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Chapter 1

Introduction

Over the past several years, machine learning techniques have been incorporated
into the healthcare sector at an impressive rate. Whether the mentioned techniques
predict medical conditions, time to recovery or give out the best medical procedures
for treating patients [3, 4, 5], one of their key requirements is transparency, trust and
prediction reasoning [6]. There are a lot of state-of-the-art machine learning models
that show excellent results in aforementioned tasks, but lack interpretability or are
not explainable, which, in turn, hinders the mentioned requirements [7].

This thesis evaluates interpretability and explainability methods on the case study
of detecting issues related to appendicitis. The goal is to research machine learn-
ing models that could be useful for this case study, as well as to research which
techniques are applicable in order to achieve greater levels of explainability. The
motivation behind each machine learning model’s selection, as well as its advantages
and disadvantages have to be described. After that, detailed analysis of the used
data has to take place and the selected models have to be fitted to the mentioned
data. Lastly, appropriate explainability techniques need to be applied and discussed.

In order to evaluate different machine learning algorithms, as well as to make the
recommendations, a medical tabular dataset provided by Medical University of Graz,
Department of Radiology was used. The dataset consists different features related to
appendicitis and the outcome that needed to be predicted – preoperative diagnosis
for appendicitis. The dataset itself is further discussed and analyzed in subsection

1



Chapter 1. Introduction

2.1 on page 5.

Once the models’ performance was evaluated, different explainability techniques
were utilized to produce human-understandable reasoning behind their predictions.

1.1 The importance of interpretability and explain-

ability

In the era of using ever more complex machine learning models in ever broader scope
of tasks, a need for providing insight into models’ inner workings and its decision has
significantly risen [8].

Interpretability in a model implies that these models’ internal logic and inner
workings are understandable to humans which makes it possible to verify, interpret
and understand the reasoning of the system and how a particular decision was made
– without any additional methods that provide such interpretations [9]. For exam-
ple, decision trees are interpretable – one can exactly follow the model’s train of
thought. In contrast, convolutional neural networks are not interpretable – one can
not understand why the model predicted a certain outcome. Model’s interpretability
is usually inverse to its complexity, as shown in figure 1.1.

On the other hand, explainability aims to take a machine learning model, explain
its behaviour and reveal the connection between input data and model outputs [10].
For instance, how one input feature is related to the final model’s prediction. Model’s
predictions can be explained using various explainability techniques, some of which
are model-agnostic – applicable to any machine learning model. Certain model-
agnostic explainability techniques are described and demonstrated in chapter 2.

Interpretability and explainability can help with increasing the transparency, ac-
countability, trust, understanding and prediction reasoning in machine learning mod-
els. These perks are especially instrumental in medicine and healthcare to ensure
that the recommendations made by intelligent systems are sound, correct, justifiable
and enable the care providers to make better decisions and infer new knowledge,
insights or discovery [11].

2
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Figure 1.1 Model interpretability versus model complexity. One can notice that as
model complexity increases, its interpretability decreases. There is an
overlap area between interpretable and non-interpretable models since
the judgement on the interpretability can be unclear for some models. It
is important to note that non-interpretable models can still be explained
using explainability techniques [1].

1.2 Related Work

Since the main aim of the task studied in this thesis is classifying patients’ data into
appendicitis categories from histological and postoperative viewpoints, similar and
related work was researched. The following paragraphs deliver short descriptions of
the mentioned.

A Diagnostic Testing for People with Appendicitis using Machine Learning Tech-
niques paper focuses on a similar topic. The paper presents a machine learning
(ML) technique to predict appendix illness, i.e. whether it is acute or subacute.
The authors compared predictive results of logistic regression, naive Bayes, general-
ized linear, decision tree, support vector machine, gradient boosted tree and random
forest machine learning models [12].

The Use of Machine Learning Approaches for the Diagnosis of Acute Appendicitis
paper aims to develop an easy, fast, and accurate estimation method for early acute
appendicitis diagnosis using machine learning algorithms [13].

Application of Machine Learning to the Prediction of Postoperative Sepsis after
Appendectomy paper focuses on applying various machine learning algorithms to a

3
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large national dataset to model the risk of postoperative sepsis after appendectomy.
They found that machine learning methods can be used to predict the development
of sepsis after appendectomy with moderate accuracy [14].

A novel and simple machine learning algorithm for preoperative diagnosis of acute
appendicitis in children paper used machine learning algorithms to detect appendici-
tis and diferentiate uncomplicated from complicated cases [15] which is very similar
to the topic of this paper.

Using Machine Learning to Predict the Diagnosis, Management and Severity of
Pediatric Appendicitis paper investigated the use of machine learning (ML) classifiers
for predicting the diagnosis, management and severity of appendicitis in children [16].

Machine learning prediction model for postoperative outcome after perforated ap-
pendicitis developed and validated a machine learning prediction model for postop-
erative outcome of perforated appendicitis [17].

Acute appendicitis in the elderly: risk factors for perforation aims to identify the
risk factors of perforation in elderly patients who presented with acute appendicitis
[18].

Other related work includes early detection of appendicitis using smart wearables
[19], developing a scoring system to distinguish uncomplicated from complicated
appendicitis [20] and big data in medicine [21].

However, whilst most of the mentioned related works deal with machine learning
algorithms in the field of medicine and healthcare, it is important to note that none
of then focus on explainabiltiy and interpretability which is the key topic of the
research conducted in this tehsis.

4



Chapter 2

Methodology

As it was mentioned before, this paper includes work with different machine learning
algorithms and appropriate explainability techniques in order to highlight the most
favourable algorithm in this use-case. This chapter brings details and analysis of the
used dataset, algorithms and explainability techniques.

Prior to applying the machine learning algorithms to the selected medical prob-
lem, all of the algorithms were tested on exemplary tasks ensuring the proper imple-
mentation of the selected algorithms and explainability methods.

2.1 Dataset

Initial dataset provided by Medical University of Graz, Department of Radiologly had
9 features, 787 instances, and 4 different columns of output predictions (Histology
Report, Histology Report Binary, Postoperative Diagnosis, Postoperative
Diagnosis Binary). Four instances of dataset were made, with respect to their

output predictions which are described in more detail in subsection 2.1.1. It is
important to note that all of the dataset instances were significantly imbalanced
which made classification process much more challenging.

All instances in the initial dataset which had missing values have been removed.
Thus, the resulting dataset consisted of 696 instances. The majority of removed
instances had Diameter Appendix [mm] values missing.

5
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2.1.1 Dataset instances

Available data was used to create four different datasets:

1. histology binary classification dataset (HBD) – whether the appendicitis is
present from a histological viewpoint,

2. histology classification dataset (HD) – which type of appendicitis (no appen-
dicitis, simple appendicitis, complex appendicitis) is present from a histological
viewpoint,

3. postoperative binary classification dataset (PBD) – predicting postoperative
diganosis to simple and complex,

4. postoperative classification dataset (PD) – predicting postoperative diganosis
in three categories:

(a) simple,

(b) complex and complex with abscess,

(c) perforated and gangranos.

The idea behind dividing the initial dataset into four different datasets is making
the eventual classifier’s task easier. Instead of predicting both postoperative diagno-
sis and histology report simultaneously, those predictions were set apart – making two
separate datasets (HBD and PD). Each of these multinomial classification datasets
were then intepreted as binary classification datasets and adapted to binary classi-
fication regarding their desired output values (HBD and PBD) – making a total of
four datasets.

2.1.2 Dataset distribution

In order to undestand feature values and output classes distribution, histograms of
each feature is provided in figure 2.1.

Multiple imbalanced output classes can be noticed from the given histograms.
It can be observed that all output classes, displayed in subfigures 2.1j, 2.1k, 2.1l
and 2.1m, have highly imbalanced number of instances per class which substantially

6
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compromises the learning process, since most of the standard machine learning al-
gorithms expect a balanced class distribution [22]. This imbalance can be a problem
since most classification algorithms pursue to minimize the error rate over all classes,
i.e. they ignore the difference between types of misclassification errors [23]. They
implicitly assume that all misclassification errors cost equally [23].

7
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(a) Age at Operation. (b) Gender.

(c) Days Abdominal Pain. (d) Temperature.

(e) Tenderness. (f) Leukos [109/l].

Figure 2.1 Dataset features histograms – each feature’s values are visualized through
the use of histograms.
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(g) CRP [mg/l]. (h) No of Sonographies.

(i) Diameter Appendix [mm]. (j) Histology (output class).

(k) Histology Binary (output class). (l) Postoperative Diagnosis (output class).

Figure 2.1 Dataset features histograms – each feature’s values are visualized through
the use of histograms.
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(m) Postoperative Diagnosis Binary (output
class).

Figure 2.1 Dataset features histograms – each feature’s values are visualized through
the use of histograms.
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2.1.3 Correlation

In order to decide which explainability techniques are valid to use on this dataset,
correlation between features and appropriate output predictions must be looked into.
Thus, a correlation matrix for each instance of the dataset was created and is shown
in figure 2.2.

(n) Histology report dataset.

Figure 2.2 Dataset features and output correlation. Correlation for each combination
of features is shown. No significant correlation can be noticed.
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(o) Binary histology report dataset.

Figure 2.2 Dataset features and output correlation. Correlation for each combination
of features is shown. No significant correlation can be noticed.
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(p) Postoperative diagnosis dataset.

Figure 2.2 Dataset features and output correlation. Correlation for each combination
of features is shown. No significant correlation can be noticed.
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(q) Binary postoperative diagnosis dataset.

Figure 2.2 Dataset features and output correlation. Correlation for each combination
of features is shown. No significant correlation can be noticed.

As the correlation coefficients range from negligible correlation to low levels of
moderate correlation [24], we suppose there is no significant correlation between
features and the output and features internally that could hamper the explainability
techniques’ reliability.

14
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2.1.4 Oversampling

Due to the imbalanced dataset, oversampling on each of the available versions of
datasets was also conducted. Only neural network model used such, oversampled
dataset in its training due to lack of noticeable changes in performance metrics with
other models when using this technique. Oversampling is a technique that adjusts the
ratio between the different classes [25]. By performing oversampling on the dataset,
existing minority samples were replicated in order to increase the size of the minority
class [25].

Figure 2.3 illustrates the effect of the used oversampling method. Duplicates
of samples of classes 0 and 2 were appended to the dataset while the frequency of
their respective classes leveled with the most frequent class (in this case, class 1).
Duplicates were selected sequentially meaning that all the samples were duplicated
if the class did not become more frequent than the most frequent class after the
duplication. If that was not possible, number of appended duplicates was MFCfreq−
CCfreq where MFCfreq and CCfreq are the frequencies of the most frequent and
current classes respectively.

Oversampling was only conducted in combination with neural networks and only
on their respective training data subsets [26, 27]. Validation and test data was not
oversampled.
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(r) Class frequencies of the initial dataset.

(s) Class frequencies of the oversampled dataset.

Figure 2.3 Oversampling illustration on HD. One can notice that the oversampled
dataset has perfectly balanced number of classes’ samples due to replica-
tion of existing samples of less frequent class.
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2.1.5 Prototypes and criticisms

Prototypes and criticisms is an explainability technique that is used to calculate and
visualize the dataset’s prototypes and criticisms.

While a prototype should be and instance that is representative of all the data, a
criticism should be its counterpart – an instance that is not well represented by the
set of prototypes. The purpose of this technique is to provide insights to the data,
especially the criticisms which are interesting for further analysis [2].

Prototypes and criticisms on the available datasets were calculated with different
sets of hyperparameters displayed in table 2.1. The clearest visualizations came when
parameter gamma experimetntaly determined to be 0.2, number of prototypes to 15
and number of criticisms to 10.

It is important to note that some criticisms and some prototypes may seem
oddly chosen. Namely, as humans are able to easily perceive only up to three
dimensions, the initial nine-dimensional data had to be put through dimensional-
ity reduction process. The process consisted of applying the t-SNE technique that
visualizes high-dimensional data by giving each datapoint a location in a two or
three-dimensional map whilst trying to preserve as much of the significant structure
of the high-dimensional data as possible in the low-dimensional map [28].

To return to the previously stated observation – the choice of prototypes and
criticisms may seem odd. The reason for it may lay in the dimensionality reduction
process. Whilst the process tries to preserve as much of the structure of the data
that is present in the data’s own, initial hyper-dimensional space, some structure is
bound to degrade as the dimensionality is reduced. That is why some prototypes
and criticisms visualizations make much more sense in 3D than 2D displays – for
example, figures 2.4e and 2.4f.
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Hyperparameter Used values in analysis
gamma [0.2, 0.4, 0.6, 0.8]

n_prototypes [5, 10, 15, 20]
n_criticisms [5, 10, 15, 20]

Table 2.1 Analysed parameters during prototypes and criticisms calculation. The
best combination of parameters was chosen through inspecting the visual-
izations created.

(a) Histology report dataset (2D). (b) Histology report dataset (3D).

(c) Binary histology report dataset (2D). (d) Binary histology report dataset (3D).

Figure 2.4 Generated visualizations for prototypes and criticisms. Prototypes are
located in areas where there is higher density of data samples since they
focus on describing the most data in the best way possible. Criticisms, on
the other hand, are usually located in less densely populated data space.
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(e) Postoperative diagnosis dataset (2D). (f) Postoperative diagnosis dataset (3D).

(g) Binary postoperative diagnosis dataset
(2D).

(h) Binary postoperative diagnosis dataset
(3D).

Figure 2.4 Generated visualizations for prototypes and criticisms. Prototypes are
located in areas where there is higher density of data samples since they
focus on describing the most data in the best way possible. Criticisms, on
the other hand, are usually located in less densely populated data space.
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2.2 Utilized machine learning algorithms

In this chapter, the utilized machine learning algorithms will be preseneted along
with their advantages and disadvantages. Algorithms taken into account are:

1. decision tree,

2. OneR,

3. sequential covering,

4. random forest and

5. neural network (multilayer perceptron).

2.2.1 Decision tree

Decision trees are one of the most popular interpretable machine learning models.
Due to their interpretability, the decision-making process is completely transparent
which is important in high-risk environment such as medicine. A simple decision tree
is shown in figure 2.5 in order to illustrate how a prediction is made in a decision
tree.

The decision tree in this experiment was trained using the popular CART (Clas-
sification and Regression Tree) algorithm. The algorithm splits the available data
based on feature k and its threshold tk (in figure 2.5, k is temperature, and tk is 5).
Parameters k and tk are chosen in a way so that the newly created subsets of initial
data are as homogeneous as possible, i.e. have the lowest impurity. After that, the
algorithm recursively repeats the process for both subsets of data. The process goes
on until the stopping criteria is met.

This experiment used scikit-learn’s implementation of the decision tree – Deci-
sionTreeClassifier. It made training process very straightforward and the output
model was easy to visualize via the built-in plotting functions. The parameters for
maximum depth and minimum samples in each leaf node of the resulting tree were
used as stopping criterium that should limit overfitting of the model. To sum up,
the main advantages of this model are [29]:
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Figure 2.5 Decision tree’s prediction making. Suppose a day in which the tempera-
ture is 3°C and there is 70 centimeters of snow is used as an input. The
decision tree will choose the left subtree of the root node because the
temperature is lower than 5°C and then the right leaf node because there
is some snow. The input day’s season will be classified as winter.

• simple to understand and interpret, easy to visualize,

• require little to none data preparations,

• able to handle multi-output problems – important for the dataset used in this
paper,

• possible to validate using statistical tests – possible to account for the reliability
of the model,

• compputational cost of training and using the model is low,

• white box – meaning we can interpret its internals as well as its predictions.

On the other hand, the leading disadvantages of this model include [29]:

• overfitting (mechanisms such as minimum number of samples required in a leaf
node or maximum tree depth lower the possibility of overfitting),

• predictions are neither smooth nor continuous,
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• some concepts are hard to learn,

• can create biased trees if some classes dominate – important for the dataset
used in this paper.

To sum up, the decision tree model can achieve satisfying results if trained on ap-
propriate data with appropriate anti-overfitting mechanisms. A trained decision tree
is highly interpretable which makes it especially popular among medical scientists –
perhaps because it mimics the way a doctor thinks [30].

2.2.2 OneR

OneR, short for One Rule is a decision rule algorithm which is characterized by its
high levels of interpretability. It resembles a natural way of making conclusions,
predictions and decisions as the algorithm produces IF-THEN statements. OneR
selects a feature that holds the most information about the outcome of interest and
creates decision rules from that feature [2]. For example, a possible decision rule
list learned by this algorithm could be: IF temperature = high THEN fever; IF
temperature != high THEN not_fever.

The algorithm is simple and can be described in a couple of steps [2]:

1. discretize the continuous features,

2. for each feature:

• create a cross table between the feature values and categorical outcome,

• for each value of the feature, create a rule which predicts the most frequent
class of the instances that have this feature value,

• calculate the total error of the rule for the feature,

3. select the feature with the smallest total error.

Basically, the algorithm calculates a rule based on a feature for whose values it
can predict the outcomes with the highest accuracy. The produced rules are fully
interpretable and transparent. OneR algorithm benefits from such interpretability
and simplicity both in training and in use. On the other hand, it does not have the
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capacity to make predictions with as high level of accuracy as other, more complex
algorihms. Despite that, it can often achieve some unexpectedly good results [31].

2.2.3 Sequential covering

Sequential covering is a general procedure that repeatedly learns a single rule to
create a decision list that covers the entire dataset rule by rule [2]. It is somewhat
more complicated to train and use than the previously described algorithm, OneR.
The main idea behind this algorithm is to cover the dataset part by part – first, a
learn a rule that covers an adequate part of the data instances, remove them from
the training set, and then repeat – until all data instances are covered. The process
of learning one rule can vary [32, 33].

More formally, the sequential covering algorithm for binary classifications can be
trained in a few steps [2]:

1. initialize an empty rule list

2. learn a rule r – can be computed by calculating the path to the purest decision
tree’s node or using other similar algorithms,

3. while the positive examples are not yet covered:

• add rule r to rule list

• remove all data instances covered by rule r,

• learn another rule on the remaining data,

4. return the rule list.

The process of training the sequential covering algorithm on binary classification
dataset is shown in figure 2.6.

For multi-class classification, the classes are ordered by increasing frequency. The
algorithm then starts with the least common class which is considered a positive class
in contrast to all other classes which are considered as members of the negative class.
After the rule list for the least common class has been calculated, classes with higher
frequency get marked as a positive class. This process is also reffered to as one-
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Figure 2.6 Visualization of sequential covering algorithm training on binary classifi-
cation dataset [2]. One can notice the steps the algorithm takes in one
iteration to "cover" some data instances and remove the covered instances
in the next iteration.

versus-all strategy in classification [2].

2.2.4 Random forest

Random forest is an ensemble model. Its goal is to pool a set of not necessarily
optimal predictors instead of seeking to optimize a sole predictor [34]. In other
words, forest in random forest comes from a collection of decision trees participating
in predictions, and random comes from the fact that each of the trees is assigned a
random permutation of the training data.

For example, lets consider a random forest model that consists of k decision trees
and is trained on dataset consisting of n instances. Each of k decision trees will be
trained on a random sample Sk of the original training data, usually of size n. As
each sample taken from the original training set is selected at random, each tree’s
training set Sk will probably have copies of some instances, while, in contrast, some
other instances will not be present at all (known as bagging). Different training sets
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for each decision tree result in trees that focus on different specifics of the original
dataset. Therefore, the trees will use different features to make their predictions.

To sum up, random forests use bagging and feature randomness when building
each individual tree to try to create an uncorrelated forest of trees whose prediction
by committee is more accurate than that of any individual trees [35]. Figure 2.7
displays the key difference between decision tree and random forest models.

(a) Decision tree model.

(b) Random forest model.

Figure 2.7 Comparison of decision tree and random forest models. Random for-
est model trained using bagging technique incorporates different feature
across its decision trees therefore making a more generalized predictor.

The biggest advantages of random forest model are:

• the ability to work well with both classification and regression tasks [36],

• increased generalization in contrast to decision trees due to its randomness in
feature selection over its decision trees,

• ability to handle non-linear relationships [36].
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The disadvantages of random forest model include:

• not interpretable – due to usually high number of decision trees, the model’s
decision path for making a prediction is not understandable,

• it can be computationally intensive for large datasets [36].

2.2.5 Neural network

The last machine learning model used in this experiment is neural network, or,
more specifically, multilayer perceptron (MLP). MLP is defined as a fully connected
feedforward neural network with at least three layers (input layer, at least one hidden
layer and an output layer) [37].

Neural network in general is a model inspired by the human brain and the way it
functions. It consists of input and output layers and an arbitrary number of hidden
layers. Each layer consists of neurons – activation functions that map weighted inputs
to outputs. While hidden layers are connected to their respective previous and next
layers, input and output layers are only connected to one, appropriate, hidden layer.
Each connection between some layers’ neurons has its belonging weight that also
serves as a ponder to its neuron [37].

Neural networks are trained through the processes of forward-propagation and
backward-propagation. Forward-propagation implies several steps [37]:

1. propagating the input instances from the dataset to generate output values
from the neural network,

2. comparing the produced output values with the ground-truth values.

After that, the process of backward-propagation takes place [37]:

1. calculating the error at the output units,

2. backward-propagating the error one layer at a time using gradient descent,
until the input layer is reached,

3. updating weights using the calculated gradients and the defined learning rate.
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Figure 2.8 shows a multilayer perceptron that has two hidden layers. Input layer
consists of three neurons, hidden layers of three and two neurons respectively, and
the output layer has one neuron. The network is fully connected, meaning that each
neuron from i-th layer is connected to each neuron from (i+ 1)-th layer.

Figure 2.8 Neural network illustration. Input, hidden and output layers are high-
lighted in red, blue and green colours respectively.

The biggest advantages of neural networks are capability to learn complex, non-
linear models, and to learn models in real-time. Disadvantages includes requirement
to tune a number of different hyperparameters (number of layers, neurons, iterations
etc.), a possibility for different random weight initializations to lead to different
accuracy due to non-convex loss function, possibility of overfitting, and sensitivity
to feature scaling [38].

2.3 Utilized explainability techniques

on non-interpretable models

2.3.1 Partial dependence – PD

PDP (Partial Dependence Plot) shows the marginal effect of one or two features on
the predicted result of the machine learning model [39]. PD plots are thus named
because they show how the model’s predictions partially depend on values of the
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input variables of interest [40]. The value of the PD function is determined by aver-
aging the prediction of the machine learning model when the values of the observed
feature of all instances in the dataset are replaced by the desired value. The expres-
sion which describes the value of the PD function is obtained for a desired value of
the observed feature S is f̂S(xS) = 1

n

∑n
i=1 f̂(xS, x

(i)
C ) [2], and is usually calculated

through all or part of the domain of the observed feature S.

The advantages of PDP are its intuitiveness and ease of implementation. Despite
this, the PDP has a big problem with features that are correlated – for example,
for the calculation of PDP in the figure 2.9, the dependence of temperature on the
season is completely ignored. Thus, for the calculation of PDP for the value of high
temperatures even the dataset’s specimens describing winter days are included in the
calculation of the average prediction value (by setting their temperature to such high
values) which creates a distorted interpretation. Furthermore, since PDP involves
averaging of the calculated values, opposing influences will cancel each other out and
thus may go unnoticed. Another disadvantage of PDP is its inability to visualize the
influence of more than two features simultaneously [2].

PDP example is shown in figure 2.9. By reviewing the PDP, one can notice that
as the temperature rises, so does the number of rented bicycles.

2.3.2 Individual Conditional Expectation – ICE

ICE plots are equivalent to PDP, except that they show each instance of the dataset
as a separate function curve. In other words, for each instance of the data set
{(x(i)

S , x
(i)
C )}Ni=1, the curve ˆ

f
(i)
S is displayed against x(i)

S (replaced by values from feature
S’s domain space), while x

(i)
C remains fixed [2].

The advantages of the ICE display, as with the PDP, are the intuitiveness and
ease of calculation, but also the possibility of detecting opposing influences that may
go unnoticed with the PDP due to the averaging of the calculated values. In addition
to the disadvantages of PDP regarding the neglect of dependencies between features
and the number of features that can be displayed simultaneously, ICE representations
are generally not fully interpretable due to the number of instances within a dataset.
Despite that, they can still provide excellent insight into machine learning models
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Figure 2.9 Partial Dependence Plot for the feature describing the temperature. One
can notice that the rise in temperature in average scenario results in higher
number of rented bicycles.

related to medical use-cases [41], but in general as well [42].

An example of ICE is shown in the figure 2.10. A review of the ICE shows that
there are no instances within the dataset that behave significantly differently from
the average, and that the PDP illustrates the average situation well. Figure 2.10
also shows the Centered ICE view, which often makes it easier to compare dataset
samples with regard to the observed feature.

2.3.3 Accumulated Local Effects – ALE

ALE describes how features affect a machine learning model’s prediction on average.
They are model agnostic so they can be used on any supervised machine learning
model [43]. Unlike PD and ICE, ALE only takes the samples with realistic combi-
nations of features into account [2]:

• PD – what the model predicts on average when the observed feature is set to
the desired value for each instance,
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(a) Individual Conditional Expectation Plot
for the feature describing the tempera-
ture.

(b) Centered Individual Conditional Expec-
tation Plot for the feature describing the
temperature.

Figure 2.10 Individual Conditional Expectation Plot. One can notice the difference
relative to Partial Dependence Plots based on multiple instances that
are displayed through the whole feature value range.

• ALE – how model predictions change in a narrow feature region around a
desired value for dataset instances within that region.
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The ALE value is calculated according to the expression

ˆ̃fj,ALE(x) =

kj(x)∑
k=1

1

nj(k)

∑
i:x

(i)
j ∈Nj(k)

[
f(zk,j, x

(i)
\j )− f(zk−1,j, x

(i)
\j )

]
which can be divided into three parts:

1. effect – the red part of the expression – the difference in predictions (in order
to only take the observed feature’s effect on the prediction into account) over
instances where the feature j is set to the value zk, i.e. zk−1 which marks the
feature j’s edge values of the currently observed region,

2. local – the green part of the expression – calculation of the average difference
in the predictions of all instances in the dataset within the observed region (i.e.
only of realistic instances – the difference in relation to PD),

3. accumulated – the blue part of the expression – the summation of the effect
across all defined areas.

The values obtained by the given expression are centered to show the deviation
from the average prediction – f̂j,ALE(x) =

ˆ̃fj,ALE(x)− 1
n

∑n
i=1

ˆ̃fj,ALE(x
(i)
j ) [2].

Ultimately, the ALE value should be understood as the impact of a feature at a
particular value compared to the average prediction of the model. For example, the
ALE value 15 for xj = 11 means that at such a value of the feature j, the prediction
is for 15 units higher than the average prediction of the model.

ALE plots bring several advantages:

• also work when there is interaction between dataset features,

• calculation is faster compared to PD displays,

• interpretation is clear and intuitive.

Despite the great advantages, the disadvantages of the ALE view are manifested in
the form of determining the number of used areas during the calculation and much
more complex implementation compared to the PD and ICE views [2].

An example of the ALE display is given in the figure 2.11. By examining the
ALE plot, it can be determined that temperature has the greatest influence, and
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wind speed the least influence, on the average model prediction.

Figure 2.11 ALE plot for the features that represent temperature, humidity and wind
speed [2]. Although the plot looks similar to the PDP, only realistic
combination of feature values is taken into account.

2.3.4 Feature interaction

The interaction between two features is the change in the model prediction that
results from a specific combination of feature values after taking the individual con-
tributions of the features into account [2].

For example, if a machine learning model trained on a dataset where the price of
a car is determined by consumption and power characteristics (figure 2.12) is being
explained:

• with the absence of interaction between the features of consumption and power,
the total price of the car will be the sum of the initial price of the car (20000
EUR) and individual contributions to the price based on consumption (high
-1000 EUR, low +2500 EUR) and power (high +5000 EUR, low +1000 EUR)
(subfigure 2.12a),
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• with the interaction of the consumption feature with the power feature, the
total price of the car will be the sum of the initial price of the car, the individual
contributions of both features and the contribution of their interaction in a
certain combination – for example, a car with high power with low consumption
contributes to the price with +7500 EUR (subfigure 2.12b).

(a) Price of the car without feature
interaction.

(b) Price of the car with feature interaction.

Figure 2.12 Feature interaction. The tables show the interaction between features
on each possible value combination.

The level of feature interaction is calculated in a simple manner using the H-
statistic. It is possible to calculate the level of interaction of a certain feature with
respect to all other features or the level of interaction between two features.

If the feature j does not interact with any other feature, the prediction of the
model can be expressed as a sum of PD functions, one of which depends only on the
feature j, and the other on all other features:

f̂(x) = PDj(xj) + PD−j(x−j)

. In the next step, the difference between the obtained outputs from the model and
the assumed function is observed, which reveals the level of interaction [2]. In a
similar way, the level of interaction between a pair of features is obtained.
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The advantages of this method are that all types of interactions are detected,
and the result is a number within the interval [0, 1], which makes the method com-
parable between several different models and features. Despite this, the method is
computationally demanding and includes the estimation of marginal distributions,
which contributes to the instability of the results [2].

An example of the interactions of features with all the remaining features is given
in the figure 2.13.

Figure 2.13 Feature interactions on daily rented bicycles dataset [2]. The plot is very
interpretable – the longer the line, the higher the interaction.

2.3.5 Feature importance

The feature importance level is the increase in the error of the machine learning
model after permuting the feature value, which imitates the effect of destroying the
connection between the feature and the actual result. The way the importance level
of a particular feature is calculated is by looking at the error of the machine learning
model that occurs after said permutation – the more important the feature, the
higher the model’s error after permuting its values [2].

The advantages of this method are that it is easily interpretable, comparable
across different types of problems and takes into account all types of interactions
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with other features. The biggest downside is that it is not completely clear whether
it should be carried out on the test or training dataset, and that there are differences
in the results with regard to the way of permuting the feature values within the
chosen dataset [2].

An example of features’ importance is given in the figure 2.14. One can conclude
that, in accordance with the mentioned procedure, the used machine learning model
gave greatest importance to the feature that describes the temperature.

Figure 2.14 Feature importance on daily rented bicycles dataset [2]. One can notice
that the temp feature is the most important while holiday feature is the
least important.

2.3.6 Shapely values

The Shapely value expresses how much a particular feature contributes to a particular
result of a machine learning model [44].

The goal of the Shapely value is to explain the difference between the average
predicted value of the model and the predicted value of the model, that is, to explain
which feature had what influence in that difference [2].

The Shapely value is determined for a particular feature by calculating its average
contribution using all combinations of all other features.
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An example of the display of Shapely values is given in the figure 2.15 and it can
be concluded that the most negative impact on the model’s prediction was brought
by bad weather and high humidity.

Figure 2.15 Shapely values for a prediction from daily rented bicycles dataset [2].
One can observe that the temperature feature has the most positive
influence on the prediction value, whilst humidity lowers the predicted
value the most.
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Conducted Experiments

This chapter discusses the experiments conducted on the aforementioned dataset
using a selection of machine learning algorithms and explainability methods, all of
which were previously described in chapter 2. All machine learning models included
in the scope of this paper – decision tree, OneR, sequential covering, random forest
and neural network – were trained on each instance of the dataset. Neural network
model was also trained on oversampled versions of the dataset instances, whilst other
models did not use the process of oversampling due to unnoticeable changes in their
performance metrics when using the mentioned process. The explainability tech-
niques described in section 2.3 were used to explain the predictions and background
of non-interpretable models – random forest and neural networks.

3.1 Splitting the dataset

The dataset was split in the same way for each instance of the dataset. Each dataset
was divided to cross-validation data and test data, in usual ratio of 80%-20%. K-Fold
cross-validation with 5 folds was used. In cases where models used oversampling, the
technique was implemented on each fold’s training set only.

All models used this process to split the datasets except for OneR model which
did not use cross-validation data for K-fold cross-validation but for regular training
process since there were no hyperparameters to be tuned.
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3.2 Decision tree

The decision tree machine learning algorithm was created and trained to make pre-
dictions on all instances of the original dataset – HBD, HD, PBD and PD. Data
on its performance for each task was gathered through various metrics. As for ex-
plainability methods, only feature importance was visualized since decision tree is an
interpretable machine learning model thus does not need additional working using
explainability techniques.

Decision tree’s hyperparameters were chosen using experimental analysis – each
combination of the hyperparameters was evaluated using the average accuracy during
cross-validation. Hyperparameters used during experimental analysis, except the
default ones, are shown in table 3.1. Best parameters for each dataset instance’s
decision tree are noted in chapter 4.

Hyperparameter Used values in analysis
max_leaf_nodes [10, 15, 20]
max_features [2, 5, 8]
max_depth [6, 8, 10]

min_samples_split [10, 20]
min_samples_leaf [5, 10]

Table 3.1 Analysed parameters during decision tree model training.

Gathered predictions on test set were analysed and various metrics were cal-
culated – precision, recall, F1-score and accuracy. Plots that visualize mentioned
metrics and confusion matrix were also generated.

Additionally, feature importances were calculated and visualized using sklearn’s
permutation_importance function.

3.3 OneR

As the previous machine learning model, OneR algorithm was also used with all
available dataset instances – HBD, HD, PBD and PD. Various model’s performance
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metrics were gathered. Explainability techniques for this machine learning model
were not used as the algorithm produces rules for a sole feature which makes it as
interpretable as possible.

There were no hyperparameters that could be used so none were analysed and
cross-validation was not used. Model’s performance metrics, namely precision, recall,
F1-score and accuracy were presented through various bar plots and a confusion
matrix display.

3.4 Sequential covering

Sequential covering machine learning algorithm is another and the last of the in-
terpretable machine learning algorithms presented in this paper. Despite its in-
terpretability, its resulting decision list is often long and consists of many rules,
especially in multinomial classification. Because of that, it can benefit of feature im-
portance explainability technique that will sum up the rules’ influences and display
them in an interpretable way.

As the sequential covering algorithm decides on an individual rule by fitting a
decision tree classifier to the data and selecting the purest node to deduct a rule,
there is quite a number of hyperparameters that can be tuned. Hyperparameters
available to tune are actually inherited from the decision tree (specifically sklearn’s
DecisionTreeClassifier).

Hyperparameters were chosen using experimental analysis based on the average
accuracy during cross-validation. Hyperparameters used during experimental anal-
ysis, are shown in table 3.2. Best parameters for each dataset instance’s sequential
covering model are noted in chapter 4.

The results the model accomplished on the test set were displayed in form of
confusion matrix and already mentioned metrics – precision, recall, F1-score and
accuracy.

Aforementioned feature importances were also calculated and plotted and are
displayed in 4.
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Hyperparameter Used values in analysis
max_leaf_nodes [10, 15, 20, 25, 30]
max_features [2, 5, 8, 11]
max_depth [3, 6, 9, 12]

min_samples_split [2, 5, 8]
min_samples_leaf [1, 6, 11]

Table 3.2 Analysed parameters during sequential covering model training.

3.5 Random forest

Random forest machine learning algorithm is an introduction to non-interpretable
models of this chapter. Like all other machine learning algorithms used in this paper,
random forest was used in combination with all instances of datasets – HBD, HD,
PBD and PD.

Random forest model’s pipeline did not differ from the usual pipeline described
on the previous, simpler machine learning models. Tuneable hyperparameters were
analysed with respect to average validation accuracies during cross-validation of each
hyperparameter combination. Hyperparameters used during experimental analysis,
except the default ones, are shown in table 3.3. Best parameters for each dataset
instance’s random forest model are noted in chapter 4.

Hyperparameter Used values in analysis
n_estimators [25, 50, 75, 100]

max_leaf_nodes [10, 20, 30, 40]
max_features [2, 5, 8, 11]
max_depth [6, 8, 10]

min_samples_split [1, 11, 21]
min_samples_leaf [1, 6, 11]

Table 3.3 Analysed parameters during random forest model training.

Visualizations of performance metrics – precision, recall, F1-score, accuracy and
confusion matrix were generated. Furhtemore, since the model is not interpretable,
additional plots that offer explainability were generated:
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1. partial dependence plot,

2. individual conditional expectation plot,

3. accumulated local effects plot,

4. feature importance,

5. SHAP.

Visualizations are presented in chapter 4.

3.6 Neural network

Neural network machine learning model is another non-interpretable model studied
in this paper. It was used for all instances of the initial dataset – HBD, HD, PBD
and PB – but also for their oversampled counterparts. Chapter 4 brings the results
which show whether the oversampling helped. Oversampling technique was exclusive
to neural network models since using the technique did not show any noticeable
changes in other models’ performance metrics.

Previously mentioned 5-fold cross-validation was used to analyse hyperparame-
ter combinations which are shown in table 3.4. Best parameters for each dataset
instance’s neural network model are noted in chapter 4.

Hyperparameter Used values in analysis
learning_rate [0.1, 0.01, 0.001, 0.0001, 10−5]

optimizer [’Adam’, ’SGD’, ’AdamW’,
’Adafactor’, ’Nadam’]

loss (binary/multinomial) [’binary_crossentropy’,
’categorical_crossentropy’]

[’sparse_categorical_crossentropy’,
’categorical_crossentropy’]

dropout [0.05, 0.1, 0.15, 0.2]

Table 3.4 Analysed parameters during neural network model training.

Neural network model always used the same architecture shown in figure 3.1. It
consists of an input layer, hidden layers which include 512, 512, 256 and 128 neurons
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respectively and an output layer. All hidden layers apart the first one are followed
by a dropout layer.

Figure 3.1 Neural network model architecture used in this research.

As for the other models, model performance metrics were generated and visual-
ized appropriately. Range of explainability techniques used is identical to the one
described in the previous section – 3.5.
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Results

This chapter states the performance metrics of each machine learning algorithm
trained on the dataset. Furthermore, results of explainability techniques are pre-
sented in this chapter.

4.1 Decision tree

The decision tree machine learning model was trained on all dataset variations, as
noted in 3.2. The best parameters gathered through experimental analysis are noted
in 4.1.

Hyperparameter HD HBD PD PBD
max_leaf_nodes 20 10 10 10
max_features 2 5 2 2
max_depth 8 6 6 6

min_samples_split 20 20 20 10
min_samples_leaf 5 5 5 5

Table 4.1 Best parameters from experimental analysis for decision tree models.

Various performance metrics gathered for each dataset instance’s decision tree
model on test set and during cross-validation are displayed in table 4.2.
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Table 4.2 Performance metrics from each dataset instance’s trained model.

Dataset Class Precision Recall F1-score Weighted
F1-score Accuracy Validation

accuracy

HD
0 0.00 0.00 0.00

0.69 0.74 0.771 0.76 0.96 0.85
2 0.67 0.40 0.50

HBD 0 0.00 0.00 0.00 0.87 0.90 0.941 0.92 0.98 0.95

PD
0 0.89 0.98 0.94

0.85 0.88 0.841 0.50 0.21 0.30
2 0.00 0.00 0.00

PBD 0 0.92 0.90 0.91 0.85 0.85 0.851 0.43 0.50 0.46

Furthermore, confusion matrix that outlines number of true/false positives/neg-
atives is given in figure 4.1.

Additionally, feature importance plots shown in figure 4.2 further raise the inter-
pretability of the trained models.
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(a) Confusion matrix for HD. (b) Confusion matrix for HBD.

(c) Confusion matrix for PD. (d) Confusion matrix for PBD.

Figure 4.1 Decision trees confusion matrices.
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(a) Feature importance plot for HD. (b) Feature importance plot for HBD.

(c) Feature importance plot for PD. (d) Feature importance plot for PBD.

Figure 4.2 Decision trees feature importance plots. They show that CRP and leuko-
cytes features are dominant concerning the feature importance.
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4.2 OneR

Although OneR was also trained on all of the available dataset instances, there was
not any need for hyperparameter tuning since it has none. Gathered performance
metric on test set are displayed in table 4.3.

Dataset Class Precision Recall F1-score Weighted
F1-score Accuracy

HD
0 0.00 0.00 0.00

0.61 0.701 0.70 0.99 0.82
2 0.62 0.14 0.23

HBD 0 0.00 0.00 0.00 0.88 0.921 0.92 1.00 0.96

PD
0 0.92 0.98 0.95

0.87 0.881 0.45 0.36 0.40
2 0.00 0.00 0.00

PBD 0 0.92 0.98 0.95 0.90 0.911 0.73 0.44 0.55

Table 4.3 Performance metrics from each dataset instance’s trained model.

Confusion matrices for trained OneR models are given in figure 4.3.

No explainability methods were used to explain OneR models’ predictions since
they are as interpretable as possible.
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(a) Confusion matrix for HD. (b) Confusion matrix for HBD.

(c) Confusion matrix for PD. (d) Confusion matrix for PBD.

Figure 4.3 OneR confusion matrices.

4.3 Sequential covering

Sequential covering algorithm was also run on all datasets, and in contrast to OneR,
has several tuneable hyperparameters which were optimised through experimental
analysis. The hyperparameters that proved to be optimal for a specific dataset
instance are presented in table 4.4.

Results of the sequential covering models in view of precision, recall, F1-score
and accuracy metrics are shown in table 4.5.

As when reporting results of the previous models, confusion matrices for sequen-
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Hyperparameter HD HBD PD PBD
max_leaf_nodes 10 20 10 10
max_features 5 2 2 8
max_depth 3 12 3 9

min_samples_split 2 8 2 2
min_samples_leaf 11 1 11 1

Table 4.4 Best parameters from experimental analysis for sequential covering models.

Dataset Class Precision Recall F1-score Weighted
F1-score Accuracy Validation

accuracy

HD
0 0.08 0.09 0.09

0.63 0.63 0.711 0.72 0.76 0.74
2 0.53 0.46 0.49

HBD 0 0.12 0.18 0.15 0.85 0.84 0.911 0.93 0.89 0.91

PD
0 0.92 0.89 0.90

0.83 0.81 0.771 0.45 0.36 0.40
2 0.00 0.00 0.00

PBD 0 0.91 0.88 0.89 0.83 0.82 0.831 0.35 0.44 0.39

Table 4.5 Performance metrics from each dataset instance’s trained model.

tial covering models trained on the available dataset variations are given in figure
4.4.

Furthermore, as sequential covering algorithm outputs decision lists for classi-
fying each class separately, they can easily become long and cumbersome. Due to
mentioned, feature importance analysis is presented as a form of increasing models’
explainability.
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(a) Confusion matrix for HD. (b) Confusion matrix for HBD.

(c) Confusion matrix for PD. (d) Confusion matrix for PBD.

Figure 4.4 Sequential covering confusion matrices.
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(a) Feature importance plot for HD. (b) Feature importance plot for HBD.

(c) Feature importance plot for PD. (d) Feature importance plot for PBD.

Figure 4.5 Sequential covering models’ feature importance plots. CRP feature is the
most important except in HBD where age of the patient is considered the
most important.
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4.4 Random forest

Random forest was, as is already usual, trained and tested on all of the available
dataset instances. Optimal combinations of tuneable hyperparameters found through
the process of experimental analysis are shown in table 4.6.

Hyperparameter HD HBD PD PBD
n_estimators 25 75 100 25

max_leaf_nodes 20 10 20 30
max_features 2 2 2 11
max_depth 6 6 10 10

min_samples_split 11 11 21 11
min_samples_leaf 1 1 1 1

Table 4.6 Best parameters from experimental analysis for random forest models.

Performance metrics of the trained random forest models are available in table
4.7.

Dataset Class Precision Recall F1-score Weighted
F1-score Accuracy Validation

accuracy

HD
0 0.00 0.00 0.00

0.71 0.76 0.791 0.75 0.99 0.85
2 0.88 0.40 0.55

HBD 0 0.00 0.00 0.00 0.88 0.92 0.941 0.92 1.00 0.96

PD
0 0.92 1.00 0.96

0.88 0.91 0.851 0.71 0.36 0.48
2 0.00 0.00 0.00

PBD 0 0.93 0.97 0.95 0.90 0.91 0.871 0.69 0.50 0.58

Table 4.7 Performance metrics from each dataset instance’s trained model.

Confusion matrices for the trained models are shown in figure 4.6 and show
additional insight into the models’ performance.

Feature importance analysis of random forest models is presented in figure 4.7.
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(a) Confusion matrix for HD. (b) Confusion matrix for HBD.

(c) Confusion matrix for PD. (d) Confusion matrix for PBD.

Figure 4.6 Random forest confusion matrices.

As random forest models are not interpretable, much more explainability tech-
niques were run using random forest models with respect to all the previously men-
tioned models in this chapter. Since many explainability visualizations were created
(2 or 3 PD/ICE plots, 9 ALE plots and 1 SHAP plot for each of the four random
forest models), this paper will only focus on explanations for only one random forest
model trained on HD, only one output class and only on one feature – CRP – which
was marked as the most important feature in the subfigure 4.7a. All the explanations
and visualizations can be accessed in a way described in 4.6.

PD/ICE plot is provided in figure 4.8, ALE plot is presented in figure 4.9 and
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(a) Feature importance plot for HD. (b) Feature importance plot for HBD.

(c) Feature importance plot for PD. (d) Feature importance plot for PBD.

Figure 4.7 Random forest models’ feature importance plots. CRP feature is the most
important except in HBD where the number of sonographies performed
is considered the most important.

SHAP plot is given in figure 4.10.
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Figure 4.8 PDP/ICE centered plot for class 2 of random forest model trained on HD.
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Figure 4.9 ALE plot for CRP feature of random forest model trained on HD.
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Figure 4.10 SHAP plot for random forest model trained on HD.
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4.5 Neural network

Work on neural network training was the most extensive. Instead of four dataset
instances, neural network was trained on eight dataset instances due to oversampling
variations of each of the available datasets. Optimal hyperparameters chosen for each
dataset through experimental analysis are available in table 4.8.

After the neural network models were trained using their respective optimal pa-
rameters, performance metrics were gathered using the test set. The gathered data
is shown in table 4.9.

Each model’s confusion matrix and feature importance plot are shown in figures
4.11 and 4.12 respectively.

As neural network models are not interpretable, all of the available explainability
techniques were used to increase the explainability of the models (as with random
forest). Because of the same fact as with random forest models, only one model’s
explanations on one output class and one dataset instance will be displayed. That is
because of a big number of visualizations generated during the process of processing
explainability techniques (2 or 3 PD/ICE plots, 9 ALE plots and 1 SHAP plot for
each of the eight trained neural network models). Displayed explanations will, as
with the random forest model, explain neural network model’s predictions on HD,
class 2 and feature CRP. All the explanations and visualizations can be accessed in
a way described in 4.6.

PD/ICE plot is provided in figure 4.13, ALE plot is presented in figure 4.14 and
SHAP plot is given in figure 4.15.
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(a) Confusion matrix for HD. (b) Confusion matrix for HBD.

(c) Confusion matrix for PD. (d) Confusion matrix for PBD.

Figure 4.11 Neural network models confusion matrices.
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Dataset Class Precision Recall F1-score Weighted
F1-score Accuracy Validation

accuracy

HD
0 0.00 0.00 0.00

0.78 0.81 0.771 0.81 0.96 0.88
2 0.83 0.59 0.69

HBD 0 0.00 0.00 0.00 0.90 0.94 0.941 0.94 1.00 0.97

PD
0 0.86 0.99 0.92

0.82 0.86 0.841 0.80 0.42 0.55
2 0.00 0.00 0.00

PBD 0 0.89 0.97 0.93 0.87 0.88 0.901 0.82 0.52 0.64

HD_OS
0 0.50 0.11 0.18

0.66 0.74 0.741 0.73 0.99 0.84
2 1.00 0.12 0.22

HBD_OS 0 0.15 0.33 0.21 0.86 0.84 0.941 0.95 0.87 0.91

PD_OS
0 0.87 0.98 0.92

0.75 0.81 0.841 0.00 0.00 0.00
2 0.17 0.25 0.20

PBD_OS 0 0.87 0.96 0.92 0.84 0.86 0.891 0.73 0.41 0.52

Table 4.9 Performance metrics from each dataset instance’s trained model.
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(e) Confusion matrix for HD_OS. (f) Confusion matrix for HBD_OS.

(g) Confusion matrix for PD_OS. (h) Confusion matrix for PBD_OS.

Figure 4.11 Neural network models confusion matrices.
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(a) Feature importance plot for HD. (b) Feature importance plot for HBD.

(c) Feature importance plot for PD. (d) Feature importance plot for PBD.

Figure 4.12 Neural network models’ feature importance plots.

63



Chapter 4. Results

(e) Feature importance plot for HD_OS. (f) Feature importance plot for HBD_OS.

(g) Feature importance plot for PD_OS. (h) Feature importance plot for PBD_OS.

Figure 4.12 Neural network models’ feature importance plots. One can observe
that the CRP feature was the most important in all datasets but the
HBD_OS and HBD where no feature is important since the model al-
ways predicts the same outcome.
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Figure 4.13 PDP/ICE centered plot for class 2 of neural network model trained on
HD.
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Figure 4.14 ALE plot for CRP feature of neural network model trained on HD.
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Figure 4.15 SHAP plot for neural network model trained on HD.
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4.6 Additional explainability data

As it is not possible to display all gathered explainability visualizations and plots
in this paper, the mentioned has been uploaded to the author’s GitHub page [45].
The visualizations are available in report folder which consists of NO_OS and OS_NN

folders which designate models trained on non-oversampled and oversampled data
respectively. Each folder inside of the two mentioned folders contains four folders
– one for each type of classified data – histology report, binary histology report,
postoperative diagnosis and binary postoperative diagnosis. Each folder contains
performance data and visualizations of machine learning models, with dt_, oner_,
seqcov_, rf_ and nn_ prefixes marking the file’s affiliation to decision tree, OneR,
sequential covering, random forest and neural network model respectively.
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Discussion

This chapter describes aforementioned results. It tries to highlight the best machine
learning model for each of the available datasets based on their performances, but
based on their interpretability as well.

5.1 Performance

This section discusses the gathered performance metrics of all machine learning mod-
els combined with all available dataset variations. The problem of imbalanced data
is present with all dataset variations and it represents the main factor that lowers
the models’ performances.

5.1.1 Histology multinomial classification

The model which proved to work best on histology multinomial classification dataset
is neural network. It reached a respectable 81% in terms of accuracy in general on
the test set while decision tree, OneR, sequential covering and random forest models
reached somewhat lower accuracy of 74%, 70%, 63% and 76% respectively.

It is important to note that all models failed to classify any of the Class 0

instances from the test set, except the sequential covering model which managed to
classify only one true positive of the class (probably a result of its possibility to overfit
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in small regions of the feature space). However, when oversampling is introduced on
this dataset instance, neural network model manages to devote itself to instances of
Class 0 a bit more, but in turn hampers its F1-score on instances of the remaining
classes.

To sum up, the model that highlights among others is the neural network model
without using oversampling technique during training. Furthermore, instances of
Class 0 proved to be extremely difficult to classify and the models would likely
benefit if more instances of that, least frequent class, were added to the dataset.

5.1.2 Histology binary classification

Interesting thing happens when analysing histology binary classification dataset. Out
of all trained models, only the neural network model in combination with oversam-
pling and sequential covering model succeed in classifying some instances of Class 0.
On the other hand, other models ignore those instances completely as it does not
hamper their accuracy dramatically due to a very imbalanced dataset, as shown in
figure 2.2o.

It is important to note that while both of the aforementioned models succeed in
classifying some Class 0 samples, their performance in classifying Class 0 samples
is not astonishing, but only better when put head to head with other models.

All things considered, the model that can be highlighted as the most appropriate
for histology binary classification is neural network model trained on oversampled
data. Sequential covering model’s performance is close to the higlighted model’s
performance due to its possibility to overfit locally, but lacks some performance
points when classifying Class 0. All the models would likely perform significantly
better if the dataset was not imbalanced in such proportions.

5.1.3 Postoperative diagnosis multinomial classification

Most of the researched models fail completely while trying to classify this dataset’s
Class 2 samples. To be more specific, all models except neural network model
in combination with oversampling do so, but the mentioned model in turn fails
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completely when trying to classify Class 1 samples. The problem is again probably
caused by the imbalanced dataset – class distribution available in figure 2.1l.

Of the trained models, the one that stands out the most is random forest machine
learning model. It achieves the best combination of accuracy in general and F1-scores
per class.

Having said that, depending on one’s interests, the optimal model could well be
one of the interpretable ones – decision tree, OneR or sequential covering. They
almost match random forest’s performance metrics and are easily understood which
is especially important in medicine-related predictions.

5.1.4 Postoperative diagnosis binary classification

Performance metrics on this dataset are somewhat better than the ones on the pre-
vious dataset. No models ignore samples of any class completely.

The model that can be highlighted is neural network model without oversam-
pling during training – it has the best combination of F1-scores and its accuracy is
respectable as well. In this case, oversampling attempt fails completely since all the
performance metrics get worse.

Random forest model also achieves respectable results – while it is slightly more
accurate than the neural network model without oversampling, its F1-scores are
marginally worse.

All the interpretable models achieve respectable results as well. While sequential
covering and decision tree models are closely matched, OneR stands out in a good
way. While it achieves the same levels of performance metrics as the aforementioned
non-interpretable models and exceeds the possibilites of other interpretable models,
one has to ask himself whether he wants only one feature value to decide on his
medical condition.
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5.2 Model interpretability

The models highlighted based on their performance metrics in the previous section
were mainly non-interpretable models – neural networks and random forest. Al-
though they do not offer a dramatic improvement over interpretable models, their
performance metrics are better in general which was expected. In cases where model
intepretability is of high value, one would have to satisfy himself with an interpretable
model of a lower performance. Instead, one could try to overcome the lack of inter-
pretability by using explainability techniques which are the topic of this section.

5.2.1 PD and ICE plots

PD and ICE plots were visualized for neural network and random forest models for
Class 2 of the HD. Both plots were visualized in the same graph.

Random forest model’s PD and ICE plots (figure 4.8) show that rise in CRP
feature causes rise in prediction – model is more certain that class 2 should be
predicted. ICE plots are used to confirm the individual effects were not cancelled
out due to the fact that PD plot shows the averaged effects. This PD plot represents
the situation on average well.

On the other hand, the influence of the CRP feature on neural network model’s
prediction (figure 4.13) is reversed relative to the CRP’s influence in random forest
model. As the CRP rises, the model is less certain the sample should be classified
as a member of Class 2. PD plots show the averaged effect well.

5.2.2 ALE plots

ALE plots were visualized for neural network and random forest models for CRP
feature. ALE plots should show a more faithful representation of the feature’s influ-
ence on the prediction since no unrealistic data samples are taken into account while
calculating ALE values.

Random forest model’s ALE plot (figure 4.9) shows the similar situation as its
PD and ICE counterparts. On the other hand, neural network model’s ALE plot

72



Chapter 5. Discussion

(figure 4.14) shows inverse effect of the CRP feature relative to the PD and ICE plot
counterparts. That could mean that unrealistic data samples were created during
the calculation of PD and ICE plots which resulted in unrealistic explanations in
form of PD and ICE plots.

5.2.3 Feature importance

Generated feature importance plots were shown for all models except the OneR
model since feature importance plot is not applicable to OneR (it only deals with
one feature).

Interpreting feature importance plots is as simple as it can be – the higher the
bar of a feature, the more important that feature is and vice versa. For example,
the most important feature for random forest model trained on the HD is by far the
CRP feature (figure 4.7a). Likewise, the most important feature for neural network
model trained on the same dataset is also the CRP feature (figure 4.12a).

An interesting observation is a feature importance plot where all importances
are zero (figure 4.12a) – present in neural network model trained on HBD without
oversampling. One possible interpretation of such importances lies in the fact that
the model always predicted the same class (can be seen in 4.11b). Because of that,
no feature was important since the model will always predict the same class.

Feature importance plots can also be used to identify models that overfitted or
do not make their predictions reasonably. For example, sequential covering model
trained on HBD values the feature describing the age of the patient the most which
should probably not be the case. Although medical expert’s knowledge is required to
evaluate that observation, feature importance explainability technique did its part
in identifying possible problems in the model.

5.3 SHAP

SHAP plots were generated for random test set instances of neural network and
random forest models. The plot shows each feature’s influence on predicting the
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sample is a member of a given class.

For example, random forest model’s SHAP plot (figure 4.10) shows that CRP fea-
ture has a bigger influence in possibility of predicting the given sample is a member of
Class 1 than of Class 0. Likewise, neural network model’s SHAP plot (figure 4.15)
shows that CRP feature influences the eventual Class 1 and Class 2 predictions,
but has no influence on classifying the sample as a member of Class 0.
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Conclusion

Machine learning models solve a wide range of problems that are otherwise not
solvable. Despite their impressive capabilities, we face the problem of lack of inter-
pretability while using the machine learning models ever more often. It is crucial to
understand and overcome interpretability based problems when the machine learning
models are being used in areas where incorrect predictions can have enormous conse-
quences. Some of these areas include medicine and healthcare, autonomous driving,
finance, environmental science and in quality control.

This paper focuses on evaluating both model interpretability and performance on
selected machine learning models – decision tree, OneR, sequential covering, random
forest and neural network. All models are evaluated using the appendicitis dataset
with four different available classification tasks. The paper summarizes each of the
used machine learning models and explainability techniques. Furthermore, it high-
lights the optimal models and interpretability versus performance trade-off in each
dataset variation.

Future work should include obtaining more data and explore additional oversam-
pling techniques since the biggest issue for the models was unbalanced classes.

To conclude, this paper provides a perspective on the significance of interpretabil-
ity in machine learning models and effectively addresses the balance between inter-
pretability and performance.
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Abstract

This paper includes work on classification of appendicitis from the point of view of
histological analysis and postoperative diagnosis. The paper provides an overview
of various machine learning models – decision trees, OneR, sequential covering, ran-
dom forests and neural networks. Four different versions of the dataset were used
during the experiments. Uninterpretable models were identified and their respective
visualizations were created using explainability techniques which serve to provide
explanations on their decision making.

Keywords — appendicitis, machine learning, interpretability

Sažetak
Ovaj rad se bavi klasifikacijom upala slijepog crijeva s gledišta histološke analize i
postoperativne dijagnoze. Rad obuhvaća pregled raznih modela strojnog učenja –
stabla odluke, OneR, uzastopnog pokrivanja, nasumičnih šuma te neuronskih mreža.
Tijekom provođenja eksperimenata korištene su četiri različite inačice skupa po-
dataka. Neinterpretabilni modeli su identificirani te su za njih tehnikama za pos-
tizanje objašnjivosti modela stvorene vizualizacije koje služe za pojašnjenje njihovog
rada.

Ključne riječi — upala slijepog crijeva, strojno učenje, interpretabilnost
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