Bakota, Niko

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University of Rijeka, Faculty of Engineering / Sveučilište u Rijeci, Tehnički fakultet**

Permanent link / Trajna poveznica: https://um.nsk.hr/um:nbn:hr:190:160896

Rights / Prava: Attribution 4.0 International/Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-02-05

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of Engineering

SVEUČILIŠTE U RIJECI **TEHNIČKI FAKULTET**

Diplomski sveučilišni studij strojarstva

Diplomski rad

TERMOMEHANIČKA ANALIZA POSUDE POD TLAKOM

Rijeka, srpanj, 2023.

Niko Bakota 0069079859

SVEUČILIŠTE U RIJECI **TEHNIČKI FAKULTET**

Diplomski sveučilišni studij strojarstva

Diplomski rad

TERMOMEHANIČKA ANALIZA POSUDE POD TLAKOM

Mentor: Prof. dr. sc. Marko Čanađija, dipl. ing.

Komentor: Izv. prof. dr. sc. Sanjin Kršćanski

Rijeka, srpanj, 2023.

Niko Bakota 0069079859

SVEUČILIŠTE U RIJECI TEHNIČKI FAKULTET POVJERENSTVO ZA DIPLOMSKE ISPITE

Rijeka, 9. ožujka 2022.

 Zavod:
 Zavod za tehničku mehaniku

 Predmet:
 Termomehanika

 Grana:
 2.11.01 opće strojarstvo (konstrukcije)

ZADATAK ZA DIPLOMSKI RAD

Pristupnik:	Niko Bakota (0069079859)
Studij:	Diplomski sveučilišni studij strojarstva

Modul: Računarska mehanika i inženjerstvo

Zadatak: Termomehanička analiza posude pod tlakom / Thermomechanical analysis of a pressure vessel

Opis zadatka:

Provesti termomehaničku analizu posude pod tlakom izabranog kapaciteta, radnog tlaka, radne temperature i namjene. Analizu je potrebno provesti metodom konačnih elemenata. Odrediti tlak kod kojeg počinje plastifikacija. Odrediti granična opterećenja prirubnica pri kojim počinje plastifikacija. Analizirati moguću pojavu pukotina te njihov utjecaj na sigurnost posude.

Rad mora biti napisan prema Uputama za pisanje diplomskih / završnih radova koje su objavljene na mrežnim stranicama studija.

Will' Barota Zadatak uručen pristupniku: 21. ožujka 2022.

Mentor:

Prof. dr. sc. Marko Čanadija

Doc. dr. sc. Sanjin Kršćanski (komentor)

Predsjednik povjerenstva za diplomski ispit:

Prof. dr. sc. Kristian Lenić

IZJAVA

Sukladno članku 97. Pravilnika o studiranju Tehničkog fakulteta, Sveučilišta u Rijeci, izjavljujem da sam samostalno izradio diplomski rad pod naslovom "Termomehanička analiza posude pod tlakom", uz mentorstvo i konzultacije s mentorom prof. dr. sc. Markom Čanađijom i komentorom izv. prof. dr. sc. Sanjinom Kršćanskim.

Rijeka, srpanj, 2023.

Niko Bakota

ZAHVALA

Zahvaljujem se mentoru prof. dr. sc. Marku Čanađiji i komentoru izv. prof. dr. sc. Sanjinu Kršćanskom na pruženoj pomoći, podršci i stručnom vođenju tijekom pisanja diplomskog rada.

Sadržaj

1.	UV	/OD	1
2.	AN	IONIJAK – GORIVO BUDUĆNOSTI	3
3.	PR	ORAČUN TLAČNOG SPREMNIKA	6
	3.1.	Ulazni parametri	6
	3.2.	Materijal posude pod tlakom	7
	3.3.	Proračun cilindričnog plašta	8
	3.3	1. Proračun debljine stijenke zbog unutarnjeg opterećenja	9
	3.3	2. Proračun debljine stijenke zbog vanjskog opterećenja	10
	3.4.	Proračun debljine stijenke torisferičnog dna	14
	3.5.	Naprezanje cilindirčnog plašta i torisferičnog dna zbog unutarnjeg tlaka	17
	3.6.	Naprezanje konstrukcije usred hidrostatskog testa	18
	3.7.	Inspekcijski otvor	18
	3.8.	Proračun dovoda i odvoda fluida	23
	3.9.	Cijevni priključci s navojem	28
	3.10.	Nosači konstrukcije	30
	3.11.	Masa posude pod tlakom	33
	3.12.	Transportne uške	34
	3.13.	Geometrija posude pod tlakom	35
	3.14.	Posuda pod tlakom unutar PVElite softvera	36
4.	MO	DDELIRANJE GEOMETRIJE	37
5.	AN	VALIZA POSUDE POD TLAKOM U PROGRAMU FEMAP 2021	39
	5.1.	Izrada mreže	39
	5.2.	Rubni uvjeti	14

4	5.3.	Opterećenje	. 44
4	5.4.	Statički proračun posude pod tlakom	. 45
6.	A١	NALIZA POSUDE POD TLAKOM PRI POVIŠENOJ TEMPERATURI	. 54
7.	AN	NALIZA POJAVE PUKOTINA KOD POSUDE POD TLAKOM	. 63
	7.1.	Pukotina u cilindričnom plaštu	. 63
	7.2.	Numerička analiza pukotine u cilindričnom plaštu u softverskom paketu Ansys	. 65
	7.2	2.1. Prikaz rezultata	. 73
	7.3.	Pojava pukotinu u zavaru dovoda fluida	. 77
	7.3	3.1. Numerička analiza pukotine u zavaru	. 78
8.	UI	ΓJECAJ ZAMORA NA PRIKLJUČAK DOVODA FLUIDA	. 87
8	8.1.	Numerička analiza zamora priključka za dovod fluida	. 89
9.	Z	AKLJUČAK	. 94
10.		LITERATURA	. 95
11.	F	POPIS OZNAKA	. 96
12.		SAŽETAK	. 98
13.		ABSTRACT	. 99

1. UVOD

Posude pod tlakom nezamjenjiva su komponenta moderne industrije. Naftna industrija, prerađivačka, prehrambena i farmaceutska industrija samo neke od grana u kojima je upotreba posuda pod tlakom veoma bitna i neophodna za rad. Te posude su dizajnirane za skladištenje i transport različitih plinova i tekućina pod povišenim tlakom i temperaturom.

Posude pod tlakom, zbog svoje uloge u proizvodnji, smatraju se veoma rizičnim komponentama sustava i njihovo otkazivanje može dovesti do požara, eksplozija i ispuštanja otrovnih plinova u okolinu. Upravo zbog tih razloga potrebno je uložiti posebnu pažnju tijekom dizajna, proizvodnje i održavanja s ciljem sigurnosti ljudskih života i zaštite okoliša.

Kroz ovaj diplomski rad bit će odrađena detaljna analiza posude pod tlakom. Kroz rad prikazat će se postupak proračuna, modeliranje i odabir konstrukcijskih elemenata posude pod tlakom. Nadalje, bit će odrađena analiza deformacija i naprezanja zbog utjecaja unutarnjeg tlaka na stijenku posude. Analizirat će se zamor na prirubnicama i pojava pukotina u materijalu.

Rad je podijeljen u 11 poglavlja u kojima je detaljno prikazan svaki odrađeni korak.

Drugo poglavlje daje kratki opis proizvodnje i korištenja amonijaka.

Treće poglavlje prikazuje analitički proračun posude pod tlakom korištenjem PVElite softvera prema normi EN 13445.

Čevtvrto poglavlje sadrži prikaz modelirane geometrije u SolidWorksu i PVElitu.

U petom poglavlju prikazana je statička analiza posude pod tlakom pri radnom tlaku od 10 bara unutar programskog paketa Femap.

Šesto poglavlje sadrži statičku analizu posude pod tlakom pri povišenoj temperaturi.

Sedmo poglavlje sadrži analizu pojave pukotine u cilindričnom plaštu i zavaru dovoda fluida te proračun uvjeta *leak before break*.

Osmo poglavlje sadrži proračun utjecaja zamora na dovod fluida posude pod tlakom.

Deveto poglavlje sadrži kratki završni osvrt o radu.

Deseto poglavlje je popis svih referenci korištenih za pisanje diplomskog rada.

Jedanaesto poglavlje sadrži popis oznaka korištenih u diplomskom radu.

Dvanaesto poglavlje sadrži kratki sadržaj cijelog rada s ključnim rječima na hrvatskom jeziku.

Trinaesto poglavlje jednako dvanaestom, osim šta je na engleskom jeziku.

2. AMONIJAK – GORIVO BUDUĆNOSTI

Amonijak (NH₃) je glavni resurs u kemijskoj industriji i proizvodnji umjetnih gnojiva. Glavna primjena mu je u proizvodnji gnojiva poput amonijevog nitrata i uree. Godišnje se proizvede oko 183 Mt amonijaka, a većina se proizvodi pomoću fosilnih goriva. Proces dobivanja amonijaka naziva se Haber-Bosch čiji dijagram možemo vidjeti na slici 2.1.

Slika 2.1. Haber-Bosch postupak [1]

Haber-Bosch postupak koji je se danas koristi u industriji bazira se na korištenju prirodnog plina za dobivanje potrebnog vodika. Potencijalni novi pristupi uključuju proces elektrolize za dobivanje vodika, a energija potrebna za kemijski proces dolazi iz obnovljivih izvora energije. Treba napomenuti da u trenutnom stanju proizvodnja amonijaka generira velike količine ugljikovog dioksida (CO2) i moderni pristupi žele značajno smanjiti ili kompletno ga izbaciti kao nusprodukt

proizvodnje amonijaka. Primjer Haber-Bosch postupka gdje se za dobivanje vodika koristi elektroliza možemo vidjeti na slici 2.2.

Slika 2.2. Shema proizvodnje amonijaka upotrebom elektrolize [2]

Amonijak se u zadnjih par godina razmatra kao ozbiljan izbor kao gorivo u morskom transportu. S obzirom na uvođenje kvota brodarima na količinu ugljikovog dioksida koji mogu ispustiti, potreba za alternativnim rješenjima veća je nego ikada. Za potrebe pomorskog prometa amonijak kao gorivo razmatra se u dva slučaja:

- amonijak u tekućem stanju na -33 Celzijeva stupnja i pri atmosferskom tlaku
- amonijak u tekućem stanju na 25 Celzijevih stupnjeva i pri tlaku od 10 bara

Oba pristupa imaju svoje tehničke poteškoće za realizaciju i skladištenje u brodskim spremnicima.

Za slučaj kada je amonijak pri atmosferskom tlaku treba osigurati potrebno hlađenje i izolaciju spremnika. Dok u slučaju kada se amonijak nalazi na temperature od 25 Celzijevih stupnjeva treba

uzeti u obzir tlak od 10 bara, u tom slučaju se radi o posudi pod tlakom koja na brodu može predstavljati rizik.

Nadalje, treba uzeti u obzir energetsku učinkovitost samog amonijaka po litri goriva. Iako ima veliki potencijal kao zeleno gorivo, energetski je mnogo neučinkovitije od fosilnih goriva koja su danas standard u industriji. Slika 2.3. prikazuje graf različith goriva ovisno o energetskom potencijalu po litri goriva.

Slika 2.3. Energija goriva po litri [3]

S obzirom na načine skladištenja amonijaka, za potrebe diplomskog rada razmatrat će se tlačni spremnik za skladištenje amonijaka pri temperaturi od 25 Celzijevih stupnjeva i tlaku od 10 bara.

3. PRORAČUN TLAČNOG SPREMNIKA

Proračun tlačnog spremnika će biti izvršen prema EN 13445_2009 standardu. Proračun posude pod tlakom biti će izvršen u softverskom paketu PV Elite. PV Elite je specijalizirani softver za izradu i analizu posuda pod tlakom i izmjenjivača topline.

Proračun će biti izvršen za posudu pod tlakom u vertikalnoj izvedbi za skladištenje amonijaka u tekućem stanju pri 10 bara.

Konstrukcijski elementi posude pod tlakom su:

- cilindrični plašt
- torisferično dno
- cijevni priključci
- nosači posude
- transportne uške

3.1. Ulazni parametri

Projektni tlak: p = 10 bar

Volumen posude: $V = 5 \text{ m}^3$

Za posude pod tlakom koje se nalaze ispod područja puzanja, testni hidrostatski tlak se određuje prema EN 13445-5 10.2.3.3.1 po formuli:

$$P_t = 1,43 \cdot P_s$$
 (3.1)

gdje je:

Pt - testni hidrostatski tlak

*P*_s - maksimalni radni tlak

Za zadani projektni tlak testni tlak iznosi: $P_t = 14,3$ bar.

3.2. Materijal posude pod tlakom

S obzirom da je operativno područje u kojem će se nalaziti posuda pod tlakom u blizini ili uz samo more, potrebno je odabrati materijal koji je otporan na koroziju.

Za izradu posude pod tlakom odabran je čelik AISI 316L. Tehničke specifikacije materijala dane su u tablici 3.1.

Tehničke specifikacije materijala AISI 316L					
Ime materijala	X2CrNiMo17-12				
Oznaka u standardu	1.4404				
Gustoća materijala (kg/m ³)	7840				
$R_{\rm p1.0}$ (MPa)	259,99				
$R_{\rm p0.2}$ (MPa)	219,95				
Vlačna čvrstoća, <i>R</i> _m , (MPa)	529,98				
Youngov modul elastičnosti (GPa)	200				
Poissonov koeficijent	0,3				

Tablica 3.1. Karakteristike materijala uzete iz PVElite softvera

Za austenitne čelike dopušteno proračunsko naprezanje prema EN 13445-3 6.6.2 iznosi:

$$f_{\rm d} = \frac{R_{p_{1,0}}}{1.5} = 173.3 \,\,{\rm MPa} \qquad (3.2)$$

gdje je:

- *f*_d proračunsko dopušteno naprezanje, MPa
- $R_{p1,0}$ naprezanje pri kojem nastane trajna plastična deformacija od 1%, MPa
- faktor sigurnosti prema normi u vrijednosti od 1,5

Dopušteno naprezanje prilikom hidrostatskog testiranja dobije se iz izraza:

$$f_{\text{test}} = \max\left(\frac{R_{p1,0}}{1,05}; \frac{R_m}{2}\right) = 264,99 \text{ MPa}$$
 (3.3)

3.3. Proračun cilindričnog plašta

Proračun cilindričnog plašta posude pod tlakom vrši se prema EN 13445-3 7.4.2. Dimenzije cilindričnog plašta su prikazane na slici 3.1.

Slika 3.1. Karakteristične dimenzije cilindričnog plašta

gdje je:

- e debljina stijenke plašta, mm
- D_i unutarnji promjer cilindričnog plašta, mm
- De vanjski promjer cilindričnog plašta, mm
- *L* duljina cilindričnog plašta, mm

3.3.1. Proračun debljine stijenke zbog unutarnjeg opterećenja

Potrebno je osigurati da posuda pod tlakom zadovolji potrebni volumen amonijaka koji moramo skladištiti. Odabrana je duljina cilindričnog plašta od 3.2 m pod pretpostavkom da 80% volumena posude spada pod cilindrični plašt, a ostatak volumena obuhvate dva torisferična dna. S obzirom na duljinu od 3.2 m unutarnji promjer koji zadovoljava gore navedene uvjete iznosi $D_i = 1.32$ m.

Potrebna debljina dobije se iz jednadžbe prema EN 13445 7.4.2:

$$e = \frac{PD_i}{2fz - P} \qquad (3.4)$$

gdje je:

- e potrebna debljina stijenke, mm
- P-proračunski tlak, MPa
- Di unutarnji promjer cilindričnog plašta, mm
- f dopušteno naprezanje, MPa
- z-koeficijent zavara

Kada unesemo sve poznate vrijednosti:

$$e = \frac{1,021 \cdot 1320}{2 \cdot 174,58 \cdot 1 - 1,021} = 3,871 \text{ mm}$$

3.3.2. Proračun debljine stijenke zbog vanjskog opterećenja

S obzirom na duljinu plašta potrebno je provesti proračun naprezanja s obzirom na vanjsko opterećenje. S obzirom da plašt posude pod tlakom nije ojačan ukrutama potrebno je odrediti debljinu koja zadovoljava vanjska opterećenja prema EN 13445 8.5.2. S obzirom da se radi o iterativnom postupku, proračun je izvršen pomoću softvera PVElite. Kroz ovo poglavlje prikazat ću formule i grafove korištene za proračun, ali rješenja su dobivena softverski čije ću rezultate prikazati u obliku slika na kraju poglavlja. Minimalna preporučena debljina stijenke plašta prema rezultatima softvera PVElite iznosi 6,424 mm. Odabrao sam prvu veću debljinu u iznosu od 7 mm. Za tu debljinu napravljen je proračun na vanjsko opterećenje.

Nominalna granica elastičnosti

$$\sigma_e = \frac{R_{p0,2}}{1,25} = 175,99 \text{ MPa}$$
 (3.5)

Točka naprezanja tečenja

$$P_y = \frac{\sigma_e \cdot e_a}{R} = 1,856 \text{ MPa}$$
 (3.6)

gdje je:

 e_a – odabrana debljina stijenke u vrijednosti od 7 mm

R – unutarnji radijus cilindričnog plašta, mm

Faktor naprezanja

$$Z = \pi \cdot \frac{R}{L} = 0.578 \quad (3.7)$$

gdje se L dobije iz EN 13445 8.5.2.1 prema slici ispod:

8.5.2.1 Unsupported length

In Figure 8.5-1, L is given by:

$$L = L_{cyl} + 0.4h^* + 0.4h^*$$
(8.5.2-1)

Figure 8.5-1 — Cylinder with heads

L_{cyl}

h"

Slika 3.2. slobodna duljina prema 8.5.2.1

Za zadanu geometriju L = 3604 mm.

Elastični tlak nestabilnosti

$$P_m = \frac{E \cdot e_a \cdot \varepsilon}{R} = 0,392 \text{ MPa} \quad (3.8)$$

gdje je:

 ε – konstanta koja se dobije iz EN 13445 8.5.2-6 ili prema slici ispod koja u standard ima oznaku EN 13445 Figure 8.5-3.

Slika 3-3. Graf za dobivanje konstante ε

Za definiranu geometriju ε poprima vrijednost od 0,0001857.

Odnos $P_{\rm m} / P_{\rm y}$

$$\frac{P_m}{P_v} = 0,211$$

 $P_{\rm y}-$ tlak pri kojem cilindrični plašt dođe u točku tečenja

Iz krivulje prema EN 13445 8.5-5 potrebno je odrediti odnos P_r / P_y :

Slika 3.4. EN 13445 8.5-5

Krivulja jedan se koristi za očitavanje vrijednosti za plašt, a krivulja dva za proračun torisferičnog dna. U ovom slučaju s obzirom da se radi o proračunu cilindričnog plašta koristimo krivulju jedan.

$$\frac{P_r}{P_y} = 0,105$$

Cilindrični plašt mora zadovoljiti uvjet prema EN 13445 8.5.2-8 gdje vrijedi:

$$P < \frac{P_r}{1,5} \quad (3.9)$$

P – vanjski tlak zraka, 0,103425 MPa

0.103425 < 0.130

Debljina zadovoljava.

Prihvaćena debljina cilindričnog plašta iznosi e = 7 mm.

3.4. Proračun debljine stijenke torisferičnog dna

Proračun debljine stijenke torisferičnog dna definiran je prema EN 13445 7.5.3. Geometrija torisferičnog dna prikazana je na slici ispod:

Slika 3-5. Torisferično dno

gdje je:

- *D*_i unutarnji promjer plašta, mm
- De-vanjski promjer plašta, mm
- R unutarnji polumjer sferičnog dijela dna, mm
- r unutarnji polumjer torusnog dijela dna, mm
- $e_{\rm s}\,$ standardna debljina dna lima, mm

Odabran je Kloepperov tip torisferičnog dna gdje je $R = D_e$, $r = 0, 1 \cdot D_e$.

R = 1334 mm

r = 133,4 mm

Unutarnja dubina torisferičnog dna

$$h = R - \sqrt{\left(R - \frac{D_i}{2}\right) \cdot \left(R + \frac{D_i}{2} - 2r\right)} = 254,6 \text{ mm}$$
 (3.10)

Debljina stijenke torisferičnog dna dobije se prema EN13445 7.5.3.2 i uzima se maksimalna vrijednost $e = \max(e_s, e_b, e_y)$, gdje je:

- e_s potrebna debljina torusnog dijela kako bi se spriječilo izvijanje, mm
- e_b potrebna debljina za ograničavanje membranskog dijela u središnjem dijelu, mm
- e_y potrebna debljina torusnog dijela za spriječiti aksisimetrično popuštanje, mm

$$e_s = \frac{P \cdot R}{2 \cdot f \cdot z - 0.5P} = 3,9130 \text{ mm}$$
 (3.11)

$$e_b = (0.75R + 0.2D_i) \left[\frac{P}{111f_b} \left(\frac{D_i}{r} \right)^{0.825} \right]^{\left(\frac{1}{1.5}\right)} = 7,1139 \text{ mm}$$
 (3.12)

gdje je:

$$f_b = \frac{R_{p0.2}}{1.5} = 144,415 \text{ MPa}$$
 (3.13)

$$e_y = \frac{\beta \cdot P(0,75R + 0,2D_i)}{f} = 6,8977 \text{ mm} \quad (3.14)$$

gdje je β dobivena korištenjem PVElite softvera prema EN 13445 7.5-1.

Slika 3-6. Parametar β prema 7.5-1

 $\beta = 0,931$

Debljina stijenke torisferičnog dna iznosi:

 $e = \max(3,9189,7,1247,6,9081) = 7,1139 \text{ mm}$

Odabrana debljina stijenke torisferičnog dna iznosi:

 $e_a = 8 \text{ mm}$

Prema EN 13445 7.5.3.1 torisferično dno mora zadovoljiti sljedeće uvjete:

 $r \leq 0, 2 \cdot D_i$

133,4 mm
$$\leq$$
 263,6 mm \rightarrow Uvjet zadovoljava

 $r \geq 0.06 \cdot D_i$

133,4 mm \geq 79,08 mm \rightarrow Uvjet zadovoljava

 $r \geq 2 \cdot e$

133,4 mm \geq 14,23 mm \rightarrow Uvjet zadovoljava

 $e \leq 0,08 \cdot D_e$

7,114 mm \leq 106,7 mm \rightarrow *Uvjet zadovoljava*

 $e_a \ge 0.001 \cdot D_e$

 $8 \text{ mm} \ge 1,334 \text{ mm} \rightarrow Uvjet zadovoljava$

 $R \leq D_e$

 $1334 \text{ mm} \leq 1334 \text{ mm} \rightarrow Uvjet zadovoljava$

Torisferično dno zadovoljava sve geometrijske uvjete.

3.5. Naprezanje cilindirčnog plašta i torisferičnog dna zbog unutarnjeg tlaka

U tablici 3.2. prikazane su vrijednosti naprezanja komponenti nakon usvajanja debljine stijenki.

Komponenta	Naprezanje (MPa)	Naprezanje (MPa) Dopušteno naprezanje	
		(MPa)	
Cilindrični plašt	96,75	174,58	0,55
Torisferično dno	146,84	174,58	0,84

Tablica 3.2. Naprezanja komponenti

3.6. Naprezanje konstrukcije usred hidrostatskog testa

Hidrostatski test se vrši prema EN 13445-5 koji definira uvjete testiranja posuda pod tlakom. Za posudu izrađenu od austenitnog čelika testni tlak iznosi 14.3 bara i medij je voda. Dopušteno naprezanje materijala prema EN 13445-3 6.6.2 iznosi:

$$f_{\text{test}} = \max\left(\frac{R_{p1,0}}{1,05}; \frac{R_m}{2}\right) = 264,99 \text{ MPa}$$
 (3.15)

Naprezanja svih dijelova konstrukcije dana su u tablici ispod.

Komponenta	onenta Naprezanje (MPa) Dopušteno naprezanje (MPa)		Omjer
Plašt	138,7	264,99	0,523
Torisferično dno-dno	210,59	264,99	0,795
Torisferično dno-gore	205,59	264,99	0,776

Tablica 3.3. Naprezanja usred hidrostatskog testa

Sve komponente zadovoljavaju dozvoljena naprezanja za vrijeme hidrostatskog testa.

3.7. Inspekcijski otvor

Za potrebe unutarnjih zavara i inspekcije tijekom radnog vijeka potrebno je napraviti inspekcijski otvor. Otvori u strukturi posude pod tlakom koji su izolirani, odnosno u njihovoj blizini nema drugih otvora, definiraju se prema EN 13445-3 9.5.

Inspekcijski otvor je definiran pomoću PVElite softvera prema slici 3.7:

PV Nozzle Input/Analysis: [Inspekcijski otvor]

ozzle Main Local Stress Analysis [WRC 107, 297 or Annex	G]				
Nozzle		Pad or Hub Properties			
	FVC Catalogue	Pad Material :	X2CrNiMo17-1	2	Matl
	Coupling Lookup	Pad Diameter / Width :	630 81	.4 mm	
	hard the	Pad Thickness :	8	mm	
	Just Like	Groove Weld Depth :	8	mm	
Existing Nozzle Description : Inspekcijski	otvor	Weld Leg at Pad OD :	6 N	o Calc mm	
Nozzle Material : X2CrNiMo17	-12 Matl				
Schedule Diameter : None ~	457.2 mm	Additional Weld			
Dia Basis Thickness Basis : ID V	Actual ×	Nozzle to Pad Fillet Weld	d Leg: 10	No Calc	mm
Corrosion All Actual Thk : 0	5 mm	Nozzle to Shell Inside Fillet Weld	d Leg: 0	No Calc	mm
		Nozzle to Shell Groove Weld D	epth : 5		mm
Is this Nozzle Connected to a	nother Nozzle 🗌	Weld Designa	ation : None	~	*
Parent Nozzle :	\sim				
Distance from 'From' Node Elev : 1.2	1.3 m	Miscellaneous			
La	yout	Flange Material	: X2CRNIMO1		Matl
Lavout Angle : 0	deg.	Flange Class Grade	: 300 ~ 0	ir 1.1	~
Padial Notzle :		Flange Type Series	: Slip on	∨ None	~
Angled or Lateral Nozzle :	-	Neglect Areas	None	~	
Contestine Tilt Apple 0		Tapped Hole Area Loss	: 0	m?	
Centenine Titt Angle : 0	aeg.	Nozzle Eff. Shell Eff.	: 1 1		
	mm	Local Shell Thickness User Tr	·: 0 0) mm	1
Projection Outside Inside : 190	0 mm Perform	m Fatigue Calculation : 🗹 🛛 🛛 Weld Class	Class 90	\sim	
Limits [Diameter Thickness] : 0	0 mm	Manwa	ay or Access Ope	ening : 🗹	
Overriding Weight : 163.693	kgm Calc		Blind Atta	iched : 🗌	
Overriding Flange G Dimension : 0	mm	Derate Flange MAW	P if Externally Lo	aded :	
		Pipin	g Attached		
	Nozzle Passed Pressure/	/Area Requirements			
Noz:[1 of 4]	Previous Nozzle	Goto Next Nozzle Delete	Plot	Н	elp
Parent	Flange Rating: 5.110 N/r	mm?	ОК	Ca	ncel

Slika 3.7. Ulazni parametri inspekcijskog otvora

Za otvor je instalirano dodatno ojačanje kako ne bi strukturalno oslabili cilindrični plašt. Detalj ojačanja s pripadnim zavarima dan je na slici ispod.

Slika 3.8. Detalj ojačanja na plaštu s pripadnim zavarima

U tablici 3.4. dane su vrijednosti debljina zavara za sliku 3.8.

Oznaka zavara	Debljina zavara (mm)
1	6
2	10
3	5
4	5

Tablica 3.4. Debljine zavara inspekcijskog otvora

Na inspekcijski otvor instalirana je prirubnica klase 300. Vrsta prirubnice je "Slip on".

Detaljni prikaz prirubnice je dan ispod na slici 3.9.

Slika 3.9. Slip on prirubnica

Tablica 3.5.	Parametri	prirubnice
--------------	-----------	------------

Nazivni	Mjere prirubnice (mm)									Težina	
otvor										(kg)	
ID (inch)	D	В	А	G	Н	ID	L	K	Broj vijaka	navoj	m
									5		
18	711,2	60,5	533,4	533,4	88,9	457,2	35,1	628,7	24	M32	113

Proračun inspekcijskog otvora prema EN 13445 poglavlje 9

Proračun je napravljen unutar PVElitea i ovdje će biti prikazani svi potrebni koraci za proračun.

Unutarnji radijus prema 9.5-3

$$r_{is} = \frac{D_i}{2} = 660 \text{ mm}$$
 (3.16)

Udaljenost uzduž ljuske prema 9.5.1

$$I_{so}, l's = \sqrt{(2 \cdot r_{is} + e_{c,s}) \cdot e_{c,s}} = 96,38 \text{ mm}$$
 (3.17)

gdje je $e_{c,s} = 7$ mm.

Udaljenost uzduž mlaznice prema 9.5-76

$$I_{bo} = \sqrt{(d_{eb} - e_b) \cdot e_b} = 48,07 \text{ mm}$$
 (3.18)

gdje je $e_b = 5$ mm, debljina stijenke inspekcijskog otvora, a $d_{eb} = 467,2$ mm vanjski promjer. Površina djelovanja tlaka prema 9.5-29

$$Ap_s = r_{is} \cdot (l's + a) = 0,218 \text{ m}^2 \quad (3.19)$$

gdje je a = 238,72 mm, duljina inspekcijskog otvora.

Površina djelovanja tlaka za inspekcijski otvor koristeć
i I_{bo} i promjer

$$Ap_b = 0.5 \cdot d_{ib} \cdot (l'b + e_{a,s}) = 0.0126 \text{ m}^2 \quad (3.20)$$

Raspoložive metalna površine prema 9.5-78 - 9.5-81

$$Af_s = 0,0000148 \text{ m}^2$$

 $Af_b = 0,000240 \text{ m}^2$
 $Af_p = 0,000570 \text{ m}^2$
 $Af_w = 0,000068 \text{ m}^2$

Nakon šta smo izračunali sve potrebne komponente možemo izračunati izraz sile koji se javlja prema paragrafu 9.5.2.1.1.

$$P_{a} = P(Ap_{s} + Ap_{b} + 0.5 \cdot App_{si}) = 233,5 \cdot 10^{3} \text{ N}$$
(3,21)
$$F_{a} = (Af_{w} + Af_{s}) \cdot (f_{s} - 0,5P) + Af_{p}(\min(f_{s}, f_{p}) - 0,5P) + Af_{b}(\min(f_{s}, f_{b}) - 0,5P)$$
$$= 276,4 \cdot 10^{3} \text{ N}$$
(3.22)

S obzirom da je $F_a \ge P_a$, uvjeti standarda su zadovoljeni.

Maksimalno naprezanje u ravnini prema 9.5-10

$$P_{max} = 1,199 \frac{N}{mm^2}$$
 (3.23)

Provjera ojačanja inspekcijskog otvora u transverzalnom smjeru

Površina opterećena tlakom

$$Ap_{s} = \frac{0.5 \cdot r_{is}^{2}(l's + a)}{(0.5 \cdot e_{a,s} + r_{is})} = 0,11 \text{ m}^{2} \quad (3.24)$$
$$P_{a} = 124,3 \cdot 10^{3} \text{ N}$$
$$F_{a} = 276,4 \cdot 10^{3} \text{ N}$$

S obzirom da je $F_a \ge P_a$, uvjeti standarda su zadovoljeni.

Maksimalno naprezanje u transverzalnoj ravnini prema 9.5-10

$$P_{max} = 2,247 \frac{N}{mm^2}$$

S obzirom na dobivene rezultate možemo zaključiti da je inspekcijski otvor zadovoljio potrebe standarda. Detaljniji prikaz i objašnjenja izraza i vrijednosti moguće je dobiti u EN 13445 Poglavlje 3.

3.8. Proračun dovoda i odvoda fluida

S obzirom da su dimenzije odvoda i dovoda fluida jednake promatrat će se samo priključak za dovod fluida. Dimenzije su prikazane unutar PVElitea sa pripadajućim debljinama zavara na slici 3.10.

Nozzie input/Analysis, [iniet]			
lozzle Main Local Stress Analysis [WRC 107, 297	r Annex G]		
Nozzk ○郡○咒○⊑ ●郡○咒○□	Pad or Hub Properties FVC Catalogue Coupling Lookup Just Like		
Existing Nozzle Description : In Nozzle Material : X2 Schedule Diameter : No	NIMo17-12 Matl V 76.2 mm Additional Weld Norzie to Shell Outside Fillet Weld	11eg : 5	No Calc mm
Dia. Basis Thickness Basis : ID	Actual Actual Nozzle to Shell Inside Fillet Weld Nozzle to Shell Inside Fillet Weld	Leg: 0	No Calc mm
	Nozzle to Shell Groove Weld De	epth : 5	mm
Is this Nozzle Conn Parent Nozzle : Distance from 'From' NodelElev :	ted to another Nozzle Weld Designa	tion : None	~
	Layout Flange Material :	X2CRNIMO17-12	Matl
Layout Angle :	90 deg. Flange Class Grade : Flange Type Series :	: 300 ~ GR 1. : Long WN ~	None V
: Radial Nozzle Angled or Lateral Nozzle	Neglect Areas	None	~
Centerline Tilt Angle :	deg. Tapped Hole Area Loss :	: 0	m?
Cyl./Cone Offset Dimension L :	mm Local Shell Thickness User Tr	: 0 0	mm
Projection Outside Inside :	21.425 0 mm Perform Fatigue Calculation : Weld Class :	Class 90	\sim
Limits [Diameter Thickness] : Overriding Weight :	94425 kom Calc	y or Access Opening	g:
Overriding Flange G Dimension :	mm Derate Flange MAWF	^o if Externally Loaded	d :
	Piping	Attached	
	Nozzle Passed Pressure/Area Requirements		
Noz:[3 of 4]	Frevious Nozzle Goto Next Nozzle Delete	Plot	Help
Parent	Flange Rating: 5.110 N/mm?	OK	Cancel

Slika 3.10. Parametri dovoda fluida

Detalj zavara između cijevnog priključka i cilindričnog plašta može se vidjeti na slici ispod. S obzirom da se radi o manjoj cijevi, dodatno ojačanje nije instalirano. Tablica s debljinama zavara dana je ispod slike 3.11.

Slika 3.11. Detalj zavara

Tablica 3.6. Debljine zavara

Oznaka zavara	Debljina zavara (mm)
1	5
2	5

Na dovod i odvod fluida instalirane su prirubnice s vratom koje je potrebno zavariti na cijev. Prikaz prirubnice dan je na slici 3.12.

Slika 3.12. Prirubnica s vratom za zavarivanje

U nastavku dana je tablica s geometrijskim veličinama prirubnice.

Nazivni	Miara primbnica (mm)									Težina	
otvor	Mjere prirubilice (mm)								(kg)		
ID (inch)	0	C	R	Х	А	V	L	В	Broj vijaka	navoj	m
3	209,6	28,4	127	117,3	88,9	79,2	35,1	168,1	4	M20	7

Tablica 3.7. Parametri prirubnice

Proračun inspekcijskog otvora prema EN 13445 poglavlje 9

Proračun je napravljen unutar PVElitea i ovdje će biti prikazani svi potrebni koraci za proračun.

Unutarnji radijus prema 9.5-3

$$r_{is} = \frac{D_i}{2} = 660 \text{ mm}$$

Udaljenost uzduž ljuske prema 9.5.1

$$I_{so}, l's = \sqrt{(2r_{is} + e_{c,s}) \cdot e_{c,s}} = 96,38 \text{ mm}$$

gdje je $e_{c,s} = 7$ mm.

Udaljenost uzduž mlaznice prema 9.5-76

$$I_{bo} = \sqrt{(d_{eb} - e_{a,b}) \cdot e_{a,b}} = 15,41 \text{ mm}$$

gdje je $e_{a,b} = 3$ mm, debljina stijenke dovoda, a $d_{eb} = 82,2$ mm vanjski promjer.

Područje utjecaja tlaka (pressure area) prema 9.5-29

$$Ap_s = r_{is} \cdot (l's + a) = 0,0907 \text{ m}^2$$

gdje je a = 41,1 mm, duljina inspekcijskog otvora.

Područje utjecaja tlaka za inspekcijski otvor koristeći Ibo i promjer

$$Ap_b = 0.5 \cdot d_{ib} \cdot (l'b + e_{a,s}) = 0.000853 \text{ m}^2$$

Dostupna metalna površina (Available metal areas) prema 9.5-78-9.5-81

$$Af_s = 0,000674 \text{ m}^2$$

 $Af_b = 0,000067 \text{ m}^2$
 $Af_p = 0 \text{ m}^2$
 $Af_w = 0,0000125 \text{ m}^2$

Nakon što smo izračunali sve potrebne komponente možemo izračunati izraz sile koji se javlja prema paragrafu 9.5.2.1.1.

$$P_a = P \cdot (Ap_s + Ap_b + 0.5 \cdot App_{si}) = 92,41 \cdot 10^3 \text{ N}$$
$$F_a = (Af_w + Af_s) \cdot (f_s - 0.5P) + Af_p (\min(f_s, f_p) - 0.5P) + Af_b (\min(f_s, f_b) - 0.5P)$$
$$= 131,3 \cdot 10^3 \text{ N}$$

S obzirom da je $F_a \ge P_a$, uvjeti standarda su zadovoljeni.

Maksimalno naprezanje u ravnini prema 9.5-10

$$P_{max} = 1,432 \frac{N}{mm^2}$$

Provjera ojačanja inspekcijskog otvora u transverzalnom smjeru

Površina opterećena tlakom

$$Ap_{s} = \frac{0.5 \cdot r_{is}^{2}(l's + a)}{(0.5 \cdot e_{a,s} + r_{is})} = 0,05 \text{ m}^{2}$$
$$P_{a} = 46,4 \cdot 10^{3} \text{ N}$$
$$F_{a} = 131,3 \cdot 10^{3} \text{ N}$$

S obzirom da je $F_a \ge P_a$, uvjeti standarda su zadovoljeni.

Maksimalno naprezanje u transverzalnoj ravnini prema 9.5-10

$$P_{max} = 2,841 \frac{\text{N}}{\text{mm}^2}$$

Dovod i odvod fluida zadovoljavaju uvjete standarda.

3.9. Cijevni priključci s navojem

Za potrebe instalacije senzora tlaka i mogućnosti otvaranja ispusta potrebno je montirati cijevne priključke s Whitworthovim navojem.

U tablici 3.8. su dane vrijednosti odabranih cijevnih navoja.

Tablica	38	Cijevni	navoii
Tablica	<i>J</i> .0.	Cijevni	navoji

Komponenta	Whitworthov navoj (inch)		
Senzor tlaka	R 1/2		
Ispust	R 1		

Proračun je odrađen unutar PVElite softvera, ali neće biti prikazan s obzirom da je veoma sličan proračunu dovoda i odvoda fluida i ne javljaju se kritična naprezanja.

Detalji ispusta i senzora tlaka dani su na slikama koje su dobivene iz PVElite softvera.
PV Nozzle I	nput/Ana	lysis: [Drain]												×
Nozzle Ma	in Local	Stress Analysis [WRC	107,	297 or An	nnex G]									
Nozzle	₽ ₽ ₽₽	。 第 の 第	0		(FVC Cata Coupling I Just Li	logu Look ke	ue cup	Pad or Hub Pr	operties				
	Exis	sting Nozzle Descripti Nozzle Mate	ion : rial :	+ X2CrNiM	1017-12	2		Matl						
		Schedule Diame	ter :	None	\sim	44.45		mm	Additional V	/eld				
	Dia	a Basis Thickness Ba	cic ·	00	∠ Act	ual 🗸			Nozzle to She	I Outside Fillet Weld	Leg:	6	No Calc	mm
	6	arrosion All Actual T	hk	0	6	-			Nozzle to Sh	ell Inside Fillet Weld	Leg :	0	No Calc	mm
	_	And TARLEY		•					Nozzle to S	Shell Groove Weld D	epth : 🛛	6		mm
		Is this Noz	zle Co	onnected	to ano	ther Nozz	le 🗌			Weld Designa	tion : 🖡	lone	~	
		Parent	Nozz	le :			\sim							
		Offset Dime	nsion	L: 0		0	m	m	Miscellaneo	ous				
					Layou	t				Flange Material				Matl
		Lavou	t Ana	le : 0		dea.	_			lange Class Grade	None	∨ None		\sim
		Radial	Nozz	le : 🗸			1			Flange Type Series	None	~	None	\sim
		Angled or Lateral	Nozz	le :						Neglect Areas	None		\sim	
		Centerline Til	t Ang	le : 0		dea.			Tap	ped Hole Area Loss	0		m?	
	Q	yl./Cone Offset Dime	nsion	L: 0		mm			N	ozzle Eff. Shell Eff.	1	1		
							_		Local She	I Thickness User Tr	0	0	mm	
		Projection Outside	Insid	ie : 52.32	25	0	_	mm P	Perform Fatigue Calculation :	Weld Class :	Class	90	\sim	
	L	imits [Diameter Thio	kness	5]: 0 		0	1.	mm		Manwa	y or Acc	ess Openin	g: 🗌	
	0.44	Overriding Elange C Dim	weigr	nt: 0.319	952	kgm Ca				Derate Flange MAWF	bli if Exter	nd Attache	d : 🗌	
	0/6	anding Plange & Dim	ensio			mm				Pining	Attach	ad		
										riping	Attach	cu		
						Nozzle	Pas	sed Pre	essure/Area Requirements					
		Noz:[1 of 1]		1		Previou	is No	ozzle	Add New Nozzle	Delete	P	lot	He	lp
Pare	nt			Either: N	lo Flan	ge, Temp	> M	ax Allov	wed or Data Inconsistent			ОК	Ca	ncel

Slika 3.13. Ispust

Nozzle Main Local Stress Analysis [WRC 107, 297 or Anne	x G]			
Nozzle		Pad or Hub Properties		
	FVC Catalogue			
	Coupling Lookup			
	lust like			
	JUST LIKE			
Existing Nozzle Description : Pressure sw	vitch			
Nozzle Material : X2CrNiMo1	7-12 Matl			
Schedule Diameter : None	~ 28.575 mm	Additional Weld		
Dia. Basis Thickness Basis : OD 🗸	Actual V	Nozzle to Shell Outside Fillet Weld	I Leg : 4	No Calc mm
Corrosion All. Actual Thk : 0	4 mm	Nozzle to Shell Inside Fillet Weld	I Leg : 0	No Calc mm
		Nozzle to Shell Groove Weld D	epth : 4	mm
Is this Nozzle Connected to	another Nozzle	Weld Designa	tion : None	~
Parent Nozzle :	\sim			
Distance from 'From' Node Elev : 3	3.1 m	Miscellaneous		
La	ayout	Flange Material	:	Matl
Layout Angle : 0	deg.	Flange Class Grade	None 🗸 None	~
Radial Nozzle : 🗸		Flange Type Series	None ~	None 🗸
Angled or Lateral Nozzle :		Neglect Areas	None	\sim
Centerline Tilt Angle : 0	deg.	Tapped Hole Area Loss	: 0	m?
Cyl./Cone Offset Dimension L: 0	mm	Nozzle Eff. Shell Eff.	: 1 1	
		Local Shell Thickness User Tr	: 0 0	mm
Projection Outside Inside : 40.625	0 mm Perform Fatig	ue Calculation : Weld Class	Class 90	\sim
Limits [Diameter Thickness]: 0	0 mm	Manwa	y or Access Opening	:
Overriding Weight : 0.11621	7 kgm Calc	Derate Flance MAW/	Blind Attached	: L
Overriging Flange G Dimension :	mm	Derate Harige MAW	in externally codded	•
		Piping	J Attached	
	Nozzle Passed Pressure/Area R	equirements		
Noz:[2 of 4]	Previous Nozzle Got	o Next Nozzle Delete	Plot	Help
Parent Either: No I	Flange, Temp > Max Allowed or Data I	nconsistent	ОК	Cancel

Slika 3.14. Priključak za senzor tlaka

3.10. Nosači konstrukcije

Za nosače konstrukcije odabrana su 4 europska UPN240 profila duljine L=1 m. Poprečni presjek profila dan je na slici 3.15.

 \times

Slika 3.15. UPN240

Geometrijske vrijednosti UPN 240 profila dane su u tablici ispod.

Tablica 3.9. Geometrijske značajke UPN240

						Površina
D ("1	1 ()				Težina	poprečnog
Profil	h (mm)	<i>b</i> (mm)	<i>s</i> (mm)	<i>t</i> (mm)	(kg/m)	presjeka
						(cm ²)
UPN240	240	85	9.5	13	33,2	42,3

Kako se nosači ne bi direktno zavarivali na posudu, dodana su ojačanja 300 x 300 x 3,5 mm.

S obzirom da je zbog amonijaka kojeg skladištimo potrebno održavati konstantu temperature, spremnik se nalazi u zatvorenoj prostoriji. Zbog tog razloga se utjecaj vjetra na posudu pod tlakom neće razmatrati.

Utjecaj potresa analizirat će prema Eurocode normi EN 1998-1:2004 za područje Primorsko goranske županije.

Prema Eurocode normi EN 1998-1:2004 poglavlje 3 promatrat će se tip tla A sa pripadajućim koeficijentima. Podatke o tlu unosimo u PVElite softver kao što je prikazano na slici 3.16.

Slika 3.16. Postavke za seizmičku analizu

Detaljan opisan varijabli dan je u standardu.

Proračun čvrstoće nosača vrši se pomoću PVElite softvera i u nastavku poglavlja bit će prikazani dobiveni rezultati.

Aksijalno naprezanje najdalje od neutralne osi

$$S_{ma} = 5,185 \text{ MPa}$$

Aksijalno naprezanje najbliže neutralnoj osi

$$S_{va} = 2,406 \text{ MPa}$$

Dopušteno aksijalno naprezanje za jednu nogu

$$S_a = 175,648 \text{ MPa}$$

Savijanje na dnu noge

Dopušteno savijanje

$$S_b = 198,515 \text{ MPa}$$

AISC kontrola

$$S_{c} = \frac{\left(\frac{S_{ma}}{S_{a}}\right) + 0.85 * S}{\left(1 - \frac{S_{ma}}{S_{pex}}\right) \cdot S_{b}} = 0,5271 \quad (3.24)$$

S obzirom da S_c mora biti između $0 < S_c \le 1$, uvjet je zadovoljen.

3.11. Masa posude pod tlakom

Tablica 3.10. Masa posude pod tlakom

Stanje	masa (kg)
Prazna, masa same konstrukcije	1321,2
Napunjena vodom zbog hidrostatkog testa	6427,5
Napunjena amonijakom, radno stanje	4285,1

3.12. Transportne uške

Tranportne uške napravljene su prema EN 13445 16.7. Dimenzije transportnih uški su uzete iz PVElite dokumentacije za posudu od 2000 kilograma. S obzirom da je promatrana posuda teška 1321.2 kg, uške su namjerno predimenzionirane kako bi osigurali sigurnost tijekom transporta.

Prikaz vrijednosti geometrijskih veličina u softveru PVElite dan je na slici 3.17.

Slika 3.17. Transportne uške

3.13. Geometrija posude pod tlakom

U ovom poglavlju prikazane su konačne geometrijske vrijednosti cilindričnog plašta i torisferičnog dna.

Cilindrični plašt

Unutarnji promjer:	$D_i = 1320 mm$
Vanjski promjer:	$D_e = 1334 mm$
Debljina stijenke:	$e_a = 7 mm$

Torisferično dno

Unutarnji promjer:	$D_i = 1318 mm$
Debljina stijenke:	$e_a = 8 mm$
Dubina torisferičnog	dna: $h = 254,6 mm$

3.14. Posuda pod tlakom unutar PVElite softvera

Geometrija posude pod tlakom prikazana je u PVElite softveru na slici 3.13.1.

Slika 3-18. Posuda pod tlakom

Zbog loše kvalitete geometrije koju dobijemo iz PVElite softvera, potrebno je izmodelirati geometriju. Za potrebe modeliranja koristio sam SOLIDWORKS. S obzirom da model koji radimo je potreban za FEM analizu, a naprezanje tijekom transporta nećemo promatrati, uške neće biti ukomponirane u modelu.

4. MODELIRANJE GEOMETRIJE

Za modeliranje korišten je softverski paket SOLIDWORKS. Geometrija je prebačena u *step* obliku kako bi je mogli ubaciti u Femap softverski paket.

Slika 4-1. Posuda pod tlakom u SOLIDWORKS softveru

Slika 4-2. Opisni nacrt posude pod tlakom

5. ANALIZA POSUDE POD TLAKOM U PROGRAMU FEMAP 2021

U ovom poglavlju bit će prikazan postupak analize posude pod tlakom koristeći metodu konačnih elemenata unutar programskog paketa Femap.

5.1. Izrada mreže

Izmodeliranu geometriju unijeli smo u program pomoću naredbe *File/Import/Geomet*, gdje smo pritom definirali *Scale factor* = 1, kako bi geometrija bila u metrima.

Slika 5.1. Geometrija spremnika unutar programa Femap

Podatke o materijalu definiramo pomoću naredbe *Model/Material*. Podaci o materijalu unutar Femapa dani su na slici 5.2.

Define Material - ISOTROPIC								
ID 1 Title AISI 316L Color 55 Layer 1 Material Type								
General Function References Nonlinear Ply/Bond Failure Creep Electrical/Optical Phase Stiffness Limit Stress								
Youngs Modulus, E Shear Modulus, G Poisson's Ratio, nu	2.E+11 0. 0.3	Tension0.Compression0.Shear0.						
Thermal Expansion Coeff, a Conductivity, k Specific Heat, Cp Heat Generation Facto	0. 0. 0. r 0.	Mass Density 0. Damping, 2C/Co 0. Reference Temp 0.						
fxy Load	Save Co	ру	K Cancel					

Slika 5.2. Definiranje materijala

S obzirom da koristimo metodu konačnih elemenata za proračun deformacija i naprezanja potrebno je odabrati vrstu elemenata. Kako se radi o trodimenzionalnom problem koristit ćemo *Solid* elemente. Unutar Femapa njih definiramo pomoću *Model/Property/Element type/Solid*, gdje pritom elementima dodijelimo definirani materijal.

Define Property - SOLID Element Type X						
ID 1 Title solid elementi	Material 1AISI 316L V					
Color 110 Layer 1	Elem/Property Type 🚑					
Material Axes	Integration Network (03) 0					
Align to CSys OGlobal Rectangular	Load Save Copy					
	OK Cancel					

Slika 5-3. Definiranje konačnih elemenata

Prije omreživanja potrebno je definirati odnos između površina koje su u kontaktu. Femap ima mogućnost automatskog prepoznavanja kontatka između površina. Idemo pod *Connect/Automatic* i odaberemo cijeli model. Tip kontakta je *Glued*.

Slika 5.4. Definirani kontakt između površina

Potrebno je odabrati veličinu konačnih elemenata. To radimo pomoću *Mesh/Mesh control/Size on Solid* naredbom. Odabrana veličina elemenata je 0.025 m. Prikaz postavke veličine mesha dan je na slici ispod.

Automatic Mesh Sizing	×
Size For	
Tet Meshing O Hex Meshing	
Basic Curve Sizing	Surface Interior Mesh Growth
Element Size 0.025	Growth Factor 1.
Replace Mesh Sizes on All Curves	Curvature-Based Mesh Refinement
Min Elements on Edge	Refinement Ratio 0.1
Max Angle Tolerance 25.	Refine Surface Mesh
Max Elem on Small Feature 6	Assembly / Multi-Solid Sizing
Vertex Aspect Ratio 3.	Adjacent Surface Matching
Suppress Short Edges 1. %	Remove Previous Slaving
Auto Boundary Small Surf 1. %	
Mapped Meshing Refinement	Allow Slaving Across Connections
Sizing Type 2Parametric/Equal Length \checkmark	
Size Propagation	
Propagate Sizing	OK Cancel

Slika 5.5. Veličina konačnih elemenata

Tip solid elemenata su tetraedarski konačni elementi. Omreženi model dan je na slici ispod.

Slika 5.7. Detaljniji prikaz konačnih elemenata

5.2. Rubni uvjeti

Potrebno je definirati oslonce odnosno pozicije u kojima je posuda pod tlakom u kontaktu s tlom. Oslonci se definiraju preko *Model/Constraints/On Surface*. Odabrane su površine koje su u kontaktu s tlom i spriječene su im sve rotacije i translacije.

Slika 5.8. Definicija oslonaca

5.3. Opterećenje

Opterećenje je definirano radnim tlakom posude. Radni tlak iznosi 10 bara i potrebno je nanijeti ga unutar programa na sve unutarnje plohe plašta, torisferičnog dna, cijevnih priključaka i prirubnica. Opterećenje nanosimo pomoću *Model/Load/Load on Surface*. Prikaz nanesenog opterećenja dan je na slici ispod.

Slika 5.9. Opterećenje posude pod tlakom

Nakon šta smo definirali opterećenje model je spreman za analizu.

5.4. Statički proračun posude pod tlakom

Svi potrebni podaci su definirani i moguće je provesti statičku analizu posude pod tlakom. U Femapu analizu pokrećemo pomoću *Model/Analysis* i odabiremo vrstu analize *Static*.

Analysis Set Manager (Active: 1analiza tlak)	
 Analysis Set: 1analiza tlak Solver: Simcenter Nastran Type: Static Integrated Solver: Simcenter Nastran 	Analyze Analyze Multiple
Options Master Requests and Conditions Mo Cases Defined	Export Active
	Preview Input
	MultiSet Copy
	Delete
	Load
	Save
	New
	Edit
	Done

Slika 5.10. Postavke statičke analize

Nakon šta proračun završi možemo prikazati rezultate koje smo dobili simulacijom.

U sklopu ovog poglavlja bit će prikazana ukupna translacija modela, naprezanje prema kriteriju Von Misesa cijelog modela i pojedinačnih komponenti.

Maksimalno dopušteno naprezanje za analizu iznosi $\sigma_{dop} = 220$ MPa.

U tablici 5.1 dane su vrijednosti naprezanja koja su dobivena pomoću softvera PVElite koji vrijednost naprezanja računa prema standardu EN 13445.

Komponenta	Analitičko naprezanje (MPa)
Cilindrični plašt	96,75
Torisferično dno	146,56

Tablica 5.1. Analitička naprezanja komponenti

Slika 5.11. Kontura maksimalnog naprezanja prema kriteriju Von Misesa

Slika 5.12. Kontura maksimalnog naprezanja prema krieriju Von Misesa

Slika 5.13. Kontura maksimalnog naprezanja prema krieriju Von Misesa

Slika 5.14. Kontura maksimalnog naprezanja prema krieriju Von Misesa

Slika 5.15. Kontura maksimalnog naprezanja prema krieriju Von Misesa

Slika 5.16. Kontura maksimalnog naprezanja prema krieriju Von Misesa

Slika 5.17. Kontura ukupne translacije posude pod tlakom

Slika 5.18. Kontura ukupne translacije posude pod tlakom

Slika 5.19. Kontura ukupne translacije toriferičnog dna

Maksimalna translacija koja se javlja na modelu iznosi 4.018 mm. Maksimalno naprezanje nije moguće očitati jer se javlja koncentrator naprezanja oko inspekcijskog otvora koji nastaje zbog oblika geometrije i ukoliko bi htjeli saznati točne vrijednosti naprezanja u zoni inspekcijskog otvora potrebno bi bilo napraviti detaljni lokalni model gdje bi trebalo uključiti i geometriju zavara.

Za usporedbu s analitičkim rješenjem naprezanje koje se javlja na plaštu veoma je blizu analitičkom rješenju šta možemo vidjeti na slikama 5.9 i 5.10.

Maksimalno naprezanje koje je dobiveno metodom konačnih elemenata u torisferičnom dnu iznosi 176,99 MPa.

6. ANALIZA POSUDE POD TLAKOM PRI POVIŠENOJ TEMPERATURI

Potrebno je provjeriti može li se posuda pod tlakom prenamjeniti za skladištenje medija koji se nalazi u stanju povišene temperature. S obzirom na stanje modernog tržišta nije loše imati proizvod koji je fleksibilan i moguće ga je veoma brzo prenamijeniti u druge svrhe.

Pritom je potrebno paziti s obzirom da nismo radili detaljne proračune posude pod tlakom pri povišenoj temperaturi rada, da ne uđemo u zonu puzanja materijala.

Puzanje materijala možemo definirati kao sporu deformaciju materijala koja nastaje zbog dugotrajnog opterećenja pri povišenoj temperaturi. Za konstrukcijske čelike puzanje nastupa u temperaturnom području koje iznosi 30 % posto vrijednosti temperature taljenja. Za konstrukcijski čelik to je otprilike 400 °C.

Za odabrani materijal AISI 316L, koristeći podatke koji su dani u programu PVElite, napravljeni su grafovi mehaničkih svojstava materijala ovisno o temperaturi. Grafovi su dani u nastavku na slikama 6.1 i 6.2.

Slika 6.1. Graf ovisnosti Youngova modula o temperaturi

Slika 6.2. Graf ovisnosti $R_{p0,2}$ o temperaturi

Pri radnom tlaku maksimalno naprezanje koje se javlja u posudi pod tlakom iznosi 177 MPa. Maksimalna vrijednost se javlja na torisferičnom dnu. Radna temperatura bit će odabrana na način da maksimalno naprezanje dobiveno u analizi pri standardnoj temperature ne prelazi vrijednost $R_{p0,2}$ pri odabranoj povišenoj temperaturi.

S obzirom da maksimalno naprezanje iznosi 177 MPa, vrijednost $R_{p0,2}$ koju ne želimo prijeći iznosi 180 MPa. Za tu vrijednost naprezanja temperatura iznosi prema grafu na slici 6.2 iznosi 80 °C.

Za temperaturu od 80 °C Youngov modul prema grafu na slici 6.1 iznosi 194,6 GPa.

S dobivenim podacima ponavljamo proračun u Femapu.

Sve postavke proračuna ostaju iste osim postavke materijala. Materijalu je potrebno promijeniti vrijednost Youngova modula. Vrijednost Youngova modula dana je na slici ispod.

Define Material - ISOTRO	PIC		×				
ID 1 Tit	e AISI 316L 80		Material Type				
Colo	r 55	Layer 1					
General Function References Nonlinear Ply/Bond Failure Creep Electrical/Optical Phase							
Stiffness		Limit Stress					
Youngs Modulus, E	1.946E+11	Tension 0.					
Shear Modulus, G	0.	Compression 0.					
Poisson's Ratio, nu	0.3	Shear 0.					
Thermal							
Expansion Coeff, a	0.						
Conductivity, k	0.	Mass Density					
Specific Heat, Cp	0.	Damping, 2C/Co					
Heat Generation Facto	r 0.	Reference Temp					
5xy Load	Save Co	ру	OK Cancel				

Slika 6.3. Youngov modul za temperaturu od 80 °C

Pokrećemo statičku analizu. Nakon šta je analiza završila možemo prikazati rezultate u nastavku poglavlja. Bit će prikazani rezultati naprezanja prema kriteriju Von Misesa i totalna deformacija posude pod tlakom.

Slika 6.4. Kontura maskimalnog naprezanja prema kriteriju Von Misesa za temperaturu 80 °C

Slika 6.5. Kontura maskimalnog naprezanja prema kriteriju Von Misesa za temperaturu 80 °C

Slika 6.6. Kontura maskimalnog naprezanja prema kriteriju Von Misesa za temperaturu 80 °C

Slika 6.7. Kontura maskimalnog naprezanja prema kriteriju Von Misesa za temperaturu 80 °C

Slika 6.8. Kontura maskimalnog naprezanja prema kriteriju Von Misesa za temperaturu 80 °C

Slika 6.9. Kontura maskimalnog naprezanja prema kriteriju Von Misesa za temperaturu 80 °C

Slika 6.10. Kontura ukupne translacije posude pod tlakom za temperaturu 80 °C

Slika 6.11. Kontura ukupne translacije posude pod tlakom za temperaturu 80 °C

Slika 6.12*. Kontura ukupne translacije torisferičnog dna za temperaturu* 80 °C

Slika 6.13. Kontura ukupne translacije torisferičnog dna za temperaturu 80 °C

Možemo primijetiti iz rezultata da nema velike razlike između analize pri temperature od 20 °C i analizi pri temperature od 80 °C. To je bilo i za očekivati jer razlika između modula elastičnosti nije velika. Treba napomenuti pri temperaturi od 80 °C materijal brže ulazi u područje plastifikacije.

Možemo zaključiti da temperatura ima veliku ulogu prilikom dizajnirana posude pod tlakom i ne možemo je zanemariti. S obzirom da je ova posuda pod tlakom dizajnirana za relativno nisku temperaturu, njen utjecaj je zanemariv. Upravo zbog toga posuda pod tlakom nije u mogućnosti podnijeti veća termička opterećenja.

7. ANALIZA POJAVE PUKOTINA KOD POSUDE POD TLAKOM

Pojava pukotine u strukturi, komponenti ili mehanizmu može uzrokovati otkaz konstrukcije i njeno pucanje. To se može dogoditi pri naprezanjima koja su ispod razine koje uzrokuje plastifikaciju, gdje probleme najčešće ne očekujemo. Kod slučajeva gdje pukotine nije moguće izbjeći, upotreba metodologije mehanike loma nam može pomoći pri odabiru materijala i geometrije konstrukcije kojima bi spriječili pojavu i širenje pukotine te otkaz konstrukcije.

Osim samih pukotina, drugi tipovi nesavršenosti, poput površinskih ogrebotina i grešaka u zavarima mogu rezultirati stvaranjem pukotine u konstrukciji.

Pukotine su od velike inženjerske važnosti jer se javljaju puno češće od očekivanog. Njihova pojava uvelike je prisutna u brodskim elementima, mostovima, posudama pod tlakom, cijevima, dijelovima avionskih konstrukcija i sl.

Osim same analize pukotina, važan dio sprječavanja njihovog utjecaja na konstrukciju je i redovna inspekcija komponenti. Tipovi inspekcije za pukotine variraju od vizualnog pregleda konstrukcije pa do rendgenskog skeniranja konstrukcije. Svaka konstrukcija koja je osjetljiva na pojavu pukotine mora imati jasno definirano vrijeme nakon kojeg je potrebno izvršiti inspekciju.

Šta se tiče utjecaja pukotine na čvrstoću, ukoliko je opterećenje komponente koja sadrži pukotinu preveliko, pukotina može naglo narasti i uzrokovati krhak lom konstrukcije, to jest lom s veoma malo plastične deformacije. Iz teorije mehanike loma, faktor intenziteta loma K jedan je od glavnih parametara s kojim opisujemo pukotinu. Faktor intenziteta loma ovisi o materijalu, načinu nanesenog opterećenja i dubini pukotine. Materijal će se odupirati krhkom lomu sve dok mu je faktor intenziteta loma manji od kritične vrijednosti za odabrani materijal. Kritična vrijednost se naziva ravninska žilavost materijala na lom, K_{Ic} . Svaki materijal ima različitu vrijednost i ovisi o dosta čimbenika

7.1. Pukotina u cilindričnom plaštu

Kod tankostijenih posuda pod tlakom mogu se dogoditi dva scenarija:

- 1. Pukotina može postepeno uznapredovati i prodrijeti kroz stijenku posude, uzrokovajući curenje medija iz posude
- 2. Krhki lom (naglo nestabilno širenje pukotine) koji se dogodi prije nego šta posuda procuri

S obzirom da krhki lom kod posuda pod tlakom može izazvati eksploziju, poželjno je da posuda procuri prije nego dođe do loma zbog naglog nestabilnog širenja pukotine. Prema tome, potrebno je dizajnirati posudu da procuri, a da prije toga ne dođe do krhkog loma.

Analitički proračun za provjeru zadovoljava li posuda pod tlakom navedene kriterije je odrađen prema knjizi *Mechanical Behavior of Materials* [5].

Za posude pod tlakom vrijedi sljedeće: nagli krhki lom će se dogoditi ukoliko materijal nema dovoljno veliku žilavost na lom da može podržati pukotinu kroz stijenku duljine:

$$c_c \ge t \qquad (7.1)$$

Takvu pukotinu moguće je analizirati kao središnju pukotinu u plaštu, tako da se duljina može izračunati prema sljedećoj formuli:

$$c_c = \frac{1}{\pi} \left(\frac{K_{\rm Ic}}{\sigma_t} \right)^2 \qquad (7.2)$$

gdje je:

 K_{Ic} – ravninska žilavost materijala na lom (kritični faktor intenziteta naprezanja za odcijepni mod otvaranja pukotine), MPa \sqrt{m}

 σ_t – maksimalno normalno naprezanje koje se javlja u plaštu, MPa

Za odabrani materijal AISI 316L K_{Ic} iznosi 165 MPa \sqrt{m} .

Maksimalno normalno naprezanje u plaštu računa se prema sljedećoj formuli:

$$\sigma_t = \frac{pd}{2t} = 94,29 \text{ MPa}$$
 (7.3)

Gdje je:

p – radni tlak, 1 MPa

d – unutarnji promjer cilindričnog plašta, 1320 mm
t – debljina stijenke, 7mm

Nakon šta smo dobili sve potrebne podatke c_c iznosi 0.97 m odnosno 970 mm. To nam govori da je konstrukcija veoma otporna na krhki lom uzrokovan pukotinom i da je krhki lom skoro pa nemoguć. S ovime smo zadovoljili uvjet curenja prije pucanja.

U slučaju da posuda curi duljina pukotine iznosi 2c = 2t. Dubina pukotine iznosi t. U tom trenutku faktor intenziteta naprezanja se računa prema sljedećoj formuli i iznosi:

$$K_{\rm I} = \sigma_t \left(\sqrt{\pi a} \right) = 13,98 \, \mathrm{MPa} \sqrt{\mathrm{m}} \qquad (7.4)$$

Prema tome faktor sigurnosti iznosi:

$$X_K = \frac{K_{\rm Ic}}{K_{\rm I}} = 11.8$$
 (7.5)

7.2. Numerička analiza pukotine u cilindričnom plaštu u softverskom paketu Ansys

U sklopu softverskog paketa Ansys Mechanical postoji Fracture tool koji se koristi za proračun pukotina. U sklopu ovog poglavlja prikazat ću proračun nekoliko pukotina različitih dimenzija i usporediti rezultate sa analitičkim pristupom. S obzirom da se u knjizi *Mechanical Behavior of Materials* [5] koriste izrazi za cilindrični plašt bez otvora i ojačanja, kao geometriju uzet ću cilindrični plašt bez ikakvih dodatnih komponenti. S obzirom da posuda pod tlakom na stražnjoj strani konstrukcije nema ni jedan otvor, a pozicija pukotine će biti tamo poizicionirana kako bi mogli usporediti s analitičkim rezultatima, model s kojim idemo u analizu neće imati niti jedan otvor na sebi.

Slika 7.1. Stražnja strana posude pod tlakom

Cilindrični plašt ubacujemo u Ansys, kao šta je prikazano na slici 7.2.

Slika 7.2. Geometrija cilindričnog plašta u Ansysu

S obzirom da se radi o lokalnom modelu cilindričnog plašta potrebno je nanijeti rubne uvjete koji odgovaraju globalnom modelu posude pod tlakom. Na gornji i donji rub modela nanešene su translacije po osima koje odgovaraju prosječnim translacijama na tim pozicijama u globalnom modelu.

Nanešen je tlak na unutarnje plohe cilindričnog plašta u vrijednosti od 1 MPa. Prikaz opterećenja dan je na slici 7.3.

Slika 7.3. Opterećenje modela

Model je umrežen sa paraboličkim tetraedarskim elementima veličine 50 mm. Prikaz mreže konačnih elemenata dan je na slici 7.4.

Slika 7.4. Umrežena geometrija

Nakon šta smo definirali potrebne rubne uvjete i opterećenja, možemo pokrenuti proračun i usporediti rezultate sa globalnim modelom. Budući da nas zanima maksimalno normalno naprezanje usporedit ćemo ga na stražnjoj strani oba modela. Maksimalno normalno naprezanje javlja se u smjeru globalne osi X.

Slika 7.5. Normalno naprezanje u smjeru X osi cilindričnog plašta u Ansysu

Slika 7.6. Normalno naprezanje za X os cilindričnog plašta u globalnom modelu

Možemo primijetiti da se maksimalno normalno naprezanje na obje slike kreće oko 94 MPa, šta je veoma blizu analitičkom rješenju od 94,29 MPa koliko smo dobili. Da bi još smanjili grešku pukotina će biti pozicionirana na pola visine cilindričnog plašta, h = 1600 mm

Treba napomenuti da Ansys računa faktor intenziteta naprezanja za sve načine (modove) otvaranja pukotine (I – odcijepni, II – smični, III – vijčani). Odcijepni mod je najčešće najdominantniji i zbog toga najkritičniji za daljnje otvaranje pukotine. S obzirom da su ostali modovi puno manji, oni neće biti prikazani u rezultatima jer nemaju veliku relevantnost s obzirom da se uvijek gleda dominantna vrijednost faktora intenziteta naprezanja.

Pukotina se modelira kao polu elipsa sa parametrima većeg i manjeg radijusa elipse. Slika pukotine dana je ispod.

Slika 7.7. Prikaz pukotine u Ansysu [6]

U sklopu analize napravit ću tri pukotine sa parametrima prikazanim na slikama 7.8 do 7.10.

Scope		^
Source	Analytical Crack	
Scoping Method	Geometry Selection	
Geometry	1 Body	
Definition		
Coordinate System	crack	
Align with Face Normal	Yes	
Project to Nearest Surface	Yes	
Crack Shape	Semi-Elliptical	
Major Radius	3. mm	
Minor Radius	1. mm	
Mesh Method	Tetrahedrons	
Largest Contour Radius	1.5 mm	
Growth Rate	Default (1.2)	1
Front Element Size	Default (0.15106 mm)	
Mesh Contours	6	
Solution Contours	Match Mesh Contours	
Suppressed	No	

Slika 7.8. Parametri prve pukotine

Scope		
Source	Analytical Crack	
Scoping Method	Geometry Selection	
Geometry	1 Body	
Definition		
Coordinate System	crack	
Align with Face Normal	Yes	
Project to Nearest Surface	Yes	
Crack Shape	Semi-Elliptical	
Major Radius	5. mm	
Minor Radius	2. mm	
Mesh Method	Tetrahedrons	
Largest Contour Radius	1.5 mm	
Growth Rate	Default (1.2)	
Front Element Size	Default (0.15106 mm)	
Mesh Contours	6	
Solution Contours	Match Mesh Contours	
Suppressed	No	

Slika 7.9. Parametri druge pukotine

E Scope	
Source	Analytical Crack
Scoping Method	Geometry Selection
Geometry	1 Body
Definition	
Coordinate System	crack
Align with Face Normal	Yes
Project to Nearest Surface	Yes
Crack Shape	Semi-Elliptical
Major Radius	6. mm
Minor Radius	4. mm
Mesh Method	Tetrahedrons
Largest Contour Radius	1.5 mm
Growth Rate	Default (1.2)
Front Element Size	Default (0.15106 mm)
Mesh Contours	6
Solution Contours	Match Mesh Contours
Suppressed	No

Slika 7.10. Parametri treće pukotine

Mreža konačnih elemenata umrežene pukotine prikazana je na slici 7.11. Za ostale dvije pukotine neće biti prikazano umrežavanje.

Slika 7.11. Prikaz umrežene pukotine

Nakon šta smo definirali sve potrebne podatke možemo pokrenuti analizu.

7.2.1. Prikaz rezultata

U nastavku su dani rezultati faktora intenziteta naprezanja za tri različite veličine površinske pukotine u plaštu posude (slike 7.12 do 7.14).

Slika 7.12. Faktor intenziteta naprezanja za prvu pukotinu

Slika 7.13. Faktor intenziteta naprezanja za drugu pukotinu

Slika 7.14. Faktor intenziteta naprezanja za treću pukotinu

Dobivene rezultate potrebno je usporediti sa analitičkim vrijednostima. Analitičke podatke je potrebno očitati iz grafa koji se nalazi na slici 7.15, a može se naći u knjizi *Fatigue Crack Growth*

Detect-Assess-Avoid [7]. Graf daje vrijednost geometrijskog faktora za polu-eliptične površinske pukotine. Treba naglasiti da graf ne uzima zakrivljenost plašta u obzir nego promatra pukotinu kao da se nalazi na ravnoj ploči.

Slika 7.15. Graf za očitovanje geometrijskog faktora pukotine [6]

Formula koja se koristi za analitički proračun glasi:

$$K_{\rm I} = Y_{\rm I} \sigma_t \sqrt{\pi a} \qquad (7.6)$$

gdje je:

 σ_t – maksimalno normalno naprezanje koje se javlja u plaštu i iznosi 94.29 MPa

a – dubina pukotine i njena vrijednost je dana u tablici ispod za svaku pojedinu pukotinu

 $Y_{\rm I}$ – geometrijski faktor pukotine

Usporedba dana je u tablici 7.1.

					Odstupanje
	Parametri	Geometrijski	Numeričko	Analitičko	od
Pukotina	pukotine	faktor	rješenje	rješenje	analitičkog
	(mm)	Y _I	$(MPa\sqrt{m})$	$(MPa\sqrt{m})$	rješenja
					(%)
1	c = 3, a = 1	0,98	5,09	5,18	1,74
2	c = 5, a = 2	0,99	6,86	7,39	7,2
3	c = 6, a = 4	0,9	8,09	9,51	14,93

Tablica 7.1. Vrijednosti intenziteta faktora naprezanja

Prema dobivenim rezultatima možemo zaključiti da zakrivljenost plašta rezultira razlikom između numeričkog i analitičkog pristupa koji ne uzima u obzir zakrivljenost. Također, vrijednost naprezanja dobivena numeričkim putem nije potpuno jednaka onim analitičkim šta isto utječe na konačni rezultat.

Unatoč tome, možemo zaključiti da je vrijednost intenziteta faktora naprezanja ispod vrijednosti K_{Ic} i do daljnjeg nestabilnog širenja pukotine neće doći u ni jednom od 3 analizirana slučaja.

7.3. Pojava pukotine u zavaru dovoda fluida

Tijekom proizvodnog procesa posude pod tlakom, sve cijevne priključke i komponente koje se spajaju na posudu pod tlakom potrebno je zavariti. Tijekom zavarivanja komponente za posudu pod tlakom mogu se javiti nesavršenosti i/ili pukotine u samom zavaru ili u materijalu oko pukotine kao rezultat samog procesa zavarivanja.

Tijekom procesa inspekcije posude pod tlakom moguće je uočiti pukotinu ili naznake pojave pukotine. Pojava pukotine i nesavršenosti nikako nije poželjna, ali za takve slučajeve gdje je pukotina uočljiva i možemo je fizički opisati, moguće je odraditi numeričku analizu pukotine i provjeriti njen utjecaj na strukturalni integritet same posude i predstavlja li pukotina potencijalnu opasnost. Primjer pukotine koja se može javiti u zavaru dan je na slici 7.16.

Slika 7.16. Pukotina u zavaru [8]

U sklopu ovog poglavlja odradit će se numerička analiza jedne od pukotina koja se javlja na zavaru između cilindričnog plašta i dovoda fluida.

7.3.1. Numerička analiza pukotine u zavaru

Za potrebe ove analize napravljen je lokalni model dovoda fluida. Lokalni model je prikazan na slici 7.17.

Slika 7.17. Lokalni model dovoda fluida

S obzirom da promatramo utjecaj pukotine na zavaru, potrebno ih je bilo izmodelirati. Geometrijski parametri zavara definirani su prema Tablici 3.6. Detaljni prikaz zavara dan je na slikama 7.18 i 7.19.

Slika 7.18. Prikaz zavara sa vanjske strane posude pod tlakom

Slika 7.19. Prikaz zavara sa unutarnje strane posude pod tlakom

Zavare nije preporučljivo modelirati u globalnim modelima jer predstavljaju potencijalni koncentrator naprezanja zbog oštrih kuteva koji nastaju tijekom modeliranja i potrebna je gušća mreža kako bi se kvalitetno omrežili.

Za potrebe ove simulacije napravljena je parabolična tetraedarska mreža konačnih elemenata veličine 5 mm.

Prikaz omreženog modela dan je na slici 7.20.

Slika 7.20. Omreženi lokalni model

Rubni uvjeti su postavljeni kao u prethodnom poglavlju, definirana je translacija vanjskog ruba plašta čija je vrijednost uzeta iz globalnog modela. Opterećenje je definirano kao tlak od 1 MPa i naneseno je na sve plohe koje su tlaku izložene.

S obzirom da je u prethodnom poglavlju prikazano nanošenje rubnih uvjeta i opterećenja, u ovom poglavlju taj dio je izostavljen.

Nakon šta smo pokrenuli simulaciju možemo usporediti naprezanje prema kriteriju Von Misesa za lokalni i globalni model. Usporedba je dana na slikama 7.21 do 7.23.

Slika 7.21. Naprezanje prema Von Misesu u Ansys mechanicalu

Slika 7.22. Detalj koncentracije naprezanja zbog utjecaja zavara

Slika 7.23. Naprezanje dovoda fluida u globalnom modelu

Možemo primijetiti da je naprezanje veoma slično, osim šta se zbog utjecaja zavara pojavljuje koncentracija naprezanja šta je bilo i za očekivati.

Potrebno je još definirati parametre pukotine. Pukotina će biti pozicionirana u zoni najvećeg opterećenja jer je tamo najveća šansa da dođe do njenog širenja. Pozicija pukotine prikazana je na slici 7.24, a u nastavku su dani parametri pukotine.

Slika 7.24. Pozicija pukotine na zavaru

Scope		
Source	Analytical Crack	
Scoping Method	Geometry Selection	
Geometry	1 Body	
Definition	~	
Coordinate System	Coordinate System	
Align with Face Normal	Yes	
Project to Nearest Surface	Yes	
Crack Shape	Semi-Elliptical	
Major Radius	2. mm	
Minor Radius	1. mm	
Mesh Method	Tetrahedrons	
Largest Contour Radius	1. mm	
Growth Rate	Default (1.2)	
Front Element Size	Default (0.10071 mm)	
Mesh Contours	6	
Solution Contours	Match Mesh Contours	
Suppressed	No	

Slika 7.25. Parametri pukotine

Nakon šta je pukotina definirana potrebno ju je omrežiti. Prikaz omrežene pukotine dan je u nastavku.

Slika 7.26. Omrežena pukotina

U sklopu rezultata bit će prikazana sva tri moda faktora intenziteta naprezanja pukotine (slike 7.27 do 7.30).

Slika 7.27. Prvi mod faktora intenziteta naprezanja

Slika 7.28. Drugi mod faktora intenziteta naprezanja

Slika 7.29. Treći mod faktora intenziteta naprezanja

Možemo primijetiti da je pri mod daleko veći od preostala dva. Prikaz vrijednosti dan je u tablici 7.2.

Parametri pukotine (mm)	$K_{\rm I}, \left({\rm MPa}\sqrt{{\rm m}}\right)$	K _{II} , (MPa√m)	Kııı, (MPa√m)
c = 2, a = 1	6,4	1,1	0,94

Tablica 7.2. Faktor intenziteta naprezanja za pukotinu

S obzirom na dobivene rezultate možemo zaključiti da pukotina nije opasna i da pri radnom stanju posude pod tlakom do daljnjeg širenja pukotine neće doći.

8. UTJECAJ ZAMORA NA PRIKLJUČAK DOVODA FLUIDA

Termin zamor materijala odnosi se na postepenu degradaciju i u konačnosti otkazivanje mehaničke komponente ili konstrukcije pod utjecajem opterećenja koje je ovisno o vremenu. Sa inženjerskog stajališta, problem zamora je naočigled riješen s obzirom da je broj katastrofalnih nesreća koje su uzrokovane zamorom veoma mali. Unatoč tome, manja zamorna oštećenja konstrukcija i mehaničkih komponenti su još uvijek veoma česta i uzrokuju veliku količinu izgubljenog novca i vremena. Takve tipove zamora veoma je teško prepoznati ukoliko inspekcija nije vršena od strane stručnjaka.

Za slučaj posuda pod tlakom, utjecaj zamora je teško pretpostaviti s obzirom da sama konstrukcija nije konstantno izložena cikličkom opterećenju. U većini slučajeva, radi se o procesu punjenja i pražnjenja posude odabranim radnim medijem. Također, u takvim slučajevima najviše su zamoru izloženi cijevni priključci dovoda i odvoda fluida.

Nadalje, s obzirom da se posude pod tlakom smatraju opasnim konstrukcijama, obavezno je provoditi redovite periodičke preglede. U Republici Hrvatskoj 2017. godine izdan je pravilnik o pregledima i ispitivanju opreme pod tlakom. Prema pravilniku kroz radni vijek posude pod tlakom vrše se tri različita testa:

- Vanjski pregled
- Unutarnji pregled
- Ispitivanje tlakom (tlačna proba)

S obzirom na kategoriju tlačne posude dana je smjernica koliko redovno je potrebno izvršiti određenu vrstu pregleda. Tablica s vremenskim periodom inspekcije za različite kategorija posuda pod tlakom dana je na slici 8.1.

DODATAK III. ROKOVI REDOVNIH PERIODIČKIH PREGLEDA

Br.	Opreme pod tlakom visoke razine opasnosti	Vanjski pregled	Unutarnji pregled	Tlačna proba
1	Dijagram 1, Dodatak I	2 godine	6 godina	10 godina
2	Dijagram 2, Dodatak I	2 godine	6 godina	10 godina
3	Dijagram 3, Dodatak I	2 godine	6 godina	10 godina
4	Dijagram 4, Dodatak I	2 godine	6 godina	10 godina
5	Dijagram 5, Dodatak I	1 godina	3 godine	9 godina
6	Dijagram 6, Dodatak I	5 godina		10 godina
7	Dijagram 7, Dodatak I	5 godina		10 godina
8	Dijagram 8, Dodatak I	5 godina		10 godina
9	Dijagram 9, Dodatak I	5 godina		10 godina

Slika 8.1. Vrijeme redovnih periodičkih pregleda posuda pod tlakom u RH [9]

U slučaju posude pod tlakom, koja je promatrana u sklopu ovog diplomskog rada, u PVElite softveru definiran je radni vijek od 100000 sati uz potrebno obavljanje redovne inspekcije, te je softver tijekom proračuna to uzeo u obzir.

EN Allowable Stresses are Hydrotest Allowables		
Fabrication Tolerance Quality Class	Class C (Normal)	-
Design Lifetime in Hours	100000	
Is the Vessel Monitored during it's Lifetime	Yes	-

Slika 8.2. Postavke radnog vijeka posude pod tlakom unutar PVElite softvera

U sklopu ovog poglavlja odradit će se analiza zamora dovoda fluida posude pod tlakom pri čemu će zavari biti modelirani i uzeti u obzir tijekom analize. Analiza će biti izvršena pomoću softverskog paketa Ansys mechanical.

8.1. Numerička analiza zamora priključka za dovod fluida

Kao u prethodnom poglavlju koristi se lokalni model priključka za dovod fluida. S obzirom da su rubni uvjeti i opterećenje jednaki, u nastavku će samo biti prikazana mreža konačnih elemenata i rezultat u obliku ukupnog naprezanja prema teoriji Von Misesa.

Slika 8.3. Mreža konačnih elemenata

Slika 8.4. Ukupno naprezanje prema teoriji Von Misesa

Slika 8.5. Detalj koncentracije naprezanja zbog utjecaja zavara

Maksimalno naprezanje koje se javlja u lokalnom modelu iznosi 189.95 MPa i javlja se zbog utjecaja geometrije zavara. Kako bi dobili analizu zamora, potrebno je ubaciti *Fatigue tool*. Unutar njega odabiremo sve parametre koji su potrebni kako bi odradili analizu zamora.

Cikličko opterećenje je definirano procesom punjenja i pražnjenja, odnosno promatramo stanja posude pod tlakom kada je puna, odnosno prazna.

Slika 8.6. Definicija tipa cikličkog opterećenja

Kako bi mogli dobiti faktor sigurnosti konstrukcije, potrebno je odabrati teoriju dinamičke izdržljivosti prema kojoj će softver izračunati već spomenuti faktor sigurnosti. Neke od metoda su sljedeće: Goodman, Gerber, Soderberg, ASME Elliptical, itd. U nastavku dan je graf gdje su prikazane krivulje za sve navedene teorije.

Slika 8.7. Kriteriji dinamičke izdržljivosti [10]

Kao kriterij odabrao sam Gerberovu teoriju. Gerberova linija se dobije tako da se na horizontalnoj osi definira vlačna čvrstoća materijala, a na vertikalnoj osi zamorna čvrstoća materijala. Laboratorijska ispitivanja su pokazala da su teorije čije su krivulje linearne previše konzervativne i da krivulje koje su eliptičnog oblika više odgovaraju dobivenim eksperimentalnim podacima [11].

Nakon šta smo sve definirali možemo pokrenuti analizu i prikazati konture životnog vijeka konstrukcije i sigurnosnog faktora.

Slika 8.8. Faktor sigurnosti konstrukcije

Slika 8.9. Životni vijek izražen u ciklusima naprezanja

Slika 8.10. Detalj gdje se javlja smanjena trajnost konstrukcije zbog utjecaja zavara

Možemo zaključiti prema rezultatima koji su prikazani na slikama od 8.8 do 8.10 da je promatrani dio posude pod tlakom veoma otporan na zamor i da može podnijeti predviđeni radni vijek.

9. ZAKLJUČAK

Upotrebom numeričke analize moguće je veoma brzo odrediti naprezanja i deformacije koja se javljaju u posudi pod tlakom. Također, možemo raditi napredne simulacije pojave pukotina i zamora materijala koje je veoma teško provjeriti analitčkim putem kada se radi o složenijim konstrukcijama.

Iako su numerička rješenja danas veoma razvijena, sve proračune potrebno je potvrditi eksperimentalnim ili analitičkim putem kako bi osigurali sigurnost dizajnirane konstrukcije. Još uvijek nismo u mogućnosti potpuno se pouzdati u numerička rješenja zbog potencijalnih grešaka koje se mogu javiti, al i ljudske greške koja se može pojaviti tijekom izrade simulacije.

Moderni softveri poput PVElite koji se baziraju potpuno na standardima jedan su od načina da izbacimo dio analitičkog postupka iz procesa dizajniranja i konstruiranja. Takav pristup numeričkim analizama je puno pouzdaniji jer se temelji na provjerenim analitčkim izrazima koje je moguće provjeriti.

Danas, u modernom industrijskom dobu, računalna tehnologija je postala neizostavni dio svakog konstrukcijkog procesa. Razvoj umjetnih inteligencija još će više povećati točnost samih programa i sustava za analizu, ali za inženjera će analitička i ekperimentalno dobivena rješenja uvijek imati prednost pri donošenju konačnih odluka tijekom dizajna konstrukcije.

10. LITERATURA

[1] MVAventures, <u>https://mvaventures.com/2023/02/09/will-green-ammonia-overtake-green-hydrogen/</u>26.06.2023

[2] MAN Energy Solutions, <u>https://www.man-es.com/discover/two-stroke-ammonia-engine/green-ammonia-production</u> 18.06.2023.

[3] BBC, https://www.bbc.com/news/business-54511743 18.06.2023

[4] EN 13445-3:2009

[5] Dowling, N. E.; Kampe, S. L.; Kral, M. V.: "Mechanical Behavior of Materials"

[6] Stress intensity factor for a semi-elliptical rail head crack under traction, <u>https://www.researchgate.net/figure/Semi-elliptical-crack-in-ANSYS_fig2_327785642</u>, 01.07.2023

[7] Richard, H. A.; Sander, M.: "Fatigue Crack Growth Detect-Assess-Avoid", Springer, 2012.

[8] RapidDirect, https://www.rapiddirect.com/blog/types-of-welding-defects/26.06.2023

[9] Pravilnik o pregledima i isptivanju opreme pod tlakom, <u>Pravilnik o pregledima i ispitivanju</u> opreme pod tlakom (nn.hr) 26.06.2023

[10] Effect of Variable-Repetitive Load Ratio on Fatigue Behaviour of Notched Beam, <u>Fatigue</u> <u>damage criteria In this study, Gerber Damage Criteria is... | Download Scientific Diagram</u> (researchgate.net) 26.06.2023

[11] Budynas, R. G.; Nisbett, J.K.: Shigley's. 2015. Mechanical Engineering Design. 10 Ed., McGraw-Hill Education, New York, 2015.

11. POPIS OZNAKA

p – projektni tlak, [bar]

V – volumen posude, [m³]

P_t – testni hidrostatski tlak, [bar]

E – Youngov modul elastičnosti, [GPa]

v-Poissonov koeficijent

 $R_{\rm m}$ – vlačna čvrstoća, [MPa]

 $R_{p0.2}$ – naprezanje pri kojem nastane trajna plastična deformacija od 0.2%, [MPa]

 $R_{p1.0}$ – naprezanje pri kojem nastane trajna plastična deformacija od 1%, [MPa]

*f*_d – proračunsko dopušteno naprezanje, [MPa]

 f_{test} – dopušteno naprezanje tijekom hidrostatskog testa, [MPa]

e – debljina stijenke, [mm]

D_i – unutarnji promjer cilindričnog plašta, [mm]

De – vanjski promjer cilindričnog plašta, [mm]

L – duljina cilindričnog plašta, [mm]

z-koeficijent zavara

 σ_e – nominalna granica elastičnosti, [MPa]

 P_y – točka naprezanja tečenja, [MPa]

P_m – elastični tlak nestabilnosti, [MPa]

R – unutarnji polumjer sferičnog dijela torisferičnog dna, [mm]

r – unutarnji polumjer torusnog dijela torisferičnog dna, [mm]

h - unutarnja dubina torisferičnog dna, [mm]

- e_s potrebna debljina torusnog dijela kako bi se spriječilo izvijanje, [mm]
- e_b potrebna debljina za ograničavanje membranskog dijela u središnjem dijelu, [mm]
- e_v potrebna debljina torusnog dijela za spriječiti aksisimetrično popuštanje, [mm]
- S_{ma} aksijalno naprezanje najdalje od neutralne osi, [MPa]
- S_{va} aksijalno naprezanje najbliže neutralnoj osi, [MPa]
- S_a dopušteno aksijalno naprezanje za jednu nogu, [MPa]
- S savijanje na dnu noge, [MPa]
- S_b dopušteno savijanje, [MPa]
- *m* masa, [kg]

T – temperatura, [°C]

- $K_{\rm Ic}$ ravninska žilavost materijala na lom, [MPa \sqrt{m}]
- σ_t maksimalno normalno naprezanje koje se javlja u plaštu, [MPa]
- $K_{\rm I}$ faktor intenziteta naprezanja za odcijepni mod pukotine, [MPa \sqrt{m}]
- $K_{\rm II}$ faktor intenziteta naprezanja za smični mod pukotine, [MPa \sqrt{m}]
- K_{III} faktor intenziteta naprezanja za vijčani mod pukotine, [MPa \sqrt{m}]
- $Y_{\rm I}$ geometrijski faktor pukotine
- a manji radijus elipse, [mm]
- c veći radijus elipse, [mm]

12. SAŽETAK

Kroz ovaj diplomski rad prikazan je proces dizajniranja posude pod tlakom prema normi EN 13445 koristeći računalni program PVElite. Nakon odrađenog proračuna, napravljena je numerička analiza posude pod tlakom metodom konačnih elemenata u programskom paketu Femap. Ispitan je utjecaj površinskih pukotina na cilindričnom plaštu i zavaru dovoda fluida. Provjeren je utjecaj zamora na dovod fluida posude pod tlakom.

Ključne riječi: posuda pod tlakom, tlak, inspekcijski otvor, prirubnica, metoda konačnih elemenata, numerička analiza, naprezanje materijala, pukotina, zamor materijala, SolidWorks, Ansys, Femap, PVElite.

13. ABSTRACT

This master thesis presents the process of designing a pressure vessel according to the EN 13445 standard using the computer program PVElite. After performing the calculations, a numerical analysis of the pressure vessel was conducted using the finite element method in the Femap software package. The influence of surface cracks on the cylindrical shell and the weld of the fluid inlet was examined. The impact of fatigue on the fluid inlet of pressure vessel was also investigated.

Key words: pressure vessel, pressure, inspection opening, flange, finite element method, numerical analysis, material stress, crack, material fatigue, SolidWorks, Ansys, Femap, PVElite.