. The number of the output channels of the residual blocks in each group is 256, 512,
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Figure 5.17 ResNet-101 CNN architecture.
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1024, and 2048, respectively [114]. Moreover, the second, third, and fourth group’s first
1× 1 convolutional layer performs downsampling by a stride of 2 [114]. The corresponding
three residual blocks utilize the projection shortcuts, while all other residual blocks use
the identity shortcut connections [114]. Finally, the global average pooling is performed
before the fully connected layer [114]. The research presented in this thesis replaced the
fully connected layer with 1000 softmax units originally used in the ResNet-101 CNN
architecture by a single sigmoid activation function.

For the purpose of this research, the utilized ResNet-101 architecture was trained using
the Adam optimizer with the learning rate ε = 1× 10−6 and the batch size of 16.

5.5.4 Xception

The second considered deep CNN architecture is Xception [58]. The name Xception
comes from the "Extreme Inception". Namely, the Xception CNN architecture is entirely
based on the depthwise separable convolutions [58], which can be interpreted as an extreme
version of the Inception module found in the Inception CNN architecture introduced in
[243]. The depthwise separable convolutions [234] consist of the pointwise convolution,
i.e., the 1 × 1 convolution, followed by the depthwise convolution [58]. The pointwise
convolution projects the input channels onto a new channel space, i.e., it builds new
features by calculating linear combinations of the input channels, and the depthwise
convolution then performs a spatial convolution independently on each of these channels
[58, 226]. Thus, the pointwise convolution maps the cross-channel correlations, while
the depthwise convolution maps the spatial correlations of each channel provided by the
pointwise convolution [58]. Therefore, the depthwise separable convolutions allow the
separate mapping of the cross-channel and spatial correlations [58].

Standard convolution operation applies convolution kernel K ∈ Rk×k×ci×cj to the
hi × wi × ci input tensor Ti producing the hi × wi × cj output tensor Tj, where k denotes
the width of the convolution kernel, ci and cj the number of channels of the input and
output tensor, while hi and wi the height and width of the input tensor [226]. Thus, the
computational cost of the standard convolution operation is hi · wi · ci · cj · k · k [226].
On the other hand, the depthwise separable convolutions have the total computational
cost of hi · wi · ci · (k2 + cj) [226]. Therefore, the depthwise separable convolutions reduce
the computational cost by a factor of k2cj/ (k2 + cj), which can be approximated by k2,
compared to the standard convolutions, accompanied by only a slight reduction in accuracy
[124, 226].

The described concept of the depthwise separable convolutions used in the Xception
CNN architecture is illustrated in Figure 5.18. This type of depthwise separable con-
volutions is a modified version of the commonly used depthwise separable convolutions
that employ the reverse order of operations, i.e., the depthwise convolution is followed
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by the pointwise convolution [58]. Moreover, in contrast to the Inception module, the
depthwise separable convolutions utilized in the Xception architecture do not use an
intermediate non-linear activation function (ReLU) after the pointwise convolution [58].
Using depthwise separable convolutions reduces the computational cost and model size
while achieving high accuracy [58].

Figure 5.18 Depthwise separable convolutions.

In addition to the depthwise separable convolutions, the Xception architecture also
utilizes the residual (shortcut) connections [58], previously described in the ResNet archi-
tecture. The overview of the Xception CNN architecture is shown in Figure 5.19. The
Xception architecture consists of 36 convolutional layers stacked together and organized
into 14 modules [58]. Each module, except the first and last, also has a linear residual
connection [58]. Moreover, the final layer includes a sigmoid activation function for classi-
fication purposes. The fully connected layers may also be optionally inserted before the
final layer [58].

As seen in Figure 5.19, the Xception architecture may be divided into three main
parts: the entry, middle, and exit flow [58]. All convolutional layers, including the first two
layers performing the standard convolutions and all other layers performing the depthwise
separable convolutions, use the kernels of the 3× 3 dimensions and are followed by the
batch normalization [58, 131]. Moreover, all max-pooling layers operate on the 3 × 3

regions with a stride of 2 [58].
The entry flow consists of four modules, where the first module contains the standard

convolutional layers and the other three contain the depthwise separable convolution
layers using linear residual connections with a stride of 2 [58]. The first module comprises
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Figure 5.19 Xception CNN architecture.

two convolutional layers with 32 and 64 kernels (channels), respectively [58]. The ReLU
activation function follows each convolutional layer in this module, and the first layer also
performs the downsampling by a stride of 2 [58]. The second module contains two layers
performing the depthwise separable convolutions with 128 kernels, where the first layer is
followed by the ReLU activation and the second one by the max-pooling layer [58]. The
third and the fourth module have the same structure, where the stack of two depthwise
separable convolution layers, each preceded by a non-linear ReLU activation, is followed
by the max-pooling layer [58]. The difference between these two modules is the number of
kernels used, equal to 256 and 728 for the third and the fourth module, respectively [58].

Next, the middle flow contains eight repetitions of the same module with a residual
connection and a stack of three depthwise separable convolution layers with 728 kernels,
each preceded by a ReLU activation [58]. Finally, the exit flow includes two modules
with the depthwise separable convolution layers, where the first module has a residual
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connection, and the other does not [58]. The first module in this flow contains a stack of
two depthwise separable convolution layers, each preceded by a ReLU activation, followed
by the max-pooling layer [58]. These two convolutional layers use 728 and 1024 kernels,
respectively [58]. The second module in the exit flow consists of two convolutional layers
with 1536 and 2048 kernels, respectively, each followed by a ReLU activation function [58].
Finally, the global average pooling is applied to the output of the last module, resulting in
2048-dimensional vectors that are used as input to the last (output) layer containing a
sigmoid activation function [58].

In this work, the Xception architecture was trained by applying the Adam optimizer
with the learning rate ε = 1× 10−4 and the batch size of 32.

5.5.5 EfficientNet

The third considered deep CNN architecture is EfficientNet [246], representing the
current state-of-the-art architecture for classification tasks. This class of CNNs efficiently
deals with model scaling. Namely, CNNs are designed for specific computational resources
[246]. If additional resources become available, CNNs are then scaled up to achieve higher
accuracy [246]. There have been three main approaches in scaling up CNNs [246], i.e.,
three network dimensions are most commonly scaled up: network depth (number of layers)
[114], network width (number of channels) [125, 282], and image resolution [127]. Deeper
CNNs can learn more complex features but are more challenging to train due to the
vanishing gradient problem [246, 282]. Wider CNNs can learn more detailed features and
are less difficult to train [246, 282]. Very wide and shallow CNNs, on the other hand, have
problems with learning higher-level features [246, 282]. CNNs using input images with
higher resolution can learn more detailed features [166, 246]. Scaling up only one of the
mentioned network dimensions increases accuracy, but this increase quickly saturates [246].
Moreover, manually scaling multiple dimensions is time-consuming and often results in
sub-optimal performances [246, 287].

Therefore, the EfficientNet architectures introduce the compound scaling method
that uniformly scales network depth, width, and resolution with a fixed ratio based
on the compound coefficient φ [246]. Network depth, width, and resolution are scaled
by coefficients d = αφ, w = βφ, and r = γφ, respectively, where α ≥ 1, β ≥ 1, and
γ ≥ 1 are constant values selected by a small grid search on the original small model
[246]. Compound coefficient φ defines the amount of additionally available computational
resources [246]. The number of floating-point operations per second (FLOPS) of the
convolution is proportional to d, w2, and r2 [246]. Thus, the compound scaling increases
the total number of FLOPS by (α · β2 · γ2)φ [246]. For EfficientNets, the increase in
FLOPS is constrained to 2φ by α · β2 · γ2 ≈ 2 [246].

The compound scaling method can be used to scale up the existing CNN architectures
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but is especially effective on the new base architecture, EfficientNet-B0, developed using a
multi-objective neural architecture search by optimizing accuracy and FLOPS [245, 246].
The main building block of EfficientNet-B0 is mobile inverted bottleneck convolution
(MBConv) [226, 245] with added Squeeze-and-Excitation optimization [126].

MBConv is an inverted residual module with linear bottleneck layers and depthwise
separable convolutions introduced in the MobileNetV2 CNN architecture, specifically
designed for mobile environments to reduce the required memory resources [226]. Namely,
the input to the MBConv module is a compressed representation whose number of channels
is increased by the pointwise convolution [226]. The depthwise convolution is then applied
to this expanded representation, followed by another pointwise convolution that projects it
back to the low-dimensional representation with the same number of channels as the input
to the module [226]. In contrast to the standard residual blocks, the MBConv module
uses inverted residuals where the shortcut connections are between bottleneck layers, i.e.,
layers with a reduced number of channels [226]. Moreover, the bottleneck layers in the
MBConv module do not use non-linear activation functions [226]. The described concept
of the MBConv module is depicted in Figure 5.20.

Figure 5.20 MBConv module.

The Squeeze-and-Excitation block, depicted in Figure 5.21, is introduced to model the
interdependencies between the channels of the feature maps by performing the feature
recalibration, i.e., the informative features are emphasized and the less informative ones
are suppressed [126]. Features are recalibrated in two stages, called squeeze and excitation
[126]. In the squeeze stage, global average pooling is applied to obtain statistics for each
channel [126]. These channel descriptors contain aggregated global spatial information
[126]. In the excitation stage, the vector with channel descriptors is used as input to two
fully connected layers [126]. The first fully connected layer reduces the dimension by the
reduction ratio rE and uses the ReLU activation function, while the second fully connected
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layer again increases the dimension by rE and utilizes the sigmoid activation [126]. Finally,
the obtained activations are used to rescale the input feature map by the channel-wise
multiplication [126]. Thus, each channel is associated with the learned weight adapted
from the channel descriptor [126].

Figure 5.21 Squeeze-and-Excitation block.

The schematic overview of the EfficientNet-B0 architecture is shown in Figure 5.22. The
architecture begins with the standard 3× 3 convolutions with 32 output channels, followed
by seven stages containing different MBConv modules [246]. Two types of MBConv modules
are used: MBConv1 and MBConv6, where the number in the name denotes the expansion
factor by which the input to the module is expanded in the intermediate expansion layer
[246]. The second stage contains one MBConv1 module with 3× 3 convolution kernels and
16 output channels, while the third stage uses two MBConv6 modules with 3× 3 kernels
and 24 channels [246]. Two MBConv6 modules with 5× 5 kernels and 40 channels are used
in the fourth stage, whereas the fifth stage consists of three MBConv6 modules with 3× 3

kernels and 80 channels [246]. The sixth stage contains three MBConv6 modules with 5×5

kernels and 112 channels, the seventh stage four MBConv6 modules with 5× 5 kernels
and 192 channels, and the eighth stage one MBConv6 module with 3 × 3 kernels and
320 channels [246]. The standard 1× 1 convolution block with 1280 channels follows the
MBConv stages [246]. Finally, the global average pooling is performed, and the network
ends with the sigmoid activation in the last layer [246].

The compound scaling is applied to the base EfficientNet-B0 CNN in two stages
[246]. First, the compound coefficient is set to φ = 1, and the coefficient values α = 1.2,
β = 1.1, and γ = 1.15 are selected as optimal by a small grid search taking into account
previously described coefficient definitions and constraints [246]. Next, the obtained
coefficients are used as constant values, and the EfficientNet-B0 CNN is scaled up by
different compound coefficient values, thus obtaining CNN architectures EfficientNet-B1 to
B7 [246]. EfficientNet CNNs achieve state-of-the-art classification accuracies while typically
having an order of magnitude fewer FLOPS and parameters and running considerably
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faster than the competitive architectures [246]. For the research presented in this thesis,
the EfficientNet-B2 CNN architecture was used. The EfficientNet-B2 architecture was
obtained by the appropriate compound scaling of the base EfficientNet-B0 architecture
shown in Figure 5.22.
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Figure 5.22 EfficientNet-B0 CNN architecture.
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In this study, the deep learning models based on the EfficientNet-B2 CNN architecture
were trained using the RMSProp optimizer [250] with the learning rate ε = 1 × 10−4

and the batch size of 32. RMSProp is an optimization algorithm used for training deep
learning models that adapts the learning rate of each model parameter by dividing it
with the square root of the exponentially weighted moving average of the past squared
gradient values [103, 250]. The exponential decay is controlled by a single hyperparameter
[103, 250].

5.5.6 Training Parameters

The above-mentioned main parameters used for training the baseline CNN model
and the deep learning models based on the three two-dimensional CNN architectures
are summarized in Table 5.1. The provided parameters include loss function, optimizer
algorithm, learning rate, and batch size.

Table 5.1 Parameters used for training the deep learning models.

Parameters

CNN
architecture Loss function Optimizer Learning rate Batch size

Baseline model Binary cross-entropy Adam 1× 10−5 32
ResNet-101 Binary cross-entropy Adam 1× 10−6 16
Xception Binary cross-entropy Adam 1× 10−4 32

EfficientNet Binary cross-entropy RMSProp 1× 10−4 32

Several precautions were taken during the training of the described deep learning models
to avoid potential underfitting or overfitting. The use of extensive and diverse datasets
and high-capacity deep learning models prevented underfitting. Moreover, overfitting was
avoided during the training by using the elbow method. Namely, the model with the lowest
validation loss was chosen while simultaneously ensuring that the accuracy obtained on
the validation dataset is similar to the one obtained on the training dataset.

The training and testing of the deep learning models included in the described experi-
ments were conducted using TensorFlow 2.4 [2].

5.6 Evaluation Metrics

The classification performance of the considered baseline and TFD-CNN deep learning
models was evaluated using several evaluation metrics on the test dataset, including
classification accuracy, area under the receiver operating characteristic (ROC) curve (ROC
AUC), recall, precision, F1 score, and area under the precision-recall curve (PR AUC)
[46, 103]. Moreover, additional detailed insight into the obtained classification results
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is provided using confusion matrices, ROC curves, and precision-recall curves for each
considered classification model. The utilized evaluation metrics are defined and described
below.

The classification accuracy is an evaluation metric that can be defined as the ratio
between the number of correct predictions and the total number of predictions that the
classification model has made. Namely, each data example from the test dataset is fed
to the classification model as an input, and the model makes a prediction about that
data example by assigning it with the appropriate label. The predicted labels are then
compared to the known actual labels for all examples in the dataset, and the classification
accuracy is calculated.

In this thesis, the classification accuracy was calculated for each tested deep learning
classification model with its probability threshold set to the value that provides the optimal
model performance. This probability threshold value was selected based on the evaluation
of the deep learning model performed on the validation dataset.

Classification accuracy is the most commonly used metric to evaluate the performance
of deep learning classification models. However, the classification accuracy is insufficient
and may lead to incorrect conclusions about the performance of classification models in
imbalanced classification problems, i.e., those problems in which there are not the same
number of data examples belonging to each class under consideration [41].

The confusion matrix is an evaluation metric that enables the visualization of the
classification model’s performance by summarizing the predictions made by a classification
model into a specific table layout [30]. Each row in the confusion matrix represents the
examples in an actual class, whereas each matrix column represents the examples in
a predicted class. The number in each confusion matrix cell represents the number of
instances satisfying the predicted and the actual class combination, which is characteristic
for that particular cell. Thus, the cells on the main diagonal of the confusion matrix,
where the predicted and the actual class align, represent the predictions correctly made
by the classification model. On the other hand, other matrix cells represent the incorrect
predictions, where the classification model has confused two classes.

For a binary classification problem, the confusion matrix consists of two rows and
two columns. One class may be denoted as positive (P ), and the other class as negative
(N). Therefore, regarding the classification model predictions, we distinguish between the
following instances:

• True positives (TP ) - examples correctly predicted belonging to the positive class

• True negatives (TN) - examples correctly predicted belonging to the negative class

• False positives (FP ) - examples incorrectly predicted belonging to the positive class
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• False negatives (FN) - examples incorrectly predicted belonging to the negative
class

The confusion matrix as an evaluation metric provides a more detailed insight into
the performance of the classification models. It is not focused only on the classification
accuracy but also on the prediction performance for individual classes and different types
of errors and their frequencies. Therefore, the confusion matrix also represents the basis
for the other metrics used to evaluate classification models.

For the classification problem that is presented in this thesis and involves two classes, the
data examples containing the GW signals in noise can be considered a positive class, while
those examples with no GW signals (noise only examples) can be denoted as a negative
class. Therefore, using the previously defined confusion matrix terms, the classification
accuracy can be defined as

Accuracy =
TP + TN

TP + TN + FP + FN
. (5.9)

Moreover, the true positive rate (TPR), also called sensitivity, represents the ratio
between the number of data examples correctly predicted as belonging to the positive
class and the total number of data examples actually belonging to the positive class. The
TPR can be computed as

TPR =
TP

TP + FN
. (5.10)

On the other hand, the false positive rate (FPR) represents the ratio between the
number of data examples incorrectly predicted as belonging to the positive class and the
total number of data examples actually belonging to the negative class. The FPR is
calculated as

FPR =
FP

FP + TN
. (5.11)

Both the TPR and the FPR can take values from the range between 0 and 1. The
TPR and the FPR values are obtained by evaluating the performance of the deep learning
classification model at the different threshold values used to map the probability outputs
of the model to the predicted class labels. The obtained TPR and FPR values plotted
against each other represent another evaluation metric, called the ROC curve. The ROC
curve of the evaluated classification model is often shown on the same plot as the curve
representing the classification model with no skill. The no-skill model is represented by a
diagonal line from the bottom left to the top right of the plot, with all points below this
line denoting the classification performance worse than that of the model with no skill.
The perfect classification model would have a ROC curve in the form of a point in the top
left of the plot.

Additionally, the area under the ROC curve, called the ROC AUC, represents another
evaluation metric that aggregates the obtained ROC curves into a single numerical result,
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thus facilitating the comparison of various classification models. The ROC AUC is one of
the most commonly used metrics to evaluate the performance of the classification models
in binary classification problems. The ROC AUC can take values from the range [0, 1] and
can be used to analyze the classification model’s efficiency at discriminating classes. The
higher ROC AUC values are typical of classification models that perform well across a
wide range of probability threshold values and provide good class separation. The ideal
ROC AUC value of 1.0 would be obtained for the perfect classification model, while the
no-skill classification model will have the ROC AUC value of 0.5.

Another metric used in this thesis to evaluate the performance of the classification
models is recall. The recall is calculated in the same way as the TPR defined by (5.10)
and indicates how accurately the positive class was predicted.

On the other hand, the precision, also called the positive predictive value (PPV ), is an
evaluation metric that measures the ratio of the number of the predicted examples that
actually are part of the positive class to the number of examples assigned to the positive
class by the classification model predictions. Thus, the precision is calculated as

Precision =
TP

TP + FP
. (5.12)

Moreover, it is often desirable in classification problems to simultaneously balance both
the recall and precision value to obtain both the satisfactory accuracy and the robustness
of the model. This balance can be achieved by using the evaluation metric called the
F1 score that combines the precision and the recall into a single metric value. The F1 score,
having values in the range [0, 1], is calculated as a harmonic mean of the precision and
recall values:

F1 score =
2 · Precision ·Recall
Precision+Recall

. (5.13)

Alternatively, the F1 Score can also be calculated as

F1 score =
2 · TP

2 · TP + FP + FN
. (5.14)

Besides the ROC curves, the precision-recall curves are also often used to evaluate
the performance of classification models, showing the precision and recall values plotted
against each other. These values are obtained by evaluating the model performance at
different probability threshold values. The precision-recall curve is often provided at the
same plot as the curve of a no-skill classification model represented by a horizontal line
with a precision proportional to the number of data examples belonging to the positive
class (0.5 in the case of a balanced classification problem). On the other hand, the perfect
classification model would be represented by a point in the top right of the plot.

Finally, the evaluation metric PR AUC can be calculated as the area under the
precision-recall curve. High PR AUC values indicate high precision and high recall, and,
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in the case of the perfect classification performance, the PR AUC value of 1.0 would be
obtained.

The analysis of the obtained classification results using the previously described
evaluation metrics is provided in Chapter 6.

5.7 Statistical Significance Test

The results provided by the considered deep learning classification models require an
appropriate interpretation. When comparing multiple sets of results, such as comparing
the results obtained by one classification model with those obtained by another model,
statistical significance tests, also called statistical hypothesis tests, are used. The statistical
significance tests apply statistical methods to calculate specific quantities whose values are
used to confirm or reject the default assumption on the results, called the null hypothesis
[45].

The quantities provided by the statistical significance tests are called p-values [45] and
are used to assess whether the obtained results are statistically significant. The assessment
is performed by comparing the p-value corresponding to a particular set of results to a
predetermined threshold value called the significance level α [45]. The significance level is
most commonly set at the value α = 0.05 = 5% or α = 0.01 = 1%. The considered result
is statistically significant for p < α, i.e., the null hypothesis is rejected [45]. On the other
hand, for p > α, the null hypothesis cannot be rejected, which means that the result is
not statistically significant [45].

Since the interpretation of the statistical significance test results is based on probability
values, the outcome of the test is prone to errors. There are two types of possible errors:
type I error (false positive) that represents incorrectly rejecting a true null hypothesis,
and type II error (false negative) which denotes incorrectly failing to reject a false null
hypothesis [45].

In this thesis, McNemar’s statistical significance test was performed on the obtained
classification results to check whether the differences between the results of the different
deep learning classification models were statistically significant. McNemar’s statistical test
[84, 183] was selected as the most appropriate test type for this purpose as it has been
shown to be the only statistical test with an acceptable type I error, i.e., the probability
of falsely detecting a difference even though there is no difference, for algorithms that can
only be performed once [72]. Since deep learning classification models are characterized
by computationally intensive training procedures and large datasets, multiple repetitions
of their training and evaluation are very time-consuming and impractical, leading to
McNemar’s test as the most suitable choice for the statistical significance analysis, allowing
the comparison of the trained deep learning models on a single test dataset.
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McNemar’s test applied to examine the statistical significance of the differences in the
results of two considered classification models uses a 2× 2 contingency table [84]. Namely,
both compared models were trained on the same training dataset and evaluated on the
same test dataset examples. Then, the predictions made by these models are compared to
the known actual values and evaluated as correct or incorrect. Finally, these observations
are summarized in a table form, thus obtaining a contingency table [44, 84].

Table 5.2 shows the structure of the 2× 2 contingency table used for McNemar’s test
of the statistical significance of the differences in the classification results of two deep
learning models. The variable A denotes the number of instances in the test dataset that
both Model 1 and Model 2 classified correctly, B is the number of instances that Model 1
got correct and Model 2 incorrect, C is the number of instances that Model 1 got wrong
and Model 2 right, while D represents the number of instances that both Model 1 and
Model 2 classified incorrectly.

Table 5.2 Structure of a contingency table used for McNemar’s test of the statistical
significance of the differences in the results provided by two deep learning classification
models.

Model 2
Correct

Model 2
Incorrect

Model 1
Correct A B

Model 1
Incorrect C D

McNemar’s test is a paired non-parametric statistical significance test that examines
the marginal homogeneity of the contingency table, thus checking whether two binary
classification models disagree in the same manner [44]. McNemar’s test statistic is
calculated as [84, 183]

χ2 =
(B − C)2

B + C
. (5.15)

Furthermore, the expression in (5.15) is corrected for continuity as follows [78]:

χ2 =
(|B − C| − 1)2

B + C
. (5.16)

Thus defined test statistic has a χ2 distribution with one degree of freedom, assuming
that each contingency table cell used for the calculation contains at least 25 instances [44].

McNemar’s test statistic is not intended to provide information on the accuracy and
error rates of the considered two classification models [44]. Instead, it gives information
on the difference in the relative proportion of errors obtained by the models [44]. The null
hypothesis of McNemar’s test is that the predictions of the two considered models differ
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to the same extent [44]. If the contingency table cells used to calculate the test statistic
do not contain a similar number of instances, the models make different errors (errors
on different examples of the test dataset) and also have a different relative proportion of
errors on the test dataset [44]. Therefore, the null hypothesis can be rejected, and the
test results are considered statistically significant [44]. If the opposite is true, the null
hypothesis cannot be rejected [44].

Based on the above, in this thesis, the classification results provided by the baseline
deep learning model were paired with the results provided by each TFD-CNN deep learning
model in order to calculate McNemar’s test statistics. The statistical significance level of
α = 0.01 = 1% was chosen as a commonly used value in the statistical significance analysis.
In the experimental setup proposed in this thesis, each TFD of the input data examples
is combined with three different deep learning architectures. Therefore, the Bonferroni
correction [38, 62] was applied, dividing the selected significance level α by a factor of
three and obtaining a new significance level of α = 0.00333 = 0.333%.

Namely, the Bonferroni correction is used in the case of multiple comparisons, with
several statistical tests being conducted simultaneously [273]. The correction consists in
reducing the significance level α to take into account the number of statistical tests that
have been conducted. In this way, the incorrect rejection of a true null hypothesis can be
avoided, i.e., the risk of a type I error can be decreased [21, 273]. The significance level for
each statistical test is selected by dividing the original significance level α by the number
of the conducted statistical tests [21].

The results obtained using McNemar’s statistical test and the selected significance
level are presented and discussed in Chapter 6. These statistical results indicate whether
the considered TFD of the input time-series data examples enhances the information
provided by the original time-series form when used for deep learning classification. The
statistically significant results can be interpreted as a statistically significant improvement
in the performance of the considered TFD-CNN deep learning models compared to the
performance of the baseline model when used for the detection of non-stationary GW
signals in noise.
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CHAPTER 6

RESULTS AND DISCUSSION

This chapter presents the results obtained by applying the method for detecting the
non-stationary GW signals in noise, which is proposed in the previous chapter of this
thesis. The presentation of the obtained results is accompanied by a detailed quantitative
analysis and an appropriate discussion.

6.1 Model Testing

Each of the considered deep CNN architectures (ResNet-101, Xception, and EfficientNet)
was trained on each of the 12 TFD datasets, where each training dataset contained 75 000
input data examples. Model validation was performed on 15 000 data examples, while
model performance was evaluated on the test dataset of 15 000 data examples using the
evaluation metrics described in the previous chapter.

The probability threshold values used by the baseline CNN model and each of the
TFD-CNN models are listed in Table 6.1. These values were selected during the validation
of the deep learning models by varying the thresholds in increments of 0.1, evaluating the
model performance on the validation dataset for each threshold, and finally selecting the
thresholds that yield the optimal model performance.

6.2 Accuracy

The classification accuracy values obtained by the baseline CNN model and each
combination of the deep CNN architecture and the TFD of the input data examples are
shown in Table 6.2. As seen in Table 6.2, a classification accuracy of 93.147% is achieved
with the baseline model. On the other hand, all TFD-CNN combinations achieve very
high classification accuracy values, showing similar classification performances. The lowest
classification accuracy of the ResNet-101 architecture (96.540%) is obtained when used
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Table 6.1 Probability threshold values used for evaluating the deep learning models on
the test dataset.

CNN architecture

TFD ResNet-101 Xception EfficientNet

BJD 0.2 0.5 0.3
BUD 0.5 0.5 0.4
CWD 0.7 0.8 0.7
PWVD 0.7 0.4 0.8
RIDB 0.7 0.5 0.5
RIDBN 0.7 0.7 0.5
RIDH 0.8 0.7 0.7
RIDT 0.6 0.5 0.9
SP 0.5 0.8 0.6

SPWVD 0.4 0.6 0.8
WVD 0.6 0.5 0.4
ZAMD 0.8 0.2 0.4

Baseline model 0.5

with the WVD of the non-stationary GW data examples, while the highest accuracy
(96.953%) is achieved when used with the CWD. The Xception CNN architecture provides
the lowest accuracy value (96.773%) for the RIDB and the highest value (97.040%) for
the WVD of the input data. The EfficientNet architecture provides classification accuracy
values in the range between 96.567% and 97.100%, where these values are obtained using
the ZAMD and the SP data representation, respectively.

The overall classification accuracy of the tested TFD-CNN models ranges from 96.540%
(obtained by the WVD - ResNet-101 combination) to 97.100% (achieved by the SP data
representation and the EfficientNet architecture). Therefore, these models’ classification
accuracy surpasses the baseline model’s classification accuracy by 3.393% to 3.953%.

6.3 ROC AUC

Table 6.3 shows the ROC AUC values calculated for each evaluated deep learning
model. As seen in Table 6.3, the ROC AUC of the baseline model is 0.96787. As for the
TFD-CNN models, all combinations achieve very high ROC AUC values, thus confirming
excellent classification performances. The ROC AUC values of the ResNet-101 architecture
range from 0.98539 (obtained with the WVD) to 0.98810 (achieved with the RIDB). The
Xception architecture achieves the lowest ROC AUC value (0.98618) when coupled with
the RIDT of the input data and the highest value (0.98810) when combined with the SP
data representation. EfficientNet provides the lowest ROC AUC value (0.98505) with the
RIDT and the highest (0.98854) with the CWD.
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Table 6.2 Classification accuracy values for evaluating the deep learning models on the
test dataset. The highest accuracy values for each considered CNN architecture are marked
in bold.

CNN architecture

TFD ResNet-101 Xception EfficientNet

BJD 0.96827 0.96800 0.96987
BUD 0.96833 0.96827 0.96893
CWD 0.96953 0.96840 0.96980
PWVD 0.96887 0.96967 0.96927
RIDB 0.96853 0.96773 0.96833
RIDBN 0.96927 0.96907 0.96800
RIDH 0.96787 0.96867 0.97000
RIDT 0.96800 0.96860 0.96853
SP 0.96913 0.96953 0.97100

SPWVD 0.96760 0.96987 0.96907
WVD 0.96540 0.97040 0.96820
ZAMD 0.96813 0.96820 0.96567

Baseline model 0.93147

Overall, the evaluated TFD-CNN models show the ROC AUC values between 0.98505
(the RIDT - EfficientNet model) and 0.98854 (the CWD - EfficientNet model), thus
outperforming the baseline model by 1.718% to 2.067% in terms of ROC AUC.

Table 6.3 ROC AUC values for evaluating the deep learning models on the test dataset.
The highest ROC AUC values for each considered CNN architecture are marked in bold.

CNN architecture

TFD ResNet-101 Xception EfficientNet

BJD 0.98800 0.98708 0.98816
BUD 0.98801 0.98666 0.98686
CWD 0.98703 0.98732 0.98854
PWVD 0.98646 0.98729 0.98693
RIDB 0.98810 0.98734 0.98637
RIDBN 0.98798 0.98782 0.98754
RIDH 0.98625 0.98753 0.98805
RIDT 0.98711 0.98618 0.98505
SP 0.98727 0.98810 0.98823

SPWVD 0.98676 0.98802 0.98766
WVD 0.98539 0.98709 0.98569
ZAMD 0.98708 0.98761 0.98752

Baseline model 0.96787
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6.4 Recall

The recall values for the baseline model and each TFD-CNN model are given in
Table 6.4. As seen in Table 6.4, the baseline CNN model has a recall of 88.853%, while all
TFD-CNN combinations show high recall values and outperform the baseline model. The
lowest (94.240%) and highest (95.533%) recall values for ResNet-101 are obtained with the
RIDH and the BJD of the input data, respectively. The Xception CNN architecture has
recall values ranging from 94.147% (obtained with the CWD) to 95.867% (achieved with
the ZAMD). The recall values of EfficientNet cover the range between 94.280% (obtained
with the RIDT) and 95.533% (obtained with the ZAMD).

The overall recall values of the TFD-CNN models range from 94.147% (obtained by
the CWD of the input data and the Xception architecture) to 95.867% (achieved by the
ZAMD and the Xception architecture). Thus, the recall values of the TFD-CNN models
significantly surpass the recall value of the baseline model by 5.294% to 7.014%.

Table 6.4 Recall values for evaluating the deep learning models on the test dataset. The
highest recall values for each considered CNN architecture are marked in bold.

CNN architecture

TFD ResNet-101 Xception EfficientNet

BJD 0.95533 0.94880 0.94907
BUD 0.95187 0.95147 0.94720
CWD 0.94547 0.94147 0.94787
PWVD 0.94427 0.94947 0.95053
RIDB 0.94493 0.95333 0.94440
RIDBN 0.95067 0.95200 0.94853
RIDH 0.94240 0.94667 0.94947
RIDT 0.94813 0.94973 0.94280
SP 0.94747 0.94453 0.94720

SPWVD 0.95000 0.95120 0.94813
WVD 0.94253 0.95187 0.94467
ZAMD 0.94787 0.95867 0.95533

Baseline model 0.88853

6.5 Precision

Table 6.5 presents the precision values for the evaluated deep learning models. The
results presented in Table 6.5 show that the baseline model provides a precision of 97.200%,
while the TFD-CNN models offer higher precision values. The precision values of the
ResNet-101 architecture are in the range from 98.070% (for the BJD) to 99.328% (for the
CWD), the Xception architecture provides precision values ranging from 97.730% (for
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the ZAMD) to 99.507% (for the CWD), while the EfficientNet architecture has precision
values between 97.549% (for the ZAMD) and 99.454% (for the SP).

Considering the performances across all three CNN architectures, the precision values
of the evaluated TFD-CNN models range from 97.549% (for the ZAMD - EfficientNet
model) to 99.507% (for the CWD - Xception model). Thus, the precision values of the
TFD-CNN models are 0.349% to 2.307% higher than the precision achieved by the baseline
model.

Table 6.5 Precision values for evaluating the deep learning models on the test dataset.
The highest precision values for each considered CNN architecture are marked in bold.

CNN architecture

TFD ResNet-101 Xception EfficientNet

BJD 0.98070 0.98669 0.99026
BUD 0.98428 0.98455 0.99024
CWD 0.99328 0.99507 0.99135
PWVD 0.99313 0.98944 0.98753
RIDB 0.99174 0.98160 0.99188
RIDBN 0.98740 0.98564 0.98696
RIDH 0.99298 0.99024 0.99013
RIDT 0.98736 0.98698 0.99396
SP 0.99038 0.99425 0.99454

SPWVD 0.98466 0.98809 0.98956
WVD 0.98770 0.98851 0.99133
ZAMD 0.98791 0.97730 0.97549

Baseline model 0.97200

6.6 F1 Score

The F1 score values obtained by the baseline model and the TFD-CNN models are
given in Table 6.6. The presented results show that the baseline model achieves an F1 score
of 92.839%, which is surpassed by the F1 score values obtained by the TFD-CNN models.
The ResNet-101 architecture offers the F1 score values from the range between 96.459% (for
the WVD) and 96.878% (for the CWD), the Xception architecture provides the F1 score
values between 96.726% (for the RIDB) and 96.984% (for the WVD), while the F1 score
values obtained by EfficientNet are between 96.531% (for the ZAMD) and 97.029% (for
the SP).

Overall, the evaluated TFD-CNN models provide F1 score values ranging from 96.459%
(for the WVD - ResNet-101 combination) to 97.029% (for the SP - EfficientNet combination),
thus outperforming the F1 score of the baseline model by 3.620% to 4.190%.
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Table 6.6 F1 score values for evaluating the deep learning models on the test dataset.
The highest F1 score values for each considered CNN architecture are marked in bold.

CNN architecture

TFD ResNet-101 Xception EfficientNet

BJD 0.96785 0.96737 0.96923
BUD 0.96780 0.96772 0.96824
CWD 0.96878 0.96753 0.96912
PWVD 0.96808 0.96904 0.96868
RIDB 0.96777 0.96726 0.96756
RIDBN 0.96868 0.96853 0.96736
RIDH 0.96703 0.96796 0.96937
RIDT 0.96735 0.96800 0.96770
SP 0.96845 0.96875 0.97029

SPWVD 0.96702 0.96929 0.96841
WVD 0.96459 0.96984 0.96743
ZAMD 0.96747 0.96789 0.96531

Baseline model 0.92839

6.7 PR AUC

The PR AUC is the final metric used to evaluate the performance of the considered
deep learning models, and the obtained values are summarized in Table 6.7. As seen in
Table 6.7, the PR AUC value of the baseline model is 0.97720, while the TFD-CNN models
exceed this value. The PR AUC values of the ResNet-101 architecture cover the range
between 0.99002 (for the WVD) and 0.99163 (for the BUD), the Xception architecture
achieves the PR AUC values between 0.99053 (for the RIDT) and 0.99165 (for the SP),
while the PR AUC values obtained by EfficientNet range between 0.98989 (for the RIDT)
and 0.99195 (for the CWD).

The results presented in Table 6.7 show that the overall PR AUC values obtained by
the evaluated TFD-CNN models are in the range between 0.98989 (for the combination of
the RIDT of the input data and the EfficientNet CNN architecture) and 0.99195 (for the
combination of the CWD of the input data and the EfficientNet deep learning architecture).
Therefore, these values surpass the PR AUC value obtained by the baseline model by
1.269% to 1.475%.
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Table 6.7 PR AUC values for evaluating the deep learning models on the test dataset.
The highest PR AUC values for each considered CNN architecture are marked in bold.

CNN architecture

TFD ResNet-101 Xception EfficientNet

BJD 0.99159 0.99111 0.99172
BUD 0.99163 0.99076 0.99090
CWD 0.99118 0.99125 0.99195
PWVD 0.99083 0.99115 0.99090
RIDB 0.99162 0.99119 0.99068
RIDBN 0.99161 0.99148 0.99126
RIDH 0.99059 0.99128 0.99159
RIDT 0.99097 0.99053 0.98989
SP 0.99122 0.99165 0.99179

SPWVD 0.99089 0.99161 0.99141
WVD 0.99002 0.99115 0.99012
ZAMD 0.99098 0.99145 0.99127

Baseline model 0.97720

6.8 Additional Performance Indicators

Even more detailed insight into the classification performance of the considered deep
learning models is possible by analyzing the additional performance indicators, including
confusion matrices, ROC curves, and precision-recall curves. In this chapter, these
performance indicators are presented for the baseline deep learning model and nine
selected TFD-CNN models: the CWD - ResNet-101, the RIDBN - ResNet-101, the SP -
ResNet-101, the WVD - Xception, the SPWVD - Xception, the PWVD - Xception, the SP
- EfficientNet, the RIDH - EfficientNet, and the BJD - EfficientNet model. These TFD-
CNN models were selected for illustration purposes based on the achieved classification
accuracy. Namely, three TFDs that provide the highest classification accuracy values for
that architecture were chosen for each considered deep learning architecture.

Figure 6.1 shows the confusion matrices for the baseline model and the selected TFD-
CNN models. In addition, the ROC curves obtained by evaluating the selected models
are depicted in Figure 6.2. Finally, Figure 6.3 presents the precision-recall curves of the
considered deep learning models. The performance indicators were obtained by evaluating
the deep learning models on the test dataset.

The complete results are presented in Appendix A, which contains the confusion
matrices, the ROC curves, and the precision-recall curves for each of the TFDs of the
input data in combination with each considered CNN architecture (ResNet-101, Xception,
and EfficientNet). The presented confusion matrices, ROC curves, and precision-recall
curves confirm consistently high classification performances of the TFD-CNN models,
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(f)

Figure 6.1 Confusion matrices for evaluating the selected deep learning models on the
test dataset: (a) Baseline model; (b) CWD - ResNet-101 model; (c) RIDBN - ResNet-101
model; (d) SP - ResNet-101 model; (e) WVD - Xception model; (f) SPWVD - Xception
model; (g) PWVD - Xception model; (h) SP - EfficientNet model; (i) RIDH - EfficientNet
model; (j) BJD - EfficientNet model.
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Figure 6.1 (cont.) Confusion matrices for evaluating the selected deep learning models
on the test dataset: (a) Baseline model; (b) CWD - ResNet-101 model; (c) RIDBN -
ResNet-101 model; (d) SP - ResNet-101 model; (e) WVD - Xception model; (f) SPWVD -
Xception model; (g) PWVD - Xception model; (h) SP - EfficientNet model; (i) RIDH -
EfficientNet model; (j) BJD - EfficientNet model.
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Figure 6.2 ROC curves for evaluating the selected deep learning models on the test
dataset: (a) Baseline model; (b) CWD - ResNet-101 model; (c) RIDBN - ResNet-101
model; (d) SP - ResNet-101 model; (e) WVD - Xception model; (f) SPWVD - Xception
model; (g) PWVD - Xception model; (h) SP - EfficientNet model; (i) RIDH - EfficientNet
model; (j) BJD - EfficientNet model.
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Figure 6.2 (cont.) ROC curves for evaluating the selected deep learning models on the
test dataset: (a) Baseline model; (b) CWD - ResNet-101 model; (c) RIDBN - ResNet-101
model; (d) SP - ResNet-101 model; (e) WVD - Xception model; (f) SPWVD - Xception
model; (g) PWVD - Xception model; (h) SP - EfficientNet model; (i) RIDH - EfficientNet
model; (j) BJD - EfficientNet model.
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Figure 6.3 Precision-recall curves for evaluating the selected deep learning models on the
test dataset: (a) Baseline model; (b) CWD - ResNet-101 model; (c) RIDBN - ResNet-101
model; (d) SP - ResNet-101 model; (e) WVD - Xception model; (f) SPWVD - Xception
model; (g) PWVD - Xception model; (h) SP - EfficientNet model; (i) RIDH - EfficientNet
model; (j) BJD - EfficientNet model.
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Figure 6.3 (cont.) Precision-recall curves for evaluating the selected deep learning models
on the test dataset: (a) Baseline model; (b) CWD - ResNet-101 model; (c) RIDBN -
ResNet-101 model; (d) SP - ResNet-101 model; (e) WVD - Xception model; (f) SPWVD -
Xception model; (g) PWVD - Xception model; (h) SP - EfficientNet model; (i) RIDH -
EfficientNet model; (j) BJD - EfficientNet model.

109



RESULTS AND DISCUSSION

which surpass the performance of the baseline model.

6.9 Statistical Test Results

The final step in analyzing the obtained classification results consists of performing
McNemar’s statistical tests according to the procedure described in Section 5.7. This step
is necessary to examine the statistical significance of the obtained results.

For illustration purposes, three contingency tables used in McNemar’s statistical tests
are selected and provided here. The tables were used to compare the baseline model with
the three selected TFD-CNN models that provided the highest accuracy for each considered
deep CNN architecture. Thus, Tables 6.8, 6.9, and 6.10 represent the contingency tables
used to compare the baseline model with the CWD - ResNet-101 model, the WVD -
Xception model, and the SP - EfficientNet model, respectively. The rest of the contingency
tables are available in Appendix B.

Table 6.8 Contingency table for the baseline model and the CWD - ResNet-101 model.

CWD - ResNet-101 model
Correct

CWD - ResNet-101 model
Incorrect

Baseline model
Correct 13895 77

Baseline model
Incorrect 648 380

Table 6.9 Contingency table for the baseline model and the WVD - Xception model.

WVD - Xception model
Correct

WVD - Xception model
Incorrect

Baseline model
Correct 13869 103

Baseline model
Incorrect 687 341

Table 6.10 Contingency table for the baseline model and the SP - EfficientNet model.

SP - EfficientNet model
Correct

SP - EfficientNet model
Incorrect

Baseline model
Correct 13910 62

Baseline model
Incorrect 655 373
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The p-values obtained by McNemar’s statistical test for each combination of the
TFD of the input data and the CNN architecture are summarized in Table 6.11. As
seen in Table 6.11, each calculated p-value is lower than the specified significance level
(p < 0.00333). Indeed, the calculated p-values are very close to zero (considering the
numerical solver’s limitations), indicating high statistical significance. Therefore, the null
hypothesis of McNemar’s statistical test can be rejected, and it can be concluded that the
differences between the classification results of the TFD-CNN models and those of the
baseline deep learning model are statistically significant.

Table 6.11 p-Values obtained for each considered TFD-CNN model by McNemar’s
statistical test (α = 0.00333).

CNN architecture

TFD ResNet-101 Xception EfficientNet

BJD 5.78× 10−81 2.05× 10−85 2.31× 10−96

BUD 4.19× 10−84 6.59× 10−84 5.14× 10−93

CWD 1.83× 10−99 1.14× 10−98 1.93× 10−98

PWVD 7.41× 10−97 9.51× 10−97 1.16× 10−91

RIDB 8.81× 10−95 3.06× 10−79 1.19× 10−92

RIDBN 3.98× 10−92 8.20× 10−89 2.05× 10−85

RIDH 5.68× 10−91 5.84× 10−92 8.66× 10−96

RIDT 2.18× 10−87 3.41× 10−89 3.72× 10−97

SP 1.26× 10−93 9.85× 10−100 2.61× 10−108

SPWVD 8.38× 10−84 3.02× 10−93 1.15× 10−93

WVD 5.71× 10−79 1.44× 10−95 9.73× 10−93

ZAMD 4.04× 10−87 2.17× 10−78 1.43× 10−67

6.10 Results Summary

To sum up the elaboration of the achieved results, the conducted comparative analysis
of the obtained classification results indicates that the application of the advanced Cohen’s
class TFDs to the noisy, non-stationary input time-series GW data significantly improves
the classification performance achieved by the TFD-CNN-based deep learning algorithms
compared to the baseline CNN model trained only on the original time series. The
TFD-CNN models show improved classification performance in terms of all considered
evaluation metrics, i.e., the proposed method outperforms the baseline model by 3.393%
to 3.953% in terms of classification accuracy, 1.718% to 2.067% in terms of ROC AUC,
5.294% to 7.014% in terms of recall, 0.349% to 2.307% in terms of precision, 3.620% to
4.190% in terms of F1 score, and 1.269% to 1.475% in terms of PR AUC.

Furthermore, the enhanced performance of the proposed method is also demonstrated
by analyzing the additional performance indicators, including the confusion matrices,
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ROC curves, and precision-recall curves. Finally, the obtained differences in the classifica-
tion performances of the proposed method and the baseline model are confirmed to be
statistically significant by McNemar’s statistical test.

Each considered Cohen’s class TFD of noisy, non-stationary input data yields high values
of the evaluation metrics when used as input to each considered deep CNN architecture.
Moreover, the obtained values of the evaluation metrics are also very similar to those
obtained using the SP representation of the considered data. Namely, the SP data
representation is commonly used for time-frequency signal analysis in many fields dealing
with non-stationary signals. Therefore, the results presented in this chapter indicate that
the alternative TFDs of Cohen’s class are also a viable and robust solution that can
successfully improve the performance of deep learning algorithms for classification between
data examples with non-stationary signals in intensive noise and those containing only
noise.

Finally, the increased accuracy of the deep learning classification algorithms contributes
to improved detection of non-stationary signals embedded in the noisy background. In this
thesis, the proposed detection method is demonstrated in the example of detecting GW
signals. It has been shown that the proposed approach can be efficiently applied in GW
research to further improve the detection of GW events. Moreover, the proposed detection
approach is general and has great potential to be successfully applied to detect various
noisy, non-stationary signals in other fields and practical applications.
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CHAPTER 7

CONCLUSIONS AND FUTURE
WORK

7.1 Conclusions

This thesis proposes a method for detecting non-stationary GW signals in intensive
noise based on deep learning algorithms and Cohen’s class of TFDs. In order to validate
the proposed approach, the experimental setup was developed, including data preparation,
training and testing deep learning models, and performance evaluation. During the data
generation procedure, the real-life recordings were retrieved from LIGO detectors, and the
extensive simulations of the GW waveforms were conducted, thus obtaining a diverse time-
series dataset, allowing testing the proposed method in intensive real-life, non-stationary,
non-Gaussian, and non-white noise, with the SNR values between −123.46 and −2.27 dB.

After preprocessing the time-series data, 12 TFDs from Cohen’s class, including BJD,
BUD, CWD, PWVD, RIDB, RIDBN, RIDH, RIDT, SP, SPWVD, WVD, and ZAMD,
were calculated. Thus obtained 12 TFD datasets (a total of 1.2 million TFD images) were
used as input to the deep learning classification algorithms based on three state-of-the-art
two-dimensional CNN architectures – ResNet-101, Xception, and EfficientNet. Each of 36
obtained TFD-CNN models was trained and evaluated on the corresponding dataset. The
obtained results show excellent classification performance of the proposed approach, with
classification accuracy between 96.540% and 97.100%, ROC AUC between 0.98505 and
0.98854, recall between 94.147% and 95.867%, precision between 97.549% and 99.507%,
F1 score between 96.459% and 97.029%, and PR AUC between 0.98989 and 0.99195.

Moreover, the performance of the proposed approach was compared to the performance
of the baseline deep learning model trained on the original time-series data. The comparison
has shown that the proposed approach outperforms the baseline model by 3.393% to 3.953%,
1.718% to 2.067%, 5.294% to 7.014%, 0.349% to 2.307%, 3.620% to 4.190%, and 1.269% to
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1.475% in terms of classification accuracy, ROC AUC, recall, precision, F1 score, and PR
AUC, respectively. The additional analysis of the obtained confusion matrices, ROC curves,
and precision-recall curves further supports the superior performance of the proposed
method, whose statistical significance was confirmed by McNemar’s statistical test.

Therefore, the results obtained by the proposed approach suggest that applying
alternative TFDs from Cohen’s class coupled with deep learning algorithms can improve
the classification of non-stationary time-series signals in intensive noise. Namely, these
quadratic, high-resolution TFDs provide more-informative signal representation with
improved intelligibility compared to the time series, which deep CNN architectures can
efficiently utilize.

The proposed method for detecting non-stationary signals in noise is in this thesis
demonstrated on the example of detecting GW signals. The obtained high performance
on this challenging task proves its applicability in GW data analysis, which can further
contribute to the improved GW detection rates. However, the application of the proposed
method is not limited to GW data only, i.e., it can be easily extended to other fields of
non-stationary signal analysis.

7.2 Future Research Directions

As mentioned above, the proposed approach has great potential to be implemented in
different practical applications requiring the classification of noisy, non-stationary signals.
These applications include but are not limited to analysis of seismic, speech, radar, EEG,
and ECG signals, to name a few. However, the application of the proposed approach in
these fields remains a potential focus of future research.

Based on the benefits of introducing TFDs of Cohen’s class to deep learning-based
signal classification demonstrated in this thesis, these TFDs could also be utilized for data
augmentation. Namely, in the case of datasets with reduced size, multiple TFDs could be
calculated from the initially available time-series data, thus obtaining additional data for
training and testing deep learning models. Moreover, the research presented in this thesis
could be extended to using multiple TFDs of the same input time-series signal as different
channels of the deep learning models’ input. Furthermore, an ensemble of deep learning
models could also be utilized to classify Cohen’s class TFDs of the input time series to
investigate whether even higher classification performances could be achieved than those
obtained by a single deep learning model.

Finally, future research might include additional preprocessing techniques prior to
the TFD calculation and applying the proposed approach (such as the locally-adaptive,
data-driven denoising techniques applied to the noisy, non-stationary signals) and studying
their effects on the deep learning classification performance.
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Appendix A

RESULTS OF THE TFD-CNN
MODELS EVALUATION

This appendix presents more detailed evaluation results of the considered deep learning
models on the test dataset, including confusion matrices, ROC curves, and precision-recall
curves. The results are given for each combination of three considered CNN architectures
and 12 TFDs of the input data.

Figure A.1 shows the confusion matrices for each of the TFDs of the input data
combined with the ResNet-101 CNN architecture, Figure A.2 gives the confusion matrices
obtained by the deep learning models using the TFDs and the Xception architecture, while
Figure A.3 provides the confusion matrices for the EfficientNet architecture coupled with
each considered TFD of the input data.

In addition, Figures A.4, A.5, and A.6 show the ROC curves for the deep learning
models combining each considered TFD of the input data with the ResNet-101, Xception,
and EfficientNet CNN architecture, respectively. Finally, the precision-recall curves of
the deep learning models using the TFDs as input to the ResNet-101, Xception, and
EfficientNet CNN architecture are given in Figures A.7, A.8, and A.9, respectively.
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Figure A.1 Confusion matrices for evaluating the deep learning models combining the
ResNet-101 CNN architecture with the following TFDs of the input data: (a) BJD; (b)
BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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Figure A.1 (cont.) Confusion matrices for evaluating the deep learning models combining
the ResNet-101 CNN architecture with the following TFDs of the input data: (a) BJD;
(b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(f)

Figure A.2 Confusion matrices for evaluating the deep learning models combining the
Xception CNN architecture with the following TFDs of the input data: (a) BJD; (b) BUD;
(c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j) SPWVD;
(k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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Figure A.2 (cont.) Confusion matrices for evaluating the deep learning models combining
the Xception CNN architecture with the following TFDs of the input data: (a) BJD; (b)
BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(f)

Figure A.3 Confusion matrices for evaluating the deep learning models combining the
EfficientNet CNN architecture with the following TFDs of the input data: (a) BJD; (b)
BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(l)

Figure A.3 (cont.) Confusion matrices for evaluating the deep learning models combining
the EfficientNet CNN architecture with the following TFDs of the input data: (a) BJD;
(b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(f)

Figure A.4 ROC curves for evaluating the deep learning models combining the ResNet-
101 CNN architecture with the following TFDs of the input data: (a) BJD; (b) BUD; (c)
CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j) SPWVD; (k)
WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(l)

Figure A.4 (cont.) ROC curves for evaluating the deep learning models combining the
ResNet-101 CNN architecture with the following TFDs of the input data: (a) BJD; (b)
BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.

161



RESULTS OF THE TFD-CNN MODELS EVALUATION

��� ��� ��� ��� ��	 ���
������
���������������
��

���

���

���

���

��	

���

��
��

�

��

���
��

��
��

��
��


�
�

��������

��

(a)

��� ��� ��� ��� ��	 ���
������
���������������
��

���

���

���

���

��	

���

��
��

�

��

���
��

��
��

��
��


�
�

��������

��

(b)

��� ��� ��� ��� ��	 ���
������
���������������
��

���

���

���

���

��	

���

��
��

�

��

���
��

��
��

��
��


�
�

��������

��

(c)

��� ��� ��� ��� ��	 ���
������
���������������
��

���

���

���

���

��	

���
��

��
�


��
���

��
��

��
��

��

�

�

��������

��

(d)

��� ��� ��� ��� ��	 ���
������
���������������
��

���

���

���

���

��	

���

��
��

�

��

���
��

��
��

��
��


�
�

��������

��

(e)

��� ��� ��� ��� ��	 ���
������
���������������
��

���

���

���

���

��	

���

��
��

�

��

���
��

��
��

��
��


�
�

��������

��

(f)

Figure A.5 ROC curves for evaluating the deep learning models combining the Xception
CNN architecture with the following TFDs of the input data: (a) BJD; (b) BUD; (c)
CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j) SPWVD; (k)
WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(l)

Figure A.5 (cont.) ROC curves for evaluating the deep learning models combining the
Xception CNN architecture with the following TFDs of the input data: (a) BJD; (b) BUD;
(c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j) SPWVD;
(k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(f)

Figure A.6 ROC curves for evaluating the deep learning models combining the EfficientNet
CNN architecture with the following TFDs of the input data: (a) BJD; (b) BUD; (c)
CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j) SPWVD; (k)
WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(l)

Figure A.6 (cont.) ROC curves for evaluating the deep learning models combining the
EfficientNet CNN architecture with the following TFDs of the input data: (a) BJD; (b)
BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(f)

Figure A.7 Precision-recall curves for evaluating the deep learning models combining
the ResNet-101 CNN architecture with the following TFDs of the input data: (a) BJD;
(b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(l)

Figure A.7 (cont.) Precision-recall curves for evaluating the deep learning models
combining the ResNet-101 CNN architecture with the following TFDs of the input data:
(a) BJD; (b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i)
SP; (j) SPWVD; (k) WVD; (l) ZAMD. The model evaluation is performed on the test
dataset.
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(f)

Figure A.8 Precision-recall curves for evaluating the deep learning models combining the
Xception CNN architecture with the following TFDs of the input data: (a) BJD; (b) BUD;
(c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j) SPWVD;
(k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(l)

Figure A.8 (cont.) Precision-recall curves for evaluating the deep learning models
combining the Xception CNN architecture with the following TFDs of the input data: (a)
BJD; (b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP;
(j) SPWVD; (k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(f)

Figure A.9 Precision-recall curves for evaluating the deep learning models combining
the EfficientNet CNN architecture with the following TFDs of the input data: (a) BJD;
(b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i) SP; (j)
SPWVD; (k) WVD; (l) ZAMD. The model evaluation is performed on the test dataset.
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(l)

Figure A.9 (cont.) Precision-recall curves for evaluating the deep learning models
combining the EfficientNet CNN architecture with the following TFDs of the input data:
(a) BJD; (b) BUD; (c) CWD; (d) PWVD; (e) RIDB; (f) RIDBN; (g) RIDH; (h) RIDT; (i)
SP; (j) SPWVD; (k) WVD; (l) ZAMD. The model evaluation is performed on the test
dataset.

171





Appendix B

RESULTS OF THE STATISTICAL
SIGNIFICANCE TESTS

This appendix presents more detailed results of the conducted statistical significance
tests. The contingency tables used in McNemar’s statistical tests to compare the baseline
model with the CWD - ResNet-101, the WVD - Xception, and the SP - EfficientNet model
are provided in Chapter 6. The contingency tables used to compare the baseline model
with the rest of the TFD-CNN models are presented here.

Table B.1 Contingency table for the baseline model and the BJD - ResNet-101 model.

BJD - ResNet-101 model
Correct

BJD - ResNet-101 model
Incorrect

Baseline model
Correct 13830 142

Baseline model
Incorrect 694 334
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Table B.2 Contingency table for the baseline model and the BUD - ResNet-101 model.

BUD - ResNet-101 model
Correct

BUD - ResNet-101 model
Incorrect

Baseline model
Correct 13845 127

Baseline model
Incorrect 680 348

Table B.3 Contingency table for the baseline model and the PWVD - ResNet-101 model.

PWvD - ResNet-101 model
Correct

PWvD - ResNet-101 model
Incorrect

Baseline model
Correct 13893 79

Baseline model
Incorrect 640 388

Table B.4 Contingency table for the baseline model and the RIDB - ResNet-101 model.

RIDB - ResNet-101 model
Correct

RIDB - ResNet-101 model
Incorrect

Baseline model
Correct 13889 83

Baseline model
Incorrect 639 389

Table B.5 Contingency table for the baseline model and the RIDBN - ResNet-101 model.

RIDBN - ResNet-101 model
Correct

RIDBN - ResNet-101 model
Incorrect

Baseline model
Correct 13869 103

Baseline model
Incorrect 670 358

Table B.6 Contingency table for the baseline model and the RIDH - ResNet-101 model.

RIDH - ResNet-101 model
Correct

RIDH - ResNet-101 model
Incorrect

Baseline model
Correct 13882 90

Baseline model
Incorrect 636 392
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Table B.7 Contingency table for the baseline model and the RIDT - ResNet-101 model.

RIDT - ResNet-101 model
Correct

RIDT - ResNet-101 model
Incorrect

Baseline model
Correct 13865 107

Baseline model
Incorrect 655 373

Table B.8 Contingency table for the baseline model and the SP - ResNet-101 model.

SP - ResNet-101 model
Correct

SP - ResNet-101 model
Incorrect

Baseline model
Correct 13877 95

Baseline model
Incorrect 660 368

Table B.9 Contingency table for the baseline model and the SPWVD - ResNet-101 model.

SPWVD - ResNet-101 model
Correct

SPWVD - ResNet-101 model
Incorrect

Baseline model
Correct 13854 118

Baseline model
Incorrect 660 368

Table B.10 Contingency table for the baseline model and the WVD - ResNet-101 model.

WVD - ResNet-101 model
Correct

WVD - ResNet-101 model
Incorrect

Baseline model
Correct 13862 110

Baseline model
Incorrect 619 409

Table B.11 Contingency table for the baseline model and the ZAMD - ResNet-101 model.

ZAMD - ResNet-101 model
Correct

ZAMD - ResNet-101 model
Incorrect

Baseline model
Correct 13862 110

Baseline model
Incorrect 660 368
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Table B.12 Contingency table for the baseline model and the BJD - Xception model.

BJD - Xception model
Correct

BJD - Xception model
Incorrect

Baseline model
Correct 13856 116

Baseline model
Incorrect 664 364

Table B.13 Contingency table for the baseline model and the BUD - Xception model.

BUD - Xception model
Correct

BUD - Xception model
Incorrect

Baseline model
Correct 13845 127

Baseline model
Incorrect 679 349

Table B.14 Contingency table for the baseline model and the CWD - Xception model.

CWD - Xception model
Correct

CWD - Xception model
Incorrect

Baseline model
Correct 13905 67

Baseline model
Incorrect 621 407

Table B.15 Contingency table for the baseline model and the PWVD - Xception model.

PWVD - Xception model
Correct

PWVD - Xception model
Incorrect

Baseline model
Correct 13883 89

Baseline model
Incorrect 662 366

Table B.16 Contingency table for the baseline model and the RIDB - Xception model.

RIDB - Xception model
Correct

RIDB - Xception model
Incorrect

Baseline model
Correct 13829 143

Baseline model
Incorrect 687 341
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Table B.17 Contingency table for the baseline model and the RIDBN - Xception model.

RIDBN - Xception model
Correct

RIDBN - Xception model
Incorrect

Baseline model
Correct 13857 115

Baseline model
Incorrect 679 349

Table B.18 Contingency table for the baseline model and the RIDH - Xception model.

RIDH - Xception model
Correct

RIDH - Xception model
Incorrect

Baseline model
Correct 13876 96

Baseline model
Incorrect 654 374

Table B.19 Contingency table for the baseline model and the RIDT - Xception model.

RIDT - Xception model
Correct

RIDT - Xception model
Incorrect

Baseline model
Correct 13865 107

Baseline model
Incorrect 664 364

Table B.20 Contingency table for the baseline model and the SP - Xception model.

SP - Xception model
Correct

SP - Xception model
Incorrect

Baseline model
Correct 13896 76

Baseline model
Incorrect 647 381

Table B.21 Contingency table for the baseline model and the SPWVD - Xception model.

SPWVD - Xception model
Correct

SPWVD - Xception model
Incorrect

Baseline model
Correct 13866 106

Baseline model
Incorrect 682 346
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Table B.22 Contingency table for the baseline model and the ZAMD - Xception model.

ZAMD - Xception model
Correct

ZAMD - Xception model
Incorrect

Baseline model
Correct 13817 155

Baseline model
Incorrect 706 322

Table B.23 Contingency table for the baseline model and the BJD - EfficientNet model.

BJD - EfficientNet model
Correct

BJD - EfficientNet model
Incorrect

Baseline model
Correct 13879 93

Baseline model
Incorrect 669 359

Table B.24 Contingency table for the baseline model and the BUD - EfficientNet model.

BUD - EfficientNet model
Correct

BUD - EfficientNet model
Incorrect

Baseline model
Correct 13877 95

Baseline model
Incorrect 657 371

Table B.25 Contingency table for the baseline model and the CWD - EfficientNet model.

CWD - EfficientNet model
Correct

CWD - EfficientNet model
Incorrect

Baseline model
Correct 13888 84

Baseline model
Incorrect 659 369

Table B.26 Contingency table for the baseline model and the PWVD - EfficientNet
model.

PWVD - EfficientNet model
Correct

PWVD - EfficientNet model
Incorrect

Baseline model
Correct 13867 105

Baseline model
Incorrect 672 356

178



Nikola Lopac: Detection of GW Signals from TFDs Using Deep Learning

Table B.27 Contingency table for the baseline model and the RIDB - EfficientNet model.

RIDB - EfficientNet model
Correct

RIDB - EfficientNet model
Incorrect

Baseline model
Correct 13883 89

Baseline model
Incorrect 642 386

Table B.28 Contingency table for the baseline model and the RIDBN - EfficientNet
model.

RIDBN - EfficientNet model
Correct

RIDBN - EfficientNet model
Incorrect

Baseline model
Correct 13856 116

Baseline model
Incorrect 664 364

Table B.29 Contingency table for the baseline model and the RIDH - EfficientNet model.

RIDH - EfficientNet model
Correct

RIDH - EfficientNet model
Incorrect

Baseline model
Correct 13875 97

Baseline model
Incorrect 675 353

Table B.30 Contingency table for the baseline model and the RIDT - EfficientNet model.

RIDT - EfficientNet model
Correct

RIDT - EfficientNet model
Incorrect

Baseline model
Correct 13898 74

Baseline model
Incorrect 630 398

Table B.31 Contingency table for the baseline model and the SPWVD - EfficientNet
model.

SPWVD - EfficientNet model
Correct

SPWVD - EfficientNet model
Incorrect

Baseline model
Correct 13878 94

Baseline model
Incorrect 658 370
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Table B.32 Contingency table for the baseline model and the WVD - EfficientNet model.

WVD - EfficientNet model
Correct

WVD - EfficientNet model
Incorrect

Baseline model
Correct 13885 87

Baseline model
Incorrect 638 390

Table B.33 Contingency table for the baseline model and the ZAMD - EfficientNet model.

ZAMD - EfficientNet model
Correct

ZAMD - EfficientNet model
Incorrect

Baseline model
Correct 13794 178

Baseline model
Incorrect 691 337
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