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Estimating Observation Window Parameters From
DICOM Images

Abstract—Digital Imaging and Communication in Medicine
(DICOM) is a standard format for storing medical images
along with their associated metadata. It supports files obtained
by different imaging techniques and with different bit depths.
However, most monitors can only display images with a depth
of 8 bits, so medical images often need to be converted. To
preserve as much information as possible, a windowing area of
interest is selected from the entire range of pixel values. This area
is defined by two parameters: window level and width, which
are often missing, so the conversion cannot be done accurately.
In addition, most state-of-the-art deep learning models require
images in 8-bit format, so the missing information hinders wider
application of artificial intelligence in clinical practise. In this
manuscript, we explore the possibility of using a convolutional
neural network trained on medical images and metadata to
estimate the missing window parameters. The hypothesis was
that semantically similar images have a similar area of interest
so the window parameters can be estimated directly from the
images themselves. The dataset consisted of approximately 24,700
DICOM files with different bit depths, modalities and body
parts, obtained from the Clinical Hospital Centre Rijeka PACS.
The performance of the predicted windowing parameters was
measured by the mean squared error of the true and predicted
values and by entropy (amount of preserved information). This
performance was compared to windowing with true parameters
and methods proposed in ”Estimation of Missing Parameters
for DICOM to 8-bit X-ray Image Export” by Hržić et al. We
show that although it is possible for a neural network to learn
windowing parameters from medical imaging data, in terms
of entropy it still fails to outperform some simpler methods
proposed in the aforementioned study, so we investigate why.

Index Terms—DICOM, Medical Imaging, Radiology, Artificial
Intelligence, Deep Learning, Convolutional Neural Network,
Mean Squared Error, Entropy

I. INTRODUCTION

In recent years, the rapid growth of computing power has
enabled major breakthroughs in the field of artificial intelli-
gence (AI), leading to its integration into our daily lives, and it
is becoming an invaluable tool in clinical practice. Various AI
techniques, such as fuzzy expert systems, evolutionary compu-
tation and hybrid intelligent systems have been explored, but
artificial neural networks (ANNs) are most commonly used
[1]. With advances in deep learning and computer vision, there
is growing iinterest in the application of AI technologies in
radiology, as the amount of radiological imaging data grows
faster than the number of medical professionals who can
interpret it [2]. Some advantages of using AI in medical
applications are that it can recognise patterns and relationships
in medical data that are too complex for humans and provide
quantitative assessment with reproducible results, and in case
of deep learning, the features to be learned by the machine
learning (ML) model do not need to be computed before

training. This can, in some cases, remove the human bias of
selecting features that deemed to be important and instead keep
only those features that have been calculated as truly relevant
[3].

An important factor that has led to greater applicability of
AI in radiology is the standardisation of medical images. As
medical technology advanced, the volume of medical image
data with different characteristics increased exponentially, and
picture archiving and communication systems (PACS) were
developed in order to provide economical storage, easy re-
trieval and availability of medical images at different locations
[4]. There are several widely used file formats for medical
images [5], but this paper will focus on Digital Imaging and
Communication in Medicine (DICOM) format. The DICOM
file consists of an image (raw pixel data) and metadata stored
in the header of the file, which provides additional information
about the image, such as patient information, information
about the institution the image belongs to and properties of
the device the image was captured on [6]. The DICOM format
supports images obtained through various imaging techniques,
such as Magnetic Resonance (MR), Computed Tomography
(CT), Computed Radiography (CR), Nuclear Medicine (NM)
and so on [7], [8]. These techniques result in images with
different bit depths, such as 10, 12 or 16 bits, but most
devices can only display images with 8 bits depth. For this
reason, medical images are transformed by enhancing the
area of the image that contains information important to
medical professionals. This is achieved by defining useful pixel
intensity range using two parameters: window level and width,
which determine the lowest and highest pixel intensity that
will be displayed. Values within the window area are mapped
to range 0-255 and linearly interpolated, while those below
the window threshold are mapped to 0 (pure black) and those
above to 255 (pure white). Additionally, the human eye can
only distinguish between 700 and 900 shades of gray [9],
which means that there would be no benefit of displaying
images with bit depth greater than 10 in their true depth.
Furthermore, studies have shown that the human eye can only
distinguish about 30 shades of gray in images displayed on
monitors [10], [11], which means that applying windowing
makes it easier to see important information in the image as
the difference between different shades would appear more
significant. The flowchart in Fig. 1 shows the process of
applying windowing to an image.

Despite technological advances and the increase in medical
imaging data, only a small subset of it is actually useful
for the development of ML algorithms [12], [13]. Some of
the challenges are that most of this data is kept private in
hospitals due to patient privacy concerns and that the data is
often mislabeled or there is crucial information missing. Fur-
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Fig. 1: Flowchart of steps taken to transform original image to 8-bits.

thermore, most publicly available ML algorithms are intended
for use with common image formats (jpg, png, bmp, etc.),
which typically have a depth of 8 bits. Therefore, medical
image data must be preprocessed accordingly [14], which is
not possible if important information such as imaging method
or window parameters is missing. The need for high quality
datasets is why many researchers are exploring methods for
preparing available data, such as using autoencoders to reduce
metadata complexity [15] and methods for filling in missing
information, such as the study by Hržić et al. [16] that aims
to estimate missing window level and width parameters.

While this paper has the same goal, there are some key
differences between these studies. Firstly, in the study by
Hržić et al. windowing parameters were chosen based on
different policies that do not take true windowing parameter
values into account, while this study explored the feasibility
of using deep learning to predict windowing parameters. The
initial assumption was that semantically similar images have
similar values for window level and width, and therefore a
deep neural network could learn features for predicting them.
Semantic similarity refers to extraction of higher level features
from images, meaning it is about interpreting the objects and
relationships between them, unlike visual similarity which
compares purely visual features, such as colour, shape, texture
and so on [17]. Secondly, the dataset used in the study by Hržić
et al. consisted solely of X-ray images of 12 or 16-bit depth,
while in this study the images had various modalities and bit
depths ranging from 8 to 16 bits. Finally, this study also aimed
to explore whether and how much other metadata information,
namely bit depth, modality and body part examined, contribute
to the accuracy of window parameter predictions.

II. MATERIALS AND METHODS

A. Dataset

The utilised dataset was originally used in the study by
Napravnik et al. [15]. It originates from the PACS system
in the Clinical Hospital Centre (CHC) Rijeka. There are
approximately 24,700 images with grayscale pixel data that
were obtained in one of these six modalities – MR, CT,
CR, NM, X-ray Aniography (XA) and Radio Flouroscopy
(RF). They appear in similar ratios (approximately 4,000
images per modality). The metadata for these images contained
the following information: Modality (one of the six possible
values), WindowCenter and WindowWidth, Rows and Columns
(original pixel ratio of the image), BodyPartExamined (there
were 28 different values present, but many samples had this
information missing), HighBit (bit depth of the image) and
StudyDescription. When the images were received, they were
scaled to dimensions 512 x Columns/512 and saved as numpy
arrays, which significantly reduced the number of required
preprocessing steps. The dataset was divided into train set
(approximately 18000 images), validation set (2000 images)
and test set (5000 images).

1) Metadata preprocessing: Rows and Columns tags were
dropped as they are not relevant to the experiment and
the images were already scaled. StudyDescription tag was
also dropped since it contains natural language which is
challenging for machines to process. Next, some instances
of WindowCenter and WindowWidth contained two numeric
values, so only the first of them was kept. Since images
had different bit depths, their values were scaled to range 0-
255. Lastly, tags Modality, BodyPartExamined and HighBit
describe a distinct category an image belongs to so they were
one-hot encoded.

2) Image preprocessing: The images initially had different
shapes and bit depths, but most deep learning libraries require
the images to have the same shape, bit depths and to be
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saved in a more widely used image format. Therefore, the
images were scaled to 8-bit depth, resized to 128 x 128 pixels
using bilinear interpolation in the original aspect ratio, so zero
padding was applied where necessary. Next, the images were
saved in grayscale png format. Normally windowing would
have been applied before scaling to 8-bit depth to retain as
much useful information as possible, but because the idea of
this study was that required information is missing, this step
was omitted.

When inspecting the data, some images appeared to be
corrupted, more specifically they contained only zeroes even
in the original numpy array format, so they were removed
from the dataset. The dataset was standardized by subtracting
the mean value of the train dataset from all data and dividing
it by standard deviation, as recommended by many state-of-
the-art convolutional neural network (CNN) models [18]–[21],
and the same values were later used for validation and test set
preprocessing.

B. Convolutional neural network

Model building was carried out in two stages. In the first
stage, the goal was to evaluate model performance based
solely on the image input, while in the second stage, metadata
features were added in order to asses whether they contribute
to prediction accuracy. The influence of each metadata feature
was tested separately and in different combinations. Structures
of both final models can be seen in Fig. 2. As the division
of train, validation and test sets can greatly affect the model
performance score, an average performance of the models,
measured by mean squared error metric, was determined using
10-fold cross validation, so models with performance close to
their mean scores were used for the experiment.

1) Image only input CNN: Several model structures were
tested with the following hyperparameters to be adjusted: input
image size (64 x 64, 128 x 128 and 256 x 256), number of
convolution layers (2 to 5), the number of filters per layer
(32, 64, 128, 256 and 512), regularization method (none,
batch normalization and L2, for which regularization factors
0.0001, 0.001, 0.01 and 0.1 were tested), the number of dense
layers following the convolution part of the network (from
0 to 3), units per dense layer (from 32 to 512), learning
rate (0.01, 0.001, 0.0001) and finally batch size (32, 64,
128, 256). Rectified Linear Unit (ReLU) was used as the
activation function and He was used as kernel initializer, as
research shows it performs better than default glorot initializer
when ReLU is used as the activation function [22]. Mean
squared error was used for the loss function and metrics, and
Adam was used as the optimizer. Early stopping was used to
find the optimal number of epochs. The best combination of
hyperparameters was found with grid search method. Different
models were trained and tested on the same data, and mean
squared error was used as the comparison metric. The final
model takes images of 128 x 128 pixels as input. Convolution
part of the network is 5 layers deep, each layer having kernel
size 3 and 32, 64, 128, 128 and 256 filters respectively.
Each convolution layer is followed by MaxPooling layer and
flattened after the last one. There are two dense layers after

convolutional part, both with 64 units. Regularization method
is L2 with factor 0.01. There are two dense output layers,
for WindowCenter and WindowWidth, with one unit and linear
activation function. The chosen value of learning rate is 0.0001
and batch size is 256. The structure can be seen in Fig. 2a.

2) Image and metadata input CNN: The second model
used the same starting structure and hyperparameters, with
the addition of a second input of size 35 (vector of one-hot
encoded metadata features) followed by 2 to 5 dense layers
(possible number of units 32, 64, 128, 256). The output of
these layers is concatenated with the output of convolution
layers. Instead of broad grid search, only minor variations of
the original structure were tested, and grid search was applied
to the newly added dense layers. The final network structure
is the same as the first model, with the only difference being
that one dense layer following the convolution was removed.
The number of dense layers for metadata was 4, with number
of units 32, 64, 128 and 256. The structure can be seen in Fig.
2b.

C. A brief overview of scaling methods

In order to compare the performance of different scaling
methods, it will be explained how each of them works.

The method that is usually employed in practice, here
named window scaling, uses parameters WindowCenter and
WindowWidth, which are stored in tags WindowLevel and
WindowWidth in the header of a DICOM file, to define an area
of interest and maps it to range 0-255 (8-bit grayscale image).
Value mapping is performed using the following equation:

PixelIntensity =


0, if PixelValue ≤ -WindowWidth
255, if PixelValue ≥ +WindowWidth
x, otherwise

(1)
The values of -WindowWidth, +WindowWidth and x are

calculated as:

−WindowWidth = WindowCenter − WindowWidth

2
(2)

+WindowWidth = WindowCenter +
WindowWidth

2
(3)

x =
PixelV alue−WindowCenter + WindowWidth

2

WindowWidth
· 255

(4)
Methods predicted image scaling and pre-

dicted metadata scaling work the same, but the difference
is that WindowCenter and WindowWidth are not taken from
DICOM metadata, but predicted using a CNN. The difference
between these two methods is that predicted image scaling
used parameters predicted with a model with only image
input, and predicted metadata scaling those with a model
that takes additional metadata inputs (bit depth, modality and
body part examined). The following methods, while not the
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(a) Image only input CNN structure. (b) Image and metadata input CNN structure.

Fig. 2: CNN structure comparison.

focus of this study, were implemented to provide additional
context for evaluation:

• max bit scaling linearly scales the entire pixel intensity
range of an original image to 8-bit values. More precisely,
0 is mapped to 0, the maximum value in the pixel
intensity histogram is scaled to 255 and the values in
between are linearly interpolated to fit the range. No
windowing is applied. This is the method that was used
to create the image dataset for model training.

• min max scaling sets the lower boundary of the window
to the minimum non-zero pixel intensity value in a
histogram that holds some data, and the upper boundary
is set to the maximum pixel intensity.

• percentile scaling sets the lower boundary to 10-th per-
centile of pixel intensity histogram, and upper boundary
to 90-th percentile, as these values had the best perfor-
mance in the baseline study.

• max peak scaling searches for peaks in the raw pixel in-
tensity histogram. ”Max peak” is defined as the maximum
pixel intensity in a range. The histogram of pixel inten-
sities is first denoised by eliminating all pixel intensity
values that occur less than the 25-th percentile of all pixel
intensity occurrences in the histogram. The lower/upper
boundary of the window is set to the first/last pixel in
the histogram after/before which 10 consecutive pixel
intensity values are different from 0. After selecting lower
and upper boundary, they are moved to maximum peak
in range [StartIndex, StartIndex + SearchSize] for the
lower boundary and [EndIndex - SearchSize, EndIndex]
for the upper boundary, where SearchSize = 32. Values
of denoising percentile and SearchSize were determined
in the original experiment.

D. Evaluation

The evaluation process was carried out in two parts. First,
mean squared error of true and predicted window parameters
was used to evaluate the performance of different models.
Ablation study was performed to determine the contribution of
each metadata feature to accuracy of the model. As this study

builds on the paper by Hržić et al., methods proposed in it
were implemented and compared to deep learning approach.
Second, pixels’ local entropy evaluation, which was used
in the baseline study, was employed to further evaluate the
methods, as shown in Fig. 3. Pixels’ local entropy images
and their histograms were used to measure exactly how much
information is retained after scaling images. A pixel’s local
entropy is a value that represents ”level of complexity” of an
area of an image, and it is calculated as Shannon’s entropy
of the observed pixel in relation to intensity values of the
surrounding pixels [23]. The chosen surrounding area size was
3, like in the baseline study.

After scaling images using different methods, their pixels’
local entropy images were compared to pixels’ local entropies
of the original images. The only difference between the
baseline and this study is that two additional scaling methods
were added: window scaling using predictions of a model with
image only as input, and window scaling using the model
that takes other metadata into account. Local pixel’s entropy
images were compared using the following four methods:

• Histogram intersection. This algorithm calculates a
value that represents how much two histograms overlap.
It is often used in image classification [24], [25] and
therefore assumed to be an appropriate measure of image
similarity.

• Hellinger distance is a metric used to quantify the
difference between two probability distributions. It is also
used in classification problems [26].

• Bhattacharyya distance measures dissimilarity between
distributions of features based on Bhattacharyya coeffi-
cient [27], [28].

• Mean Entropy Distance (MED), which was employed
in the baseline study as a means to determine the differ-
ence of entropy values in relation to a pixel’s position. It
is calculated as mean squared error between each pixel
of an original and a scaled image’s local pixels’ entropy
image. Essentially, mean entropy distance is higher the
more information a scaled image lost in different areas.
This was done because histogram comparison methods
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Fig. 3: Flowchart of steps taken to evaluate scaling methods.

don’t take the position of the pixels’ entropy values into
account and only compare the number of occurrences
of each value, but this information is crucial because
some areas of the image contain information that is more
important.

After comparing pixels’ local entropy images, one-way
ANOVA test [29] was used to determine if there are any sta-
tistically significant differences between the means of utilised
method results. Tukey’s honestly significant difference (HSD)
test [30] was performed afterwards to determine the signifi-
cance between each pair of groups.

III. RESULTS AND DISCUSSION

A. Mean squared error of windowing parameters and ablation
study

Mean squared error analysis shows the difference between
true windowing parameter values and predicted or calculated
ones. The results of each method are shown in table I. It can
be seen that the model with metadata input performed better
than one using only the image, the one using a combination of
HighBit and Modality was only slightly worse, while the other
models had similar performance. It is interesting that some
models with less metadata inputs performed worse than the
model with only image input. Scaling methods not relying on
windowing parameters performed significantly worse for this
metric, especially max peak scaling, due to them determining
windowing parameters using different policies and not learning
them directly.

B. Pixels’ local entropy and histogram analysis

The results of windowing method performances for pixels’
local entropy evaluation are given in Fig. 4. Subfigures a), b),

c) and d) shows results of histogram intersection, Hellinger
distance, Bhattacharyya distance and MED respectively. Each
diagram shows minimum, maximum, median, first and third
quartile of the observed metric. For histogram intersection, the
goal is to obtain higher value, and the maximum value possible
to obtain is 256. For the remaining metrics, lower scores are
better.

Scaling methods window scaling, max bit scaling,
min max scaling, percentile scaling and max peak scaling
were already compared in the baseline study, so similar
results were expected. The performance and results of these
methods will not be discussed as they are not the focus of
this paper, but there are two interesting observations worth
mentioning. The first is that the similarity of max bit scaling
and min max scaling performance is due to many images
containing a completely white letter (”R” or ”L”) that specifies
the side of the projection and many images have a white
border around the edges, which causes min max scaling
to behave exactly like max bit scaling as the entire range
of values is present in most images. The second is that
percentile scaling method obtains the best scores across all
metrics except MED, which is due to this method preserving
information evenly distributed over the whole image, but
losing information in points of interest where it is more
important.

Comparing the results of predicted image scaling and
predicted metadata scaling, it can be seen that pre-
dicted image scaling performs only slightly better than
max bit scaling and min max scaling across all metrics ex-
cept MED, where it performs the worst among all methods.
This is because incorrect windowing parameter predictions
lead to completely cropping out areas of interest. However,
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TABLE I: Mean squared error (MSE) of models with different combinations of metadata input labels.

Method WindowWidth MSE WindowCenter MSE

image only window crop 19.26 20.86
image, HighBit, Modality, BodyPartExamined window crop 16.33 19.07
image, HighBit, Modality window crop 18.20 21.12
image, HighBit, BodyPartExamined window crop 19.58 21.88
image, Modality, BodyPartExamined window crop 20.18 20.18
image, HighBit window crop 21.99 24.09
image, Modality window crop 21.56 24.17
image, BodyPartExamined window crop 20.32 21.79
max bit scaling 41.40 35.52
min max scaling 45.07 32.08
percentile scaling 77.91 73.13
max peak scaling 94.96 93.15

Fig. 4: Box plot of evaluation results of different methods: a) histogram intersection, b) Hellinger distance, c) Bhattacharyya
distance, d) MED.

predicted metadata scaling appears to perform much better. In
terms of histogram intersection, Hellinger and Bhattacharyya
distance, it performs slightly worse than window scaling due
to prediction error, while in terms of MED it still performs
worse than all methods except predicted image scaling and
percentile scaling.

Next, one-way ANOVA test was done to determine the
statistical significance of these differences. All metrics re-
sulted in p-value < 0.05, which means that a significant
difference exists, so Tukey’s HSD test was performed to
determine the significance of difference between each pair.
The results are shown in table II. It can be seen that in terms
of histogram intersection there is no significant difference
between predicted metadata scaling and max bit scaling, and
between predicted image scaling and min max scaling. In
terms of distance metrics, there is no significant differ-
ence between max bit scaling and predicted image scaling,
min max scaling and predicted image scaling. However, the
most important observation is that the difference between
window scaling and predicted metadata scaling is still sig-
nificant, meaning that windowing parameters predicted using
a CNN are still worse than max peak scaling in relation to
window scaling.

C. Error analysis

After comparing the methods, we looked into errors that oc-
cur in the model predictions. We noticed that the largest errors

occurred for images of 16-bit depth, usually wholebody imag-
ing or renal scans. Comparing them side by side, we found that
initial scaling of those images using max bit scaling resulted
in images containing virtually no information, as can be seen
in Fig. 5.

Fig. 5: Comparison of wholebody images scaled with
max bit scaling and max peak scaling.

This proves the need for developing windowing methods
before using medical datasets for deep learning, as naive
preprocessing fails to capture all information. These findings
led us to train an additional model, with the same structure as
described in materials and methods, but which used images
scaled with max peak scaling instead of max bit scaling
since they would contain more relevant information. However,
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TABLE II: Results of Tukey’s HSD test. p-values without significant difference are written in bold.

Method #1 Method #2 Histogram
intersection

Hellinger distance Bhattacharyya
distance

MED

max bit scaling max peak scaling 0.0 0.0 0.0 0.0002
max bit scaling min max scaling 0.435 0.8708 0.8708 0.9537
max bit scaling percentile scaling 0.0 0.0 0.0 0.9997
max bit scaling predicted image scaling 0.0339 0.988 0.988 0.0
max bit scaling predicted metadata scaling 0.5944 0.0003 0.0003 0.0
max bit scaling window scaling 0.0 0.0 0.0 0.0

max peak scaling min max scaling 0.0 0.0 0.0 0.0
max peak scaling percentile scaling 0.0 0.0 0.0 0.001
max peak scaling predicted image scaling 0.0 0.0 0.0 0.0
max peak scaling predicted metadata scaling 0.0 0.0 0.0 0.0
max peak scaling window scaling 0.0094 0.6008 0.6008 0.0
min max scaling percentile scaling 0.0 0.0 0.0 0.8013
min max scaling predicted image scaling 0.925 0.999 0.999 0.0
min max scaling predicted metadata scaling 0.0041 0.0 0.0 0.0
min max scaling window scaling 0.0 0.0 0.0 0.0
percentile scaling predicted image scaling 0.0 0.0 0.0 0.0
percentile scaling predicted metadata scaling 0.0 0.0 0.0 0.0
percentile scaling window scaling 0.0 0.0 0.0 0.0

predicted image scaling predicted metadata scaling 0.0 0.0 0.0 0.0
predicted image scaling window scaling 0.0 0.0 0.0 0.0734

predicted metadata scaling window scaling 0.0 0.0 0.0 0.0438

these models did not perform any better despite changing the
preprocessing method. The errors that occurred were similar,
except the max peak scaling models showed an even bigger
tendency to underestimate the parameters, which is in practice
worse as it can crop out areas of interest. Further analysis
showed that most incorrect predictions were made on images
with larger values of windowing parameters (over 10,000, or
around 70 when scaled to range 0-255), which are fewer in
the dataset. Error distribution of image only and image with
metadata input models are shown in Fig. 6.

IV. CONCLUSION

To summarise, the aim of this study was to utilise deep
learning methods to estimate window level and width parame-
ters for scaling images stored in DICOM format, since they are
often missing, but are crucial for correct conversion to an 8-bit
format that can be displayed on most monitors. On top of that,
scaling methods using predicted parameters were compared to
methods proposed by Hržić et al. The deep learning approach
consisted of learning window parameters solely from images
and from images combined with additional metadata from
DICOM files, namely bit depth, body part examined and
modality. The results show that window parameters predicted
using the model with combined input are slightly better than
those of the model learning only from images, but both mod-
els outperform windowing parameters estimated using other
methods. However, they still performed significantly worse
than true window parameters or max peak scaling (which is
much simpler to apply) when it comes to preserving local pixel
entropy, likely due to incorrect predictions cropping out areas
of interest. The largest errors occurred for images with 16-bit
depth that were rarely present in the dataset.

Nevertheless, the study showed that CNNs can learn win-
dowing parameter, given the sufficient amount of data and
model complexity, as even a fairly small model trained in a

few minutes is able to achieve results better than naive scaling
methods in terms of estimating exact window parameter val-
ues. Some ideas worth exploring are whether a better model
architecture exists that further improves prediction accuracy,
such as employing transfer learning to benefit from models
trained on larger datasets, as medical imaging datasets are very
small in comparison. Considering that most errors occurred for
the rarely present or unique data, balancing the dataset in terms
of value range in future studies might be beneficial. However,
the most important research might be developing preprocess-
ing methods, such as max peak scaling, that preserve more
information despite missing metadata information to properly
prepare data for future machine learning projects, as poor data
quality leads to poor model performance.
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PROŠIRENI SAŽETAK NA HRVATSKOM JEZIKU 

Uvod 

U posljednjih nekoliko godina, umjetna inteligencija (UI) se sve češće koristi u medicinskoj 

radiologiji. Razlog tome je povećanje obima medicinskih podataka u digitalnom obliku i činjenice 

da UI modeli imaju sposobnost naučiti kompleksne, ljudima neuočljive uzorke i veze među njima. 

Jedan od razloga za sve češću primjenu UI je standardizacija medicinskih slika. Jedan od 

najkorištenijih formata za medicinske slike je Digitalne slike i komunikacija u medicini (DICOM), 

koji osim same slike u zaglavlju datoteke ima spremljene i metapodatke s dodatnim informacijama 

o slici. DICOM format podržava slike dobivene raznim tehnikama i u različitim dubinama boja. 

Međutim, većina zaslona može prikazati samo slike dubine 8 bitova, pa medicinske slike moraju 

biti prilagođene za takav prikaz. To se najčešće provodi koristeći dva parametra, razina i širina 

prozora (eng. window level and width), koji su pohranjeni u metapodacima. Postupak prilagodbe 

se provodi tako da se pomoću razine i širine prozora odredi početak i kraj korisnog raspona nijansi 

sive, a sve izvan tog područja se prikazuje kao crno ako su vrijednosti manje od početka raspona, 

odnosno kao bijelo ako su veće od kraja raspona. Vrijednosti unutar korisnog raspona preslikavaju 

se u raspon 0-255 i linearno interpoliraju, što dovodi to znatno jasnijeg prikaza slike zbog 

smanjenog raspona koji se treba prikazati. 

Osim toga, većina suvremenih modela za duboko učenje zahtjeva da slike budu u nekom od češće 

korištenih formata, što znači da nedostatak informacija za prilagodbu slika sprječava širu primjenu 

UI u medicini. Zbog toga se istražuju brojne tehnike za obradu medicinskih podataka. U ovom 

radu ispitana je mogućnost korištenja konvolucijske neuronske mreže trenirane na slikama 

medicinske radiologije za predviđanje parametara koji nedostaju. Izvorna hipoteza je da 

semantički slične slike (tj. slike koje sadrže slične objekte), imaju sličan iskoristivi raspon boja, te 

stoga neuronska mreža taj raspon može naučiti iz samih slika. Osnova za ovo istraživanje je članak 

„Estimation of Missing Parameters for DICOM to 8-bit X-ray Image Export“, pa su metode 

predložene u njemu korištene za usporedbu. 

Materijali i metode 

Skup podataka sastojao se od približno 24,700 DICOM slika s različitim dubinama boja sive, 

tehnikama dobivanja slike i dijelovima tijela, a dobiven je iz Kliničkog bolničkog centra (KBC) 

Rijeka. Podaci su bili podijeljeni u trening, testni i validacijski skup. 

Metapodaci su obrađeni tako da se izbacilo tekstualno polje opis studije (StudyDescription) i polja 

o izvornim dimenzijama slike (Rows, Columns), a metapodaci dubina boja, modalitet i proučeni 

dio tijela (HighBit, Modality, BodyPartExamined), koji opisuju kategoriju slike, su one-hot 
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kodirani. Vrijednosti razine i širine prozora (WindowCenter, WindowWidth) skalirani su u raspon 

0-255. Slike su obrađene transformacijom u 8-bitni format s dimenzijama 128 x 128 piksela u 

izvornom omjeru pa je crna podstava dodana gdje je bilo potrebno. Za duboko učenje su 

standardizirane oduzimanjem srednje vrijednosti i dijeljenjem sa standardnom devijacijom trening 

skupa.  

Izrađene su dvije konvolucijske neuronske mreže, gdje je jedna od njih učila parametre samo iz 

slika, a druga je koristila i metapodatke koji opisuju kategoriju slike. Doprinos svake kategorije 

metapodataka ispitan je u ablacijskoj studiji. Obje mreže na izlazu imaju dvije vrijednosti, razinu 

i širinu prozora, skaliranu u raspon 0-255. Srednja uspješnost modela utvrđena je desetostrukom 

unakrsnom provjerom, a za mjerilo točnosti je korištena srednja kvadratna pogreška između 

stvarnih i predviđenih vrijednosti. 

Evaluacija se sastojala od provjere srednje kvadratne greške između stvarnih i predviđenih 

vrijednosti te od usporedbe entropije (količine sačuvanih informacija) i histograma izvornih slika 

i slika transformiranih različitim metodama. Metode iz članka  „Estimation of Missing Parameters 

for DICOM to 8-bit X-ray Image Export“ također su implementirane i njihovi su rezultati 

uspoređeni s predviđenim vrijednostima parametara. 

Rezultati i rasprava 

Analiza srednje kvadratne pogreške pokazala je da su vrijednosti predviđenih parametara znatno 

bliže stvarnim vrijednostima pohranjenim u metapodacima. Ablacijska studija pokazuje da je 

model s dodanim metapodacima nešto bolji od onoga koji je učio samo iz slika. Međutim, analiza 

entropije i usporedba histograma pokazale su da kada model griješi, gube se gotovo sve korisne 

informacije te su u tim slučajevima neke metode iz članka Estimation of Missing Parameters for 

DICOM to 8-bit X-ray Image Export“ znatno uspješnije u očuvanju informacija. 

Analizom grešaka utvrđeno je da korištenje naivnih metoda za prilagodbu slika neke od njih 

transformira tako da se gube gotovo sve informacije, pa modeli iz njih ne mogu učiti. Za takve je 

slike potrebno primijeniti naprednije metode pripremne obrade. Nadalje, utvrđeno je da modeli 

češće podcjenjuju vrijednosti parametara, što je u primjeni lošije jer se tako može promašiti veliki 

dio korisnog raspona. Najveća greške učinjene su na 16-bitnim slikama, obično slike cijelog tijela 

i skeniranje bubrega, s vrijednostima parametara iznad 10,000 (skalirano u raspon 0-255 oko 70), 

koje su znatno rjeđe u skupu podataka. 

Zaključak 

Konačno, eksperimentom je utvrđeno da neuronske mreže uistinu mogu naučiti vrijednosti za 

određivanje korisnog raspona nijansi sive, ali za određene kategorije slika znatno griješe. Budući 
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da su to slike velikih dubina boja koje se teško mogu pretvoriti u 8-bitni oblik bez pripadajućih 

parametara o korisnom rasponu, u budućim istraživanjima potrebno je istražiti metode za 

uspješniju transformaciju takvih slika kako bi bile korisnije za duboko učenje. Nadalje, budući da 

je u ovom radu korištena vlastita struktura neuronske mreže, u budućim radovima bilo bi 

zanimljivo proučiti može li korištenje složenijih modela, npr. primjenom prijenosnog učenja, 

povećati točnost predviđenih parametara. Razlog tomu je što su modeli za prijenosno učenje 

trenirani na jako velikim skupovima podataka (milijuni slika), a skupovi podataka slika 

medicinske radiologije su u usporedbi jako maleni. U tome je slučaju potrebno istražiti potrebni 

postupak za prilagodbu slika kako bi odgovarale obliku koji modeli za prijenosno učenje 

podržavaju.
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