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Abstract 

This dissertation addresses the issue of non-linear stability of frame structures consisting of 

thin-walled composite beam elements. To this end, a numerical approach is presented that in-

volves the development of an original 1D finite element model. The research delves into several 

key aspects. Firstly, the dissertation introduces the research problem and scientific motivation 

and outlines the main objectives and purpose of the study. A brief overview of previous studies 

on buckling of thin-walled composite beams is also provided.  

The study delves into composite materials, with a particular emphasis on fiber-reinforced 

composites. It explores the macromechanics of single-layer composites, specifically those with 

arbitrarily oriented layers under plane stress and deformation conditions.  

The research also focuses on the fundamentals of mechanics for thin-walled composite be-

am supports, considering the influence of shear deformations. The underlying assumptions of 

the proposed model are discussed, and the displacement field of the thin-walled cross-section 

is defined, considering both linear and nonlinear components. The internal forces of the cross-

section are analyzed, particularly for cross-ply and angle laminated cross-sections. The disser-

tation also describes the procedure for calculating the cross-section properties. In addition, a 

computer program CCSC for the calculation of composite cross-section properties has been 

developed.  

A finite element formulation is presented to analyze the stability of the frame structures. 

The model is designed to perform both linearized and nonlinear stability analysis. The finite 

element of the beam consists of 14 degrees of freedom and employs the principle of virtual 

work to derive the elastic and geometric stiffness matrices. The nonlinear analysis is performed 

using an incremental iterative method based on the generalized displacement control method. 

The updated Lagrangian formulation is utilized to solve the equilibrium equations.  

The dissertation includes the development of the THINWALL V18 computer program, and 

a large number of examples are analyzed to validate the numerical model, considering different 

cross-sections of symmetric and balanced composites, as well as various boundary conditions 

and different frame structures.  

The study concludes with a discussion of the contributions and scientific achievements. It 

also identifies possible directions for future research and suggests improvements in the field of 
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buckling of thin-walled composite beams, particularly with regard to the inclusion of shear 

deformations. Overall, this dissertation provides a comprehensive numerical approach to eval-

uate the nonlinear stability of frame structures composed of thin-walled composite beam ele-

ments. By enhancing the understanding and optimization of such  structures, this research con-

tributes to the advancement of structural engineering in the field of composite materials. 

 

Keywords: thin-walled composite cross-section, laminates, shear deformations, shear coupling 

effects, beam model, buckling analysis 
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Sažetak 

Ovaj doktorski rad bavi se pitanjem nelinearne stabilnosti okvirnih konstrukcija sastavlje-

nih od tankostijenih kompozitnih grednih nosača. Predstavljen je numerički pristup za rješava-

nje ovog problema, uključujući razvoj izvornog 1D modela pomoću metode konačnih eleme-

nata. Istraživanje se bavi s nekoliko ključnih aspekata. Prvo, doktorski rad uvodi problem istra-

živanja i motivaciju, ocrtavajući glavne ciljeve i svrhu istraživanja. Također daje pregled pret-

hodnih istraživanja o izvijanju tankostjenih kompozitnih grednih konstrukcija. 

Istraživanje se bavi kompozitnim materijalima, s posebnim naglaskom na kompozite oja-

čane vlaknima (fiber reinforced composites). Istražuje makromehaniku jednoslojnih kompo-

zita, posebno onih s proizvoljno orijentiranim slojevima pod ravninskim stanjem naprezanja i 

ravninskim stanjem deformacije. 

Istraživanje je također usredotočeno na osnove mehanike tankostjenih kompozitnih gred-

nih nosača s utjecajem posmičnih deformacija. Raspravljaju se pretpostavke na kojima se te-

melji predloženi model i definira polje pomaka tankostjenog poprečnog presjeka, uzimajući u 

obzir linearne i nelinearne komponente. Analizirane su rezultante unutarnjih sila poprečnog 

presjeka, posebno za poprečne presjeke koji sadrže takozvane cross-ply laminate i angle-ply 

laminate. U doktorskom radu je opisan postupak proračuna karakteristika poprečnog presjeka. 

Također je razvijen program CCSC za izračun karakteristika kompozitnog poprečnog presjeka. 

Prikazana je konačno elementna formulacija za analizu stabilnosti okvirnih konstrukcija. 

Model je dizajniran za izvođenje linearizirane i nelinearne analize stabilnosti. Gredni konačni 

element sastoji se od 14 stupnjeva slobode i koristi princip virtualnih radova za izvođenje ela-

stične i geometrijske matrice krutosti. Nelinearna analiza provodi se primjenom inkrementalno-

iterativnog postupka koji se temelji na takozvanoj generalised displacement control metodi. Za 

rješvanje ravnotežnih jednadžbi koristi se Updated Lagrangian formulacija. 

Doktorski rad uključuje izradu računalnog programa THINWALL V18. Analizirani su ra-

zličiti primjeri za validaciju numeričkog modela, uzimajući u obzir različite poprečne presjeke 

sastavljene od takozvanih symmetric i balanced kompozita, kao i različite rubne uvjete i razli-

čite tipove okvirnih konstrukcija. 
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Na kraju, istraživanje završava raspravom o doprinosima i znanstvenim dostignućima. Ta-

kođer ocrtava potencijalne pravce budućih istraživanja i predlaže poboljšanja u području izvi-

janja tankostjenih kompozitnih grednih konstrukcija, s naglaskom na uključivanje posmičnih 

deformacija. 

Općenito, ova doktorska disertacija nudi sveobuhvatan numerički pristup procjeni neline-

arne stabilnosti okvirnih konstrukcija sastavljenih od tankostijenih kompozitnih grednih eleme-

nata. Poboljšanjem razumijevanja i optimizacije takvih konstrukcija, ovo istraživanje pridonosi 

napretku konstrukcijskog inženjerstva u području kompozitnih materijala. 

 

Ključne riječi: tankostjeni kompozitni presjek, laminati, posmične deformacije, interakcije po-

smičnih defomacija, gredni model, analiza izvijanja 
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1 INTRODUCTION 

The introductory section of the dissertation contains general information about the research 

conducted, including the scientific motivation, an overview of existing research, contributions 

and purpose of the study, and the organization of the dissertation. 

1.1 Motivation 

The motivation for researching load-bearing composite structures is multifaceted. Firstly, 

load-bearing composite structures have great potential for achieving optimal solutions in terms 

of weight, load capacity, functionality, construction costs, energy efficiency, and resistance to 

chemical processes. The use of composite materials allows designers to achieve higher load-

bearing capacity with reduced weight, which can result in material and energy savings in con-

struction. 

Secondly, load-bearing composite structures exhibit a more complex response to external 

loading compared to conventional structures. Slender beam elements with thin-walled cross-

sections have an increased tendency to lose stability of deformation and experience buckling. 

Instability in beam structures can manifest in the form of pure flexural, pure torsional, flexural-

torsional, or lateral deformation. All of these forms of deformation represent global instability 

or buckling. Thin-walled frames are also susceptible to local forms of instability, where signif-

icant cross-sectional deformation occurs due to loss of stability of the original cross-sectional 

shape. This can lead to collapse of the structure even before global instability occurs. Therefore, 

in the optimal design of structures, special attention must be paid to the accurate determination 

of the limit state of the deformation modes, namely the buckling strength. Analytical solutions 

are only available for simpler cases, which necessitates the development and application of 

numerical solutions. 

Thirdly, traditional Euler-Bernoulli assumptions fail to accurately account for the actual de-

formation of the cross-section. First-order and higher-order shear deformation theories have 

been developed to address the limitations of traditional analyses based on the Euler-Bernoulli 

assumption. These theories incorporate the effects of shear deformation in the analysis of beam 

structures, resulting in more accurate predictions of deformations and structural responses. 
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1.2  Analysis of the previous research 

Load-bearing composite structures generally contain slender beam structural elements of 

thin-walled cross-section. The response of such optimized structures to external loading is much 

more complex compared to traditional structures, with an increased tendency to lose stability 

and experience buckling [10,11,15–17,45,46,49,60]. 

The occurrence of instability in beam structures can manifest in various deformation forms, 

including pure flexural, pure torsional, torsional-flexural, or lateral deformation. These defor-

mation forms are known as global instability forms or global buckling forms. Thin-walled fra-

mes are also susceptible to local instability forms, where significant distortion of the cross-

section occurs, leading to structural collapse even before the global instability form occurs 

[10,11,15,17,49,60]. 

Therefore, it is crucial for the optimal design of composite structures to determine the limit 

state of stability, specifically the buckling strength, for different deformation forms. While a-

nalytical solutions are available for simpler cases [23,33,54,55,62,63], the development and 

application of numerical solutions become a necessity for more complex scenarios [10,11,15–

17,45,46,49,60]. 

The introduction of composites in structural design further complicates the process but offers 

the potential for achieving optimal solutions in terms of weight, load-bearing capacity, functi-

onality, construction cost, energy efficiency, and resistance to chemical processes [6,37–42,76]. 

However, shear deformations have a significant impact on the transverse displacements, natural 

vibration frequencies, and critical buckling loads of composite structures. Traditional analyses 

based on the Euler-Bernoulli assumption can lead to significant errors when shear deformations 

are not properly accounted for [18,19,25,54]. 

To address these challenges, researchers have presented geometric nonlinear analyses of 

composite beam structures considering shear deformations [7,8,10,11,15–17,31,32,44–

46,49,60,67,71–74]. Some studies also include bending-torsion coupling effects, particularly 

for asymmetric cross-sections where the principal bending and shear axes do not coincide [51]. 

In recent studies [67], composite frames with semi-rigid connections were investigated using 

a geometrically nonlinear beam model that accounts for shear deformation effects. Previous 

research considered unidirectional orthotropic composite structures and included shear defor-

mation coupling effects in the virtual elastic strain energy while neglecting them in the force-

strain relationships. However, in the present study, shear coupling effects due to the non-
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symmetry of the cross-section are introduced even in the force-strain relationships, allowing 

for the modeling of cross-sections made of symmetric and balanced laminates. Improved shear-

deformable beam formulations, considering bending-torsion coupling effects, are utilized 

[7,8,31,32,44,67]. 

In the context of the updated Lagrangian (UL) formulation [35,66], nonlinear displacement 

fields of the cross-section are used to obtain the element geometric stiffness. This approach 

includes second-order displacement terms to account for large rotation effects. By considering 

semi-tangential descriptions of internal bending and torsion moments, equilibrium conditions 

at the frame joint are preserved, allowing for any spatial orientation of the beam members with 

respect to the joint [34,75]. 

To mitigate the shear-locking effect [53], interdependent shape functions for deflection, 

slope, twist rotations, and warping parameters are employed within the finite element proce-

dure. The incremental-iteration algorithm is defined using the generalized displacement control 

method [75]. The nodal orientations are updated based on the semitangential rotation transfor-

mation rule, ensuring the accurate representation of internal bending and torsion moments 

[4,65,68]. 

Furthermore, the deformability of the cross-section is a crucial consideration in the analysis 

of composite beam structures. Traditional Euler-Bernoulli assumptions fail to accurately ac-

count for the actual deformation of the cross-section. To address the limitations of traditional 

analyses based on the Euler-Bernoulli assumption, first-order and higher-order shear deforma-

tion theories have been developed. 

The first-order shear deformation theory considers the shear deformation effects by inclu-

ding a shear correction factor in the transverse displacement field. This theory accounts for the 

non-uniform distribution of transverse shear stresses through the thickness of the beam. By 

considering the shear deformation effects, more accurate results can be obtained for composite 

beam structures [18,19,25,54]. 

However, in certain cases, the first-order shear deformation theory may not capture all the 

important deformation modes accurately, especially for thick beams or structures with pronoun-

ced shear effects. In such cases, higher-order shear deformation theories are utilized 

[20,28,29,48,50,52,56]. 

Higher-order shear deformation theories introduce additional displacement variables to ac-

count for higher-order terms in the deformation field. These theories provide more accurate 

predictions for the transverse shear stresses and displacements throughout the thickness of the 
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beam. The additional variables can capture the effects of transverse shear deformation more 

effectively, resulting in improved accuracy for analyzing composite structures. 

The use of higher-order shear deformation theories in conjunction with geometric nonlinear 

analyses allows for a more comprehensive understanding of the behavior of composite beam 

structures. These theories enable the consideration of complex deformation modes, such as ben-

ding-torsion coupling effects and non-symmetry of cross-sections, resulting in more accurate 

predictions of stability and buckling behavior. 

Overall, the incorporation of first-order and higher-order shear deformation theories in the 

analysis of composite beam structures enhances the accuracy of the results and provides valua-

ble insights for the optimal design of load-bearing composite structures [7,8,10,11,15–

17,31,32,44–46,49,60,67]. 

Furthermore, the deformability of the cross-section plays a significant role in the analysis of 

composite beam structures. Traditional analyses based on Euler-Bernoulli assumptions assume 

that the cross-section remains undeformed during bending. However, in reality, the cross-sec-

tion undergoes deformation, especially for slender beam elements with thin-walled cross-secti-

ons. 

To accurately capture the behavior of composite structures, the deformability of the cross-

section must be considered. To do this, both the global and local effects of cross-section defor-

mation must be analyzed. Local instabilities can occur when the initial cross-section shape be-

comes unstable, leading to significant deformation of the cross-section and potential collapse 

before global instability occurs [10,11,15,17,49,60]. 

In recent studies, various theories have been developed to analyze the deformability of the 

cross-section in composite beam structures. One such theory is the General Beam Theory 

(GBT), which incorporates the deformability of the cross-section by expressing the displace-

ment field using specific forms of cross-sectional deformation. GBT models assume certain 

deformation modes of the cross-section and express the displacement field based on these mo-

des, providing a more accurate representation of the actual behavior of the structure [27,57–

60]. 

Another approach is the Constrained Finite Strip Method (cFSM), which also considers the 

deformability of the cross-section. cFSM models the cross-section as a set of interconnected 

strips, allowing for the analysis of both local and global effects of buckling and deformation. 

This method provides a computationally efficient approach to capture the deformability of the 

cross-section and predict the behavior of composite beam structures [1,2]. 
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By considering the deformability of the cross-section, these theories enable more accurate 

analyses of both local and global effects, such as bending, torsion, and buckling. They provide 

valuable insights into the stability and overall performance of composite beam structures, al-

lowing for more precise optimization of their design parameters. 

In summary, accounting for the deformability of the cross-section is crucial for accurately 

predicting the behavior of composite beam structures. The utilization of theories like GBT and 

cFSM allows for a more comprehensive analysis of both local and global effects, leading to 

improved design and optimization strategies for load-bearing composite structures. 

1.3 Purpose, Objectives and Contributions of the Research 

The purpose of this research is to develop a numerical algorithm for the stability analysis of 

composite frame structures, taking into account the limitations of traditional analyses based on 

the Euler-Bernoulli assumption. Traditional Euler-Bernoulli assumptions fail to accurately ac-

count for the actual deformation of the cross-section. Therefore, the goal of this study is to 

overcome these limitations by incorporating first-order shear deformation theory. 

The numerical algorithm based on the finite element of the beam will take into account the 

material inhomogeneity of the cross-section as well as the geometric nonlinearity in the sense 

of including large displacements and rotations of the structural elements. The development of 

this algorithm is motivated by the need to accurately capture the complex behaviour of compo-

site load-bearing structures, which often contain slender beam elements with thin-walled cross 

sections. These structures are more prone to stability loss and buckling phenomena.  

To accurately determine the stability limit of deformation forms, particularly buckling stren-

gth, numerical solutions become a necessity. Analytical solutions are only available for simpler 

cases, while more complex scenarios require the development and application of numerical 

methods. This research aims to provide such numerical solutions for composite frame structu-

res. 

The algorithm will utilize an updated Lagrangian incremental formulation, allowing for the 

consideration of large rotations and displacements. It will also incorporate a 2D numerical mo-

del to determine the geometric characteristics of the cross-section. The effects of shear defor-

mations, including the bending-torsion coupling effects, will be included in the beam model. 

By developing these numerical models and algorithms, this research intends to contribute to 

the field of engineering practice by providing a reliable tool for describing the geometrically 
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nonlinear response of composite beam structures in frame structures. The results of this study 

will enhance the understanding of the behavior of composite structures under external loading 

and facilitate the optimal design of such structures. 

1.4  The structure of the doctoral thesis 

The structure of the doctoral dissertation is organized into chapters, each covering a specific 

part of the research. 

The first chapter introduces the research problem and scientific motivation. It outlines the 

main objectives and purpose of the research, as well as provides a brief overview of previous 

studies in the field of buckling of thin-walled composite beams. 

The second chapter presents composite materials, with a particular emphasis on fiber rein-

forced composite materials. It discusses the macro mechanics of single-layer composites, espe-

cially related to arbitrarily oriented layers under plane stress and plane deformation states. 

The third chapter presents the fundamentals of mechanics for thin-walled composite beam 

supports, considering the influence of shear deformations. It states the assumptions on which 

the presented model is based. The displacement field of the thin-walled cross-section is defined, 

dividing it into linear and nonlinear components, along with the corresponding strain tensor. 

The internal force resultants of the cross-section are shown, specifically for cross-sections con-

taining cross-ply laminates and angle-ply laminates. The procedure for calculating cross-section 

properties is described. 

In the fourth chapter, the finite element formulation of the analyzed problem is presented. 

The proposed model is designed for both linearized and nonlinear stability analysis. The line-

arized analysis is suitable for rapid verification of critical loads and the corresponding defor-

mation of the structure, while the nonlinear analysis tracks the response of the deformation with 

respect to the applied load. The final model has 14 degrees of freedom. The elastic and geome-

tric stiffness matrices are derived using the principle of virtual work. The nonlinear analysis is 

based on an incremental-iterative procedure, using the generalized displacement method deve-

loped by the candidate’s mentor. The updated Lagrangian formulation is used to solve the equi-

librium equations. 

The fifth chapter describes the computer programs CCSC and THINWALL V18. Along with 

the program’s schematic flow, a brief description of all subprograms is provided. Ten examples 
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are analyzed to validate the numerical model. The considered results show two different mo-

dels: one including shear deformations and one excluding shear deformations. Various cross-

sections, composed of different symmetric and balanced composites, are examined. Different 

boundary conditions and types of beam support structures are also considered. 

The last chapter presents the conclusions of the conducted research, discussing the contribu-

tions of the dissertation and the scientific achievements. Ideas and directions for future research 

and potential improvements in the field of buckling of thin-walled composite beams with the 

inclusion of shear deformations are presented. 
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2 MECHANICS OF COMPOSITE MATERIALS 

Composite materials are a class of materials made by combining two or more different con-

stituents with different physical or chemical properties. These components, known as the matrix 

and reinforcement, work together to create a material with improved mechanical, thermal, or 

electrical properties that exceed those of the individual components alone. 

The matrix material in a composite serves as a binder that holds the reinforcement in place 

and transfers loads between the reinforcing elements. It can be a polymer, a metal, a ceramic 

material, or even a combination of these materials. The choice of matrix depends on the specific 

application requirements and the desired properties of the composite. 

The reinforcement phase provides strength and stiffness to the composite. It is typically in 

the form of fibers, particles or flakes. Common reinforcing materials include carbon fibers, 

glass fibers, aramid fibers and nanoparticles. The selection of reinforcement depends on factors 

such as desired strength, stiffness and resistance to environmental influences. 

The combination of matrix and reinforcement in a composite results in synergistic properties 

that cannot be achieved with either component alone. Composites feature a high strength-to-

weight ratio, excellent fatigue resistance, corrosion resistance, and tailored electrical and ther-

mal conductivity. They are used in aerospace, automotive, construction, sports equipment and 

many other industries [22,24,30,69].  

 

Fig. 2.1 Unbonded view of fiber-reinforced composite laminate 

Four commonly acceptedd types of composite materials are: 

• fibrous composite materials that consist of fibers in a matrix 

• particulate composite materials that are composed of particles in a matrix 

• laminated composite materials that consist of layers of various materials 

• combinations of some or all of the first three types 

This thesis focuses on the utilization of fiber-reinforced composite laminates in thin-walled 

beams, delving into their widespread application in engineering practice and the underlying 
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mechanical theory. The fundamental terminology associated with these laminates, include la-

minae or plies, represent flat configurations of unidirectional or woven fibers embedded in a 

matrix. Additionally, the concept of a laminate, a bonded stack of laminae exhibiting different 

orientations of the main material directions, as shown in Fig. 2.1 [30], is discussed in detail. 

2.1 Macromechanical behavior of a lamina 

Macromechanics of single-layer composites involves the study of the overall mechanical 

behavior and properties of composite materials at the macroscopic scale. It focuses on unders-

tanding how the arrangement, orientation, and mechanical properties of the constituent materi-

als affect the mechanical response of the composite as a whole. 

An important aspect of macromechanics is the analysis of the effective properties of single-

layer composites. Effective properties describe the overall behavior of the composite based on 

the properties of its constituent materials and their arrangement. These properties include stiff-

ness, strength, and thermal expansion. The orientation, volume fraction, and mechanical prop-

erties of the reinforcing phase significantly affect the effective properties. 

Another important aspect of macromechanics is understanding the stress and strain distribu-

tion within the composite layer. Load transfer between the matrix and the reinforcing phases is 

critical to achieving the desired mechanical properties. The arrangement and orientation of the 

reinforcing phase plays an important role in determining the stress distribution and load carry-

ing capacity of the composite. 

2.1.1 Stress-strain relations for anisotropic materials 

The stresses in an elementary volume will first be defined in order to establish stress-strain 

relations for anisotropic materials. The generalized Hooke’s law relating stresses to strains can 

be written in contracted notation as follows: 

, 1, ,6i ij jC i j = =  (2.1) 

where i  are the stress components shown in Fig. 2.2, 
j  are the strain components and Cij is 

the stiffnes matrix. It should be noted that: 

12 21 13 31 23 32, , , ij jiC C     = = = =  (2.2) 
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Fig. 2.2 Stresses in an elementar volume 

Then the stress-strain relations in matrix form for anisotropic material can be written as: 

11 12 13 14 15 161 1

12 22 23 24 25 262 2

13 23 33 34 35 363 3

14 24 34 44 45 4623 23

15 25 35 45 55 5631 31

16 26 36 46 56 6612 12

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 

 

 

 

 

 

    
    
    
       

=     
    
   
   
       





 (2.3) 

If the reverse relations are to be expressed compliance matrix Sij is used: 

11 12 13 14 15 161 1

12 22 23 24 25 262 2

13 23 33 34 35 363 3

14 24 34 44 45 4623 23

15 25 35 45 55 5631 31

16 26 36 46 56 6612 12

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

 

 

 

 

 

 

    
    
    
       

=     
    
   
   
       





 (2.4) 

2.1.2 Stress-strain relations for orthotropic materials 

If the material has the two orthogonal planes of material property symmetry, then that ma-

terial is called orthotropic material. The stress-strain relations for orthotropic material can be 

written in stiffnes matrix form as follows: 

11 12 131 1

12 22 232 2

13 23 333 3

4423 23

5531 31

6612 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

C

 

 

 

 

 

 

    
    
    
       

=     
    
    
    
        

 (2.5) 
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Wile the stain-stress relations are written in compliance matrix form as: 

11 12 131 1

12 22 232 2

13 23 333 3

4423 23

5531 31

6612 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

S S S

S S S

S S S

S

S

S

 

 

 

 

 

 

    
    
    
       

=     
    
    
    
        

 (2.6) 

The compliance matrix components in orthotropic material can be expressed over enginee-

ring constants as follows: 

11 22 33 44 55 66

1 2 3 23 31 12

13 31 23 3212 21
12 13 23

1 2 1 3 2 3

1 1 1 1 1 1
, , , , , ,

, ,

S S S S S S
E E E G G G

S S S
E E E E E E

    

= = = = = =

= − = − = − = − = − = −

 (2.7) 

where E, G and v are elastic modulus, shear modulus and Poisson’s ratio respectively. The 

Stiffness matrix components can be expressed over compliance matrix components for the or-

thotropic material as follows: 

2 2 2

22 33 23 33 11 13 11 22 12
11 22 33

13 23 12 33 12 23 13 22 12 13 23 11
12 13 23

44 55 66

44 55 66

, , ,

, , ,

1 1 1
, , ,

S S S S S S S S S
C C C

S S S

S S S S S S S S S S S S
C C C

S S S

C C C
S S S

− − −
= = =

− − −
= = =

= = =

 (2.8) 

where: 

2 2 2

11 22 33 11 23 22 13 33 12 12 23 132S S S S S S S S S S S S S= − − − +  (2.9) 

2.2 Plane stress in an orthotropic material 

For unidirectionally reinforced lamina in the 1-2 plane as shown in Fig. 2.3, a plane stress 

state is defined by setting: 

3 23 310, 0, 0  = = =  (2.10) 

which is very practical assumption when dealing with thin plates with two orthogonal planes of 

material property symmetry. 
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Fig. 2.3 Unidirectionally reinforced lamina 

Then the strain-stress relations from Eq. (2.6) reduce to: 

1 11 12 1

2 12 22 2

12 66 12

0

0

0 0

S S

S S

S

 

 

 

     
    

=    
         

 (2.11) 

The stress-strain relations can be expressed in simmilar maner from Eq. (2.5) as: 

1 11 12 1 1

2 12 22 2 2

12 66 12 12

0

0

0 0

Q Q

Q Q

Q

  

  

  

       
      

= =      
             

Q  (2.12) 

where the Qij are so-called reduced stiffnesses [30] for a plane stress state in 1-2 plane. They 

can be determined as follows: 

3 3

33

, 1,2,6
i j

ij ij

C C
Q C i j

C
= − =  (2.13) 

and by the use of Eqs. (2.7), (2.8) and (2.9) following is obtained: 

1 2 12 2 21 1
11 22 12 66 12

12 21 12 21 12 21 12 21

, , ,
1 1 1 1

E E v E v E
Q Q Q Q G

v v v v v v v v
= = = = =

− − − −
 (2.14) 

where it should be noted that: 

12 21

1 2

v v

E E
=  (2.15) 

2.3 Plane stress for a lamina of an arbitrary orientation 

Althoug in previous section stresses and strains were defined in principal material coordian-

tes for an orthotropic material (1-2). However, by combining a laminate with diferent laminae 

angles as shown in Fig. 2.1, it can happen that the principal direction of orthotropy of particular 

laminae do not coincide with coordinate directions of laminate as shown in Fig. 2.4. 
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Fig. 2.4 Lamina of an arbitrary orientation 

It can be recalled from elementary mechanics that relation between principal and arbitrary 

strains for plane stress condition is: 

1 12

12 2

22 cos sin cos sin

22 sin cos sin cos

z zs

zs s

      

      

−      
=       

−      
 (2.16) 

which leads to: 

1

2

12

z

s

zs



 

 

 

   
   

=   
   
   

T  (2.17) 

where: 

( )

( )

2 2

2 2

cos sin sin 2 2

sin cos sin 2 2

sin 2 sin 2 cos 2



  

  

  

 
 

= − 
 − 

T  (2.18) 

Simmilarly the relation between principal and arbitrary stresses for plane stress condition is: 

1 12

12 2

cos sin cos sin

sin cos sin cos

z zs

zs s

      

      

−      
=       

−      
 (2.19) 

which leads to: 

( ) ( )

2 2

1

2 2

2

12

cos sin sin 2

sin cos sin 2

sin 2 2 sin 2 2 cos 2

z

s

zs

    

    

    

    
    

= −    
    −    

 (2.20) 

To obtain relation for laminate coordinate directions (z-s) inverse expression is required: 

1

2

12

z

s

zs



 

 

 

   
   

=   
   
   

T  (2.21) 
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where: 

( ) ( )

2 2

2 2

cos sin sin 2

sin cos sin 2

sin 2 2 sin 2 2 cos 2



  

  

  

 −
 

=  
 − 

T  (2.22) 

If now relation between stresses and strains from Eq. (2.12) is expanded with Eqs. (2.17) 

and (2.21) following is obtained: 

z z

s s

zs zs

 

 

 

 

   
   

=   
   
   

T Q T  (2.23) 

which leads to: 

z z

s s

zs zs

 

 

 

   
   

=   
   
   

Q  (2.24) 

where Q  are transformed reduced stiffnesses [30]: 

11 12 16

12 22 26

16 26 66

Q Q Q

Q Q Q

Q Q Q

 

 
 

= =  
 
 

Q T Q T  (2.25) 

Matrix elements in Eq. (2.25) are given with the following expressions: 

4 4 2

11 11 22 66 12

1
cos sin sin 2

2
Q Q Q Q Q  

 
= + + + 

 

4 4 2

22 22 11 66 12

1
cos sin sin 2

2
Q Q Q Q Q  

 
= + + + 

 

( ) 2 2

66 11 22 12 66

1
2 sin 2 cos 2

4
Q Q Q Q Q = + − +

( ) 2

12 12 11 22 66 12

1
4 2 sin 2

4
Q Q Q Q Q Q = + + − −

( ) ( )16 11 22 11 22 66 12

1 1
sin 2 4 2 sin 4

4 8
Q Q Q Q Q Q Q = − + + − −

( ) ( )26 11 22 11 22 66 12

1 1
sin 2 4 2 sin 4

4 8
Q Q Q Q Q Q Q = − − + − −  

(2.26) 

Since in this theisis a beam model is considered, there are two simplification cases that are 

further studied. In the first case it will be considered that εs = 0 which can be achieved by 
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restraining the cross-section with some sort of boundary conditions. First case consideration 

leads to following relation: 

11 16

16 66

z z

zs zs

Q Q

Q Q

 

 

    
=    

    
 (2.27) 

A more natural approach when considering a beam model, since it is not advisable nor pra-

ctical to load a beam along the contour coordinate of the cross-section, is to consider that s = 

0. This is second case which will be elaborated in more detail: 

11 12 16

12 22 26

16 26 66

0

z z

s

zs zs

Q Q Q

Q Q Q

Q Q Q

 



 

    
    

=    
    
    

 (2.28) 

The expression from Eq. (2.28) can be condensed by replacing εs with a following expres-

sion: 

2612

22 22

s z zs

QQ

Q Q
  = − −  (2.29) 

leading to following: 

11 16

16 66

z z

zs zs

Q Q

Q Q

 

 

    
=    

    
 (2.30) 

where: 

22

26 12 2612
11 11 66 66 16 16

22 22 22

, ,
Q Q QQ

Q Q Q Q Q Q
Q Q Q

= − = − = −  (2.31) 

As this is more natural approach when dealing with the beam model, the relation from Eq. 

(2.30) will be the primary constituve relation used in this theisis, opposed to relation from Eq. 

(2.27), and for the k-th ply of the laminate the constituve equation will be written in the fol-

lowing form: 

11 16

16 66

zk zk k

zsk zsk k

eQ Q

eQ Q





     
=    

   
 (2.32) 
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3 COMPOSITE THIN-WALLED BEAM 

3.1  Basic assumptions 

A beam is generally a deformable body in which the length of the beam is significantly 

greater than the dimen-sions of its cross-section. The cross-section itself can be either solid or 

thin-walled. A thin-walled beam is characterized by one dimension of the cross section (wall 

thickness) being much smaller than the others. Thin-walled beams can be further classified as 

open, closed, or combined based on the shape of their cross-section. In terms of the symmetry 

of the cross-section, three categories of thin-walled beams are distinguished: asymmetric, uni-

axially symmetric and biaxially symmetric. In asymmetric cross sections, the center of gravity 

and the shear center do not coincide. In uniaxially symmetric cross sections, the shear center is 

located in the axis of sym-metry, while in biaxially symmetric cross sections, the shear center 

is located in the center of the center of gravity.  

The shear center is the point in the cross section at which the sum of the moments of all 

internal shear forces in bending must equal zero. It has been established that the shear center 

coincides with the torsion center [26]. The torsion center, on the other hand, is the point around 

which the cross-section rotates during twisting or torsion. Torsion can also occur in combina-

tion with bending or flexure. In the case of non-circular cross-sections, the cross-section experi-

ences warping during torsion, resulting in axial displacements at different points within the 

cross-section [3]. These axial displacements occur due to the rotation of longitudinal phases 

and their sliding caused by shear or tangential stresses. When axial movements are unconstrai-

ned, all cross-sections can freely deform, resulting in primary tangential stresses. This scenario 

is known as clean, free, uniform, or St. Venant’s torsion, where torsion occurs without bending 

[12].  

However, if these movements are restricted in certain cross sections or if the torsional mo-

ment is changed along the beam, the cross sections cannot deform uniformly. As a result, the 

distances between individual points of the same fiber change, leading to the development of 

normal stresses. These normal stresses vary along the beam and across the height of the cross-

section, giving rise to secondary tangential stresses. This type of torsion is referred to as non-

uniform or Vlasov torsion, or torsion with restrained warping [5,13,14,47,61]. 

In beams with solid cross-sections, the impact of secondary tangential stresses can be disre-
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garded due to their negligible warping. Similarly, in thin-walled beams with closed cross-sec-

tions, the considerable torsional rigidity swiftly dampens normal stresses resulting from limited 

warping. As a result, secondary tangential stresses can only locally reach higher magnitudes. 

  
(a) (b) 

Fig. 3.1 Thin-walled beam with open cross-section: (a) full geometry, (b) middle surface with rigid-body dis-

placements 

In this thesis, the large deformation of a straight beam with an arbitrary open thin-walled 

composite cross-section is considered, as depicted in Fig. 3.1. A Cartesian coordinate system is 

chosen, where the x- and y-axes are aligned with the principal inertial axes of the cross-section, 

and the longitudinal z-axis is made to pass through the centroid O of each cross-section. The 

position coordinates xS and yS define the shear center S of the cross-section. The positions of 

the principal axes, centroid, and shear center are determined by material weighting. 

The displacements of the cross-section are defined as follows: the rigid-body translations of 

the cross-section are denoted as wO, uS, and vS, while the rigid-body rotations of the cross-

section are represented by φz, φx, and φy, respectively. Additionally, the warping parameter θ is 

taken into account. It should be noted that all displacement components are defined with respect 

to the shear center, except for the axial displacement wO, which is defined with respect to the 

centroid. The cross-section is characterized by the contour coordinate s and the thickness coor-

dinate n. The starting point of the contour coordinate s, referred to as the sector null point, is 

denoted as O. The contour coordinate pertains to the mid-surface of the beam. 

The theory presented in this thesis is based on several assumptions: 

• the projection of the contour in the (x, y) plane remains unchanged during the defor-

mation process and behaves as a rigid body 

• shear deformation caused by St. Venant’s warping in the mid-surface is neglected 

• shear deformations along the countur line are not equal to zero 
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• translations and rotations are allowed to be large, but strains are treated as small 

• each ply in the composite laminate is assumed to be a thin, homogeneous and orthotro-

pic plate with uniform material properties within the ply 

• the plies are assumed to be perfectly bonded together, with no interfacial slippage or 

separation 

• plane stress state in the ply 

• the constitutive behavior of each ply is assumed to follow linear elastic principles, where 

stress is linearly related to strain 

• the laminate is assumed to maintain a constant curvature during deformation, meaning 

that the individual plies remain flat and do not undergo large deformations 

• the beam model will be defined for the symmetrical and balanced laminates 

3.2 Kinematics of the beam 

To accurately determine the deformations occurring under load in a thin-walled beam, a 

precise displacement field must be defined. Considering the beam model in this thesis, which 

takes into account large rotations, both linear and nonlinear displacement terms need to be in-

cluded. The displacements are defined as functions of the longitudinal axis z: 

( ) ( ) ( ) ( )

( ) ( ) ( )

O O S S S S, , , ,

, ,

z z

x x y y

z z z z

z z z

 

     

= = = =

= = =

w w u u v v
 (3.1) 

while due to the shear deformations, rigid-body rotations are not perpendicular to the longitu-

dinal axis z: 

S Sd d , d d , d dx y zz z z    −   −v u  (3.2) 

The linear displacement terms are given by the following expression, where   represents 

the principal warping function: 

( )

( )

O x y

S S z

S S z

y x

y y

x x

  





= + − +

= − −

= + −

w w

u u

v v

 (3.3) 

To account for the large rotations, a nonlinear displacement field is necessary, resulting in 

the following expression: 

, ,W U V= + = + = +w w u u v v  (3.4) 
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where: 

( ) ( )

( )

( )

2 2 2

2 2 2

2

2

2

z x s z y s

z s x y z y

z s x y z x

x x y y

x y x

y x y

   

    

    

 = − + − 

 = + − +
 

 = + − +
 

w

u

v

 (3.5) 

Due to the deformation of the thin-walled beam, the reference point R is displaced to the 

position of the reference point after deformation, denoted as R’, as depicted in Fig. 3.2. 

   

Fig. 3.2 Rigid-body displacements of a thin-walled cross-section 

Then the displacement in the countour s direction can be expressed as: 

S S S zcos sin r   = − +v u  (3.6) 

where: 

sin d d cos d d d dx s y s r s = − = =   (3.7) 

By substituting Eq. (3.7) into Eq. (3.6), the following expression is obtained: 

S S S z

d d d

d d d

y x

s s s
 


= + +v u  (3.8) 

3.3 Deformations and strain tensor 

Since it has been assumed that shear deformations along the contour line are not equal to 

zero (ezs 0), the contour deformations will be expressed as follows: 

( ) S S S z
x y

d d dd d d d d d
0

d d d d d d d d d
zs

y x y x
e n

s z s s s z s z s z s

 
  

  
= = + = − + + + +

 

v uw
 (3.9) 
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which leads to: 

( ) S S z
y x

d d dd d d
0

d d d d d d
zs

x y
e n

z s z s z s


  

     
= = − + + + +    

    

u v
 (3.10) 

Then the commponents due to the shear defomability in the main axis sytem (x, y) are: 

SD SD SD

S Sd d , d d , d dzx y zy x ze z e z z    = − = + = +u v  (3.11) 

 

Fig. 3.3 Deformation of the composite thin-walled beam cut off 

As assumed, shear deformation strains along the contour line s ( SD

zse ) are constant along the 

thickness of the cross-section wall, which can be seen in Fig. 3.3. Althoug for contour line total 

shear strains are equal to shear deformation strains ( ) SD0zs zse n e= = , since the St. Venant strains 

are assumed zero for the contour line, as can be seen in Fig. 3.3. To obtain total shear strains, 

shear deformation strains and St. Venant strains need to be combined: 

SV SD

zs zs zse e e= +  (3.12) 

To define St. Venant strains, the stress function  , refined for the composite cross-section, 

will be used as defined by some authors [21,51]: 

( )2 2

66 4kQ t n = − −  (3.13) 

Function   is stress based function, and St. Venant stresses can be obtained from it as 

follows: 

SV

662zs kn Q n = −  =  (3.14) 

If the constitutive relation from the Eq. (2.32) is considered, and by ignoring the coupling 

term 
16kQ  the following relation for the St. Venant strains can be obtained as follows: 

SV 2zse n=  (3.15) 
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The presented model utilizes the Green-Lagrange strain tensor in order to account for the 

large rotations: 

( ) ( ) ( ) ( )
, , ,,

1
, , 1,2,3

2
ij i i j j k k k k ij ij ijj i ji

u u u u u u u u e e i j k  = + + + + + +  + + =
 

 (3.16) 

where: 

( ) ( ) ( ), , , , , ,

1 1 1
, ,

2 2 2
ij i j j i ij k i k j ij i j j ie u u u u e u u= + = = +  (3.17) 

Acording to the first assumption from chapter 3.1, the following is valid: 

11 22 120, 0, 2 0x y xy     = = = = = =  (3.18) 

In Eq. (3.17) eij is a Cauchy strain tensor for which non zero components can be expresses 

as: 

SD SD SD

dd d d

d d d d

d d d
2

d d d

yO x
z

zs zx zy

e y x
z z z z z

x y
e e e n

s s s

 

 


= = + − +



= + + +

ww

 (3.19) 

and components of shear strains in global reference system can be expressed as: 

SD SD SD

SD SD SD

d d d d d d d d
2

d d d d d d d d

d d d d d d d d
2

d d d d d d d d

zx zs zx zy

zy zs zx zy

x x x y x x x
e e e e n

s s s s s s s s

y x y y y y y
e e e e n

s s s s s s s s

 

 


= = + + +


= = + + +

 (3.20) 

From Eq. (3.17) the components of the 
ij  tensor can be expressed as: 

( ) ( )

22 2 2

33

2 2

dd d1 1 d

2 2 d d d d

d dd d

d d d d

yO x
z

S Sz z
S S

y x
z z z z z z z

y y x x
z z z z

 
 

 

           
= = + = + − +        

            

   
+ − − + + −    
    

ww u v

u v
 

( )

312

dd d d dd

d d d d d d

zx

yO x S z
y S z

z x z x z x

y x x x
z z z z x z z

 

 
  

     
= = + +

     

     
= + − + − + + + −        

w w u u v v

w v
 

( )

322

dd d d dd

d d d d d d

zy

yO x S z
x S z

z y z y z y

y x y y
z z z z y z z

 

 
  

     
= = + +

     

    
= + − + + − − −        

w w u u v v

w u
 

(3.21) 
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From Eq. (3.17) the components of the 
ije  tensor can be expressed as: 

( ) ( )33

ddd d1

2 d d d d

yxz z
z s x z s y ze e x x y y

z z z z z

 
   

    
= = = − + + − +   

     

w
 

( )31

d d dd1
2 2 2

2 d d d d

y y xz
zx z x y s z x ye e x x x y

x z z z z z

  
     
   

= = + = − − − + +  
    

w u
 

( )32

dd dd1
2 2 2

2 d d d d

yx xz
zy z y x s z x ye e y y y x

y z z z z z

 
     
   

= = + = − − − + +  
    

w v
 

(3.22) 

3.4 Stress resultants-strain components relations for a cross-ply laminate 

 

Fig. 3.4 Stress resultants of the cross-section 

In the case of a cross-ply laminate, the constitutive equation for a single ply can be simplified 

from Eq. (2.32) to: 

11

66

0

0

zk zk

zsk zsk

eQ

eQ





     
=    

   
 (3.23) 

Since x = y = xy = 0, the stress resultants can be defined as follows: 

( ) ( )

SV SV

2 2

ω

d , d , d , d ,

d , d , , 2 d ,

d d
d d , , d

d d

z z x zx y zy x z

A A A A

y z z z

A A A

zs zs z S S

A A A

F A F A F A M y A

M x A M A M T T T T A

T r A A T K K x x y y A
s z

  



   

 


  

= = = =

= − =  = + + = − 

  = = = = − + −
 

   

  

  

 
(3.24) 

In Eq. (3.24), the variables are defined as follows: Fz represents the axial force applied at the 
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centroid, while Fx and Fy denote the shear forces acting at the shear center in the x and y direc-

tions, respectively. Mz corresponds to the total torque with respect to the shear center, which is 

a combination of the Saint Venant torque TSV, the warping torque T, and an additional torsional 

moment attributed to the Wagner’s effect T. Mx and My represent the bending moments around 

the x and y axes, respectively. Furthermore, M signifies the bimoment, and K  denotes the 

Wagner’s coefficient. 

In order to develop the beam theory for composite materials, which is similar to the beam 

theory for homogeneous materials, the concept of the reference moduli will be introduced. 

These moduli can be chosen arbitrarily, but in this study, we will calculate them using the fol-

lowing formula: 

2 2 2

11R 11 66R 66 16R 16

2 2 2

1 1 1
d d , d d , d d

t t t

k k k

s t s t s t

Q Q n s Q Q n s Q Q n s
A A A

− − −

= = =       (3.25) 

Here, the cross-section surface is represented by A. By this principle, the classical cross-

section properties can be weighted with these reference moduli to obtain the so-called modulus-

weighted cross-section properties. It is worth noting that the reference moduli are constant for 

the entire cross-section, and therefore, they can be extracted from the surface integrals. 

From Eq. (3.24) the expresions for the shear forces and twisting moment due to restrained 

warping, follow as: 

66

2N
SD SD SD66

66R

1 66R1

d d

d d d d d d
2 d d

d d d d d d

x zx k zx

A A

nk

k
zx zy

ks nk

F A Q e A

Q x y x x x
Q e e n n s

Q s s s s s s



 
=

−

= =

  
= + + +  

   

 

 

66

2N
SD SD SD66

66R

1 66R1

d d

d d d d d d
2 d d

d d d d d d

y zy k zy

A A

nk

k
zx zy

ks nk

F A Q e A

Q x y y y y
Q e e n n s

Q s s s s s s



 
=

−

= =

  
= + + +  

   

 

 

ω

2N
SD SD SD66

66R

1 66R1

d
d

d

d d d d d d
2 d d

d d d d d d

zs

A

nk

k
zx zy

ks nk

T A
s

Q x y
Q e e n n s

Q s s s s s s



 
=

−


=

     
= + + +     



 

 

(3.26) 

where N represents the number of plies in the cross-section branch, nk and nk-1 represent the 

thickness coodinate of the k-th ply, which will be described in one of the following subchapters. 

Alternatively, if the matrix form without considering the impact of the St. Venant part (which 



Damjan Banić: A shear deformable beam model for stability analysis of composite frames  

25 

becomes zero when integrated over the thickness of the cross-section branch) is considered, the 

following form is obtained: 

SD

SD

66R

SD

x x xy x zx

y xy y y zy

x y

F A A A e

F Q A A A e

T A A A





    

   
   

=    
         

 (3.27) 

where: 

2 2N N
66 66

1 166R 66R1 1

d d
d d , d d ,

d d

n nk k

k k
x y

k ks n s nk k

Q Qx y
A n s A n s

Q s Q s= =
− −

   
= =   

   
      

2N N
66 66

1 166R 66R1 1

d d d
d d , d d ,

d d d

n nk k

k k
xy

k ks n s nk k

Q Q x y
A n s A n s

Q s Q s s


= =
− −

 
= = 

 
      

N N
66 66

1 166R 66R1 1

d d d d
d d , d d

d d d d

n nk k

k k
x y

k ks n s nk k

Q Qx y
A n s A n s

Q s s Q s s
 

= =
− −

 
= =      

(3.28) 

Further on, if the virtual elastic strain energy due to work of the shear stress resultants in the 

contour direction from Eq. (3.27) by the use of Eq. (3.19) and (3.23) is expressed, following is 

obtained: 

N N
SD SD SD SD SD

E 66

1 10 01 1

N
SD SD SD66

66R

1 66R0 1

SD SD SD

δU δ d d d δ d d d

d d d

d d d

d d d
δ d

d d d
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e n s z Q e e n s z

Q x y
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x y
e e n
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
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=
−

   
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   
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 

  
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  

     

  

d ds z

(

)

SD SD SD SD SD SD SD

E 66R
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δ δ δ d

l

x zx zx xy zx zy x zx
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Q A e e A e e A e
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



  
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
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

 

(3.29) 

The shear stress resultants – shear strains relation from the Eq. (3.27) is easily connected to 

the form of the Eq. (3.29). 

In order to demonstrate the need for a different approach, the virtual elastic strain energy for 

the homogeneous rectangle cross-section shown in Fig. 3.5 will be calculated. There is only 

one layer and the following is valid: 

( ) ( )66R 66 66, d d sin 90 1, d d cos 90 0, d d 0kQ Q Q x s y s r s= = = − −  = = −  = =  =  (3.30) 
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Fig. 3.5 Cross-section example 

Then the constants form Eq. (3.28) can be calculated as: 

22 2

2 2

d
d ds

d

0

d t

x

d t

y xy x y

x
A n d t A

s

A A A A A  

− −

 
= = = 

 

= = = = =

 
 (3.31) 

From Eq. (3.31), the virtual elastic strain energy follow as: 

SD SD SD

E 66

0

δU δ d

l

zx zxAQ e e z=   (3.32) 

and if the relation from the Eq. (3.27) is introduced: 

SD

E

660

δ
δU d

l

x xF F
z

AQ
=   (3.33) 

Since Eq. (3.33) assumes a uniform shear strain distribution along the contoure line, and con-

cequently a uniform shear stress distribution, it does not include the shear correction factor 6/5 

for a rectangular cross-section. Thus, a more comprehensive approach is required to calculate 

the virtual elastic strain energy resulting from Vlasov’s theory, which for a homogeneous cross 

section gives a parabolic shear stress distribution [31,32,44,70], i.e. 

1 1SD 1y x x y

zs

x y

F S F S T S

I t I t I t

 



 = + +  (3.34) 

where Sx1, Sy1 and S are the first area and sectorial moment for the part of the cross-section 

cut off, respectively. Ix, Iy and I are the second area moments and the warping constant, re-

spectively.  

To derive the expression for the shear stress in the composite cross-section, the normal stress 

resultants for the composite cross-section need to be defined. By using Eqs. (3.19), (3.23) and 

(3.24), the axial force, the bending moments and the bimoment can be expressed as: 



Damjan Banić: A shear deformable beam model for stability analysis of composite frames  

27 

N N
11

11 11R

1 1 11R1 1

N
11 O

11R

1 11R1

* * * *O
11R

d d d d

dd d d
d d

d d d d

dd d d

d d d d

n nk k

k
z k z z

k ks n s nk k

nk
yk x

ks nk

yx
x y

Q
F Q e n s Q e n s

Q

Q
Q y x n s

Q z z z z

Q A S S S
z z z z



 

 

= =
− −

=
−

= =

 
= + − + 

 

 
= + − + 

 

    

 
w

w

 

N N
11

11 11R

1 1 11R1 1

N
211 O

11R

1 11R1

* * * *O
11R

d d d d

dd d d
d d

d d d d

dd d d

d d d d

n nk k

k
x k z z

k ks n s nk k

nk
yk x

ks nk

yx
x x xy y

Q
M Q e y n s Q e y n s

Q

Q
Q y y x y y n s

Q z z z z

Q S I I I
z z z z



 

 

= =
− −

=
−

= =

 
= + − +  

 

 
= + − + 

 

    

 
w

w

 

N N
11

11 11R

1 1 11R1 1

N
211 O

11R

1 11R1

* * * *O
11R

d d d d

dd d d
d d

d d d d

dd d d

d d d d

n nk k

k
y k z z

k ks n s nk k

nk
yk x

ks nk

yx
y xy y x

Q
M Q e x n s Q e x n s

Q

Q
Q x x y x x n s

Q z z z z

Q S I I I
z z z z



 

 

= =
− −

=
−

= − = −

 
= − − + −  

 

 
= − − + − 

 

    

 
w

w

 

N N
11

11 11R

1 1 11R1 1

N
211 O

11R

1 11R1

* * * *O
11R

d d d d

dd d d
d d

d d d d

dd d d

d d d d

n nk k

k
k z z

k ks n s nk k

nk
yk x

ks nk

yx
y x

Q
M Q e n s Q e n s

Q

Q
Q y x n s

Q z z z z

Q S I I I
z z z z



   

 

 

= =
− −

=
−

=  = 

 
=  +  −  + 

 

 
= + − + 

 

    

 
w

w

 

(3.35) 

where 
*A  is the modulus-weighted cross-sectional area. 

*

xS  and 
*

yS  are the modulus-weighted 

first area moments, 
*S  is the modulus-weighted first sectorial moment. 

*

xI , 
*

yI  and 
*

xyI  are the 

modulus-weighted second area moments, 
*

xI   and 
*

yI   are the modulus-weighted second secto-

rial moments, 
*I  is the modulus-weighted warping constant. Furthermore, in the above equa-

tions Od dzw , d dx z , d dy z  and d dz  should be recognised as the generalised defor-

mations, respectively. 

When the x- and y-axes are the principal ones, and if the warping function is defined for the 
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principal pole and the principal origin, the following is valid: 

* * * * * * 0x y xy x yS S I S I I  = = = = = =  (3.36) 

In such a case, the generalised deformations from Eq. (3.35) can be rewritten as: 

O

* * * *

11R 11R 11R 11R

dd d d
, , ,

d d d d

y yx xz

x y

MM MF

z Q A z Q I z Q I z Q I





 
= = = =

w
 (3.37) 

and the reference normal stress can be expressed as: 

R 11R * * * *

yxz
z z

x y

MM MF
Q e y x

A I I I





 = = + − +   (3.38) 

  

Fig. 3.6 Stresses and strains of the composite thin-walled beam cut off 

According to Fig. 3.6 and Eq. (3.23), the reference shear stress ( )SD

R ,zs s z  over the thickness 

t is: 

( )
N N N

SD SD SD SD66
66R 1 R 66

1 1 1 66R

Ak
zsk k szk k zs k k zs

k k k

Q
t t Q e n n

Q
  −

= = =

 
= = − = 

  
    (3.39) 

where: 

( )
N

SD SD 66
R 66R 66 1

1 66R

, A k
zs zs k k

k

Q
Q e n n

Q
 −

=

 
= = − 

  
  (3.40) 

Since the boundary condition at a free edge of the cross-section is 

( )SD

R 0, 0zs z =  (3.41) 

the equilibrium condition in the z-direction for the part of the cross-section cut off at s, Fig. 3.6, 

yields: 
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N
SD11

R R 66

1 11R0 1

d d d A d

ns k

k
z zs

k nk

Q
n s z

Q
 

=
−

 
= 

 
 
   (3.42) 

After introducing Eq. (3.38), it follows: 

N
SD11

R 66* * * *
1 11R0 1

dd dd
d d A d

ns k
yk xz

zs

k x ynk

MQ M MF
y x n s z

Q A I I I






=

−

  
+ − +  =   

   
   (3.43) 

i.e. 

* ** *
1 1 SD1 1

R 66* * * *

dd dd
A

d d d d

y yx xz
zs

x y

A M SM S M SF

z A z I z I z I

 



+ − + =  (3.44) 

Since the following equilibrium conditions are valid: 

dd dd
0; ; ;

d d d d

yxz
y x

MM MF
F F T

z z z z


= = = − =  (3.45) 

the reference shear stress SD

Rzs  from Eq. (3.43) can be expressed as: 

* * *
1 1SD 1

R * * *

66 66 66A A A

y x x y

zs

x y

F S F S T S

I I I

 



 = + +  (3.46) 

It should be noted that, respectively, 
*

1xS , 
*

1yS  and 
*

1S  are the modulus-weighted first area and 

sectorial moments for the part of the cross-section cut off at s. 

By utilizing Eqs. (3.23), (3.40) and (3.46), the virtual elastic strain energy of the beam shown 

in Fig. 3.1, resulting from the shear deformability, can be expressed as follows: 

N N
SD SD SD SD SD

E 66

1 10 01 1

N
SD SD66

R R

166R 66R0 1

δU δ d d d δ d d d

1
δ d d d

n nl lk k

zs zs k zs zs

k ks n s nk k

nl k

k
zs zs

ks nk

e n s z Q e e n s z

Q
n s z

Q Q



 

= =
− −

=
−

   
= =   

   
   

 
=  

 
 

      

  

 (3.47) 

i.e. 

SD

E * * * *
66R0

* * * *

** * * *

1
δU δ δ δ

δ δ δ

δ δ δ d

l
xyx x

x x x y x

t

xy y y

y x y y y

t

yx
x y

tt t

kk k
F F F F F T

Q A A A I

k k k
F F F F F T

A A A I

kk k
T F T F T T z

IA I A I








 
   


= + +



+ + +


+ + +




 (3.48) 
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where, respectively, xk , yk , k , xyk , xk   and yk   are the shear correction factors defined as: 

( )
( )

( )
( )

* *
2 2

* *

1 12 2
* *

66 66

d , d
A A

x y y x

s sy x

A A
k S s k S s

I I
= = 

( )
( )

**
2

* * *

1 1 12* * *
66 66

d , d
A A

t
xy x y

x y s s

IA
k S S s k S s

I I I
 



= = 

* * * *

* * * *

1 1 1 1* * * *

66 66

d , d
A A

t t

x y y x

y xs s

A I A I
k S S s k S S s

I I I I
   

 

= =   

(3.49) 

Similar to Eq. (3.29), the relationship between shear strain and shear stress resultants can be 

readily derived from Eq. (3.48): 

* * * *

SD

SD

* * * *
66RSD

ω

** * * *

1

xyx x

t

zx x

xy y y

zy y

t

yx

tt t

kk k

A A A I
e F

k k k
e F

Q A A A I
T

kk k

IA I A I





 



 
 
 

     
    

=    
       

 
 
  

 (3.50) 

If the shear stress resultants are expressed in terms of shear strains, the inverse relationship is 

obtained: 

* ** *

SD

* ** *
SD

66R

SD

* * * * *

t

x xy x

x zx

t

y zy

xy y y

t t t

x y

A IA A

K K K

F e
A IA A

F Q e
K K K

T

A I A I I

K K K







  



 
 
 
    
    

=    
    
    

 
 
 

 (3.51) 
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where: 

1
* ** *

* * * *

* ** *

* * * *

* * * * *

** * * *

t xyx x

x xy x
t

xy y yt

xy y y t

yxt t t

tx y t t

A IA A kk k

K K K A A A I

k k kA IA A

K K K A A A I

kk kA I A I I

IK K K A I A I









 

  

−
   
   
   
   
   

=   
   
   
   
     

 (3.52) 

To check if this approach solves the exact virtual elastic strain energy for the cross-section 

from Fig. 3.5, first some constants need to be defined: 

3 3
* * *

66R 66 66 66, , A , ,
12 12

k x x y y

d t t d
Q Q Q A A t I I I I= = = = = = = =  (3.53) 

also, although not true, for the sake of simplicity it will be considered that: 

* * 0x xS S S S = = = =  (3.54) 

Now the first area moment for the y axis need to be defined as the function of the x coordi-

nate: 

( ) ( )
2

* d d
2

y y

A d

x
S x S x x A t x x t C= = = = +   (3.55) 

and if the condition that first area moment for the free edge is zero is introduced, the constant 

C is obtained as: 

2

2

2
0

2 2 2

8

y y

d

d d
S S t C

d t
C

 
− 

     − = = = +   
   

= −

 (3.56) 

Now the shear correction factors from Eq. (3.49) can be calculated as follows: 

( )
2

2 22 2
2

2 6 2 5

2 2

144
d d

2 8

144

d d

x y

d d

A x d t
k S x x t x

t d t d
t − −

 
 = = −  

 
 

4 2 2 2 4 2 5 3 2 2 4 22 2
2 2

2 5 2 5

22

144 144
d

4 8 64 20 24 64

d d

x
dd

x x d t d t x x d t d t x
k t x t

t d t d
−−

   
= − + = − +   

   


(3.57) 
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( )

2 5 5 2 2 3 3 4 2

2 5

2 5 2 5 2 5

2 5

144

20 32 32 24 8 8 64 2 2

144 3 10 15144 1152 6

320 96 64 960 960 5

0

x

x

y xy x y

t d d d t d d d t d d
k

t d

t d t d t d
k

t d

k k k k k  

    − − − 
= − − − + −      

     

− + 
= − + = = = 

 

= = = = =

 

and from there, the virtual elastic strain energy follow from Eq. (3.48) as: 

SD

E

66 660 0

δ δ6
δU d d

5

l l

x x x x
x

F F F F
k z z

AQ AQ
= =   (3.58) 

Upon comparing the virtual elastic strain energy expressions from Eq. (3.33) and (3.58), it is 

evident that the former, which does not accurately account for shear stresses, exhibits a differ-

ence of 20% when compared to the latter. 

Furthermore, the St. Venant torsional moment can be defined by using Eq. (3.24), and by 

utilizing Eqs. (3.13) and (3.23), the following expression is obtained: 

N
*

SV 66R

1
1

2 d d

nk

t

ks nk

T n s Q I
=

−

= −  = −   (3.59) 

where torsional constant is calculated in the following way: 

2N
* 266

1 66R1

2 d d
4

nk

k
t

ks nk

Q t
I n n s

Q=
−

 
= − − 

 
   (3.60) 

As a secondary effect arising from the warping of the cross-section, an additional torsional 

moment occurs due to normal stresses. This phenomenon is referred to as the Wagner’s effect, 

and it gives rise to what is known as pure torsional buckling in the thin-walled beams. However, 

in the case of solid cross-section beams, the Wagner’s effect is commonly neglected. The value 

of this secondary torsional moment can be expressed as follows: 

d

d
T K

z



=  (3.61) 

By utilizing Eqs. (3.23) and (3.24), the Wagner’s coefficient can be expressed as follows: 

( ) ( )
N

2 2

11

1
1

d d

nk

k z S S

ks nk

K Q e x x y y n s
=

−

 = − + −
    (3.62) 

and if the Eq. (3.38) is introduced the following is obtained: 

( ) ( )
N

2 211
R

1 11R1

d d

nk

k
z S S

ks nk

z z x x y y

Q
K x x y y n s

Q

F M M M 



   

=
−

 = − + −
 

= + + +
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 (3.63) 
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where: 
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( )
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 (3.64) 

3.5  Stress resultants-strain components relations for a angle ply laminate 

By considering only the coupling between the normal stress resultants and the St. Venant 

torsional moment, the axial force, bending moments, and bimoment can be expressed by using 

Eqs. (2.32), (3.19) and (3.24) as follows: 
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N
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11 16
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(3.65) 
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SV 16
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where: 
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 (3.66) 

This relation between normal stress resultants and strains will be categorized as Euler-Ber-

nouli (EB) relation, which in matrix form will have the following expression: 

*
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 (3.67) 

The relation between shear stress resultants and shear strain from Eq. (3.51) will be cate-

gorite as shear deformable (SD) relation, which in matrix form will be written as: 

* ** *
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y 66R
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Q Q  (3.68) 

To obtain the couplings between the EB and SD stress resultants and strains, the virtual 

elastic energy principle will be employed, by using Eq. (2.32), similar to procedure used to 

obtain Eq. (3.50): 

( )
N

CO SD SD CO L CO R

E 16 16 E E

10 1

δU δ δ d d d δU δU

nl k

k zs z k z zs

ks nk

Q e e Q e e n s z
=

−

 
= + = + 

  
   

SDN N
R RCO L SD 16

E 16 16R

1 1 16R 66R 11R0 01 1

δU δ d d d δ d d d

n nl lk k
zs zk

k zs z

k ks n s nk k

Q
Q e e n s z Q n s z

Q Q Q

 

= =
− −

    
= =    

        
       

(3.69) 
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By introducing the Eq. (3.38)and (3.46) following is obtained: 
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(3.70) 

where: 

( )

1 1

1 1

* *N N
* *16 16

61 1 62 1* * *
1 116R 16R66 66

* * N
* *16 16

63 1 64 1** 2
1 16R 16R6666

1
d d , d d ,

A A

1
d d , d

AA

k k

k k

k k

k k

n n

tk k
y y

k ky x ys n s n

n n

t k k
y y

ks n ny

A IQ Q
k S n s k S y n s

Q QI I I

A I Q Q
k S x n s k S n

Q QII 

− −

− −

= =

=

   
= =   

   
   

 
= =  

 
 

    

 

( )
1 1

1

N

1

* *N N
* *16 16

71 1 72 1* * 2
1 116R 16R66 66

* * N
* 16

73 1 74* * *
1 16R66 66

d ,

1
d d , d d ,

A A

1
d d ,

A A

k k

k k

k

k

ks

n n

tk k
x x

k kx s n s nx

n

t k
x x

kx y s n

s

A IQ Q
k S n s k S y n s

Q QI I

A I Q
k S x n s k S

QI I I

− −

−

=

= =

=

 
 
 
 

   
= =   

   
   

 
= = 

 
 

 

    

 
1

1 1

1

N
* 16
1

1 16R

* * N N
* *16 16

81 1 82 1* * *
1 116R 16R66 66

N
* 16

83 1*
1 16R66

d d ,

1
d d , d d ,

A A

1
d d ,

A

k

k

k k

k k

k

k

n

k

ks n

n n

t k k

k ks n s n

n

k

ks n

Q
n s

Q

A I Q Q
k S n s k S y n s

Q QA I I

Q
k S x n s k

QI

 

 





−

− −

−

=

= =

=

 
 

 
 

   
= =   

   
   

 
=  

 
 

 

    

  ( )
1

* * N
* 16

84 1* 2
1 16R66

d d
A

k

k

n

t k

ks n

A I Q
S n s

QI


 −
=

 
=  

 
 

 

 (3.71) 
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By utilizing Eqs. (3.35), (3.37), (3.51) and (3.70), the following expression can be derived: 
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where: 
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(3.73) 

It can analogously be derived that: 
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The terms from Eqs. (3.72) and (3.74) will be categorised as coupling relations (CO), which 

will form the coupling matrix QCO as: 
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In the context of the Eq. (3.75), a row of zeros is appended since the coupling between shear 

forces, warping torque, and St. Venant torque is not taken into account. Consequently, the re-

lations between stress resultants and strains can be expressed in the block matrix form as fol-

lows: 
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3.6  Cross-section properties 

An arbitrary open thin-walled cross-section is considered, as shown in Fig. 3.7. The cross-

section is divided into multiple rectangles, with each rectangle composed of orthotropic plies 

arranged in a symmetric and balanced laminate. In the figure, x̂  and ŷ  represent the reference 

axes, x  and y  correspond to the centroid axes, and x and y represent the principal axes. The 

origin of the contour coordinate s is denoted by O, and R1 signifies the number of rectangles 

present in the cross-section. 

  
(a) (b) 

Fig. 3.7 Open thin-walled composite cross-section: (a) real geometry, (b) approximated geometry 

In Fig. 3.8, the geometry of the i-th rectangle is depicted. N represents the number of plies, 

while R2 indicates the number of divisions within the i-th rectangle. The variables s and n 

represent the contour and thickness coordinates, respectively. A signifies the position of an 

arbitrary point located at the j, k position within the rectangle, while R represents the position 

of the reference point situated on the centerline at the j – 1 position. 

 

Fig. 3.8 Geometry of N-layered i-th rectangle 
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The laminate that constitutes the rectangle depicted in Fig. 3.8 will be denoted as 

[1/…/k/…/N]. Here, 1, k, and N represent the fiber angle direction (as shown in Fig. 2.4) 

for the first, k-th, and N-th ply, respectively. In this thesis, only balanced and symmetric lami-

nates are considered, and as a result, the following notation is employed to describe a symmetric 

laminate: [1/…/N/2]S. 

 

 
 

(a) (b) (c) 
Fig. 3.9 Arbitrary rectangle geometry: (a) general coordinates, (b) contour warping function, (c) thickness 

warping function 

According to Fig. 3.9 (a), the transformation from the local coordinate system (s, n) of each 

rectangle to the system of reference axes ( x̂ , ŷ ) of the cross-section can be expressed as: 

R

R

ˆ ˆˆ ˆ sin cos

ˆ ˆˆ ˆ cos sin

j i i

j i i

x x l n

y y l n

 

 

= − +

= + +
 (3.77) 

To determine the principal axes of the cross-section, the position of the centroid needs to be 

calculated using a well-known formula from applied mechanics [26]: 

* *

O O* *

ˆ ˆ
ˆ ˆ,

y x
S S

x y
A A

= =  (3.78) 

where 
*A , 

*ˆ
xS  and 

*ˆ
yS  are the modulus-weighted cross-section area and the modulus-weighted 

first area moments defined for the reference axes respectively. This properties can be calculated 

by the use of Eq. (3.77) in the following way: 
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After the propeties from Eq. (3.79) are calculated, and position of the centroid is defined by 

the use of Eq. (3.78), whole cross-section is moved to the centroid ( x , y ): 

O
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ˆ ˆ

ˆ ˆ

x x x

y y y

= −

= −
 (3.81) 

It is also worth noting that the Eq. (3.77) have the same form for the centroid axes ( x , y ): 

R

R

ˆ ˆsin cos

ˆ ˆcos sin

j i i

j i i

x x l n

y y l n

 

 

= − +

= + +
 (3.82) 

Since the cross-section has not been rotated, the slope of the rectangle ˆ
i  remains unchan-

ged. In order to find the principal axes, the well-known formula can be used [26]: 
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where 
*

xI , 
*

yI , 
*

xyI  are the modulus-weighted second area moments defined for the centroid 

axes. This properties can be calculcated in the same manner as Eq. (3.79): 
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Fig. 3.10 Node transformation 

In order to calculate the cross-section properties with respect to the principal axes, the entire 

cross-section needs to be rotated to align with the principal axes. To achieve this, all the nodes 

of the cross-section must be rotated using a transformation following from Fig. 3.10: 

cos sin
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 
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= +

= − +
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 (3.86) 

Using the procedure outlined in Eq. (3.86), the cross-section has been rotated by an angle   

in the counterclockwise direction to align with the main axes. Consequently, the slopes of each 

rectangle need to be adjusted by the same amount. The changes can be expressed as follows: 

ˆ
i i  = −  (3.87) 
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Same as Eqs. (3.77) and (3.82), the transformation from the local coordinate system (s, n) of 

each rectangle to the system of main axes (x, y) of the cross-section can be expressed as 
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cos sin
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j i i

x x l n
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= − +

= + +
 (3.88) 

For the recalibration of the cross-section properties in the system of main axes, certain prop-

erties that were already determined and used for the determination of the main axes need to be 

recalculated. This can be achieved by applying the well-known parallel axis theorem [26]: 
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ˆ ˆ ˆ ˆ, ,x x y y xy xyI I y A I I x A I I x y A= − = − = −  (3.89) 

or by repating the same process as in Eq. (3.84) for the main axes: 
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(3.90) 

where: 

1 R R 2 R Rcos sin , sin cosi i i iK x y K x y   = − = +  (3.91) 

To determine the position of the shear center and the sectorial cross-section properties, it is 

necessary to define the warping function. According to the Fig. 3.9 (b), the change of the con-

tour warping is: 
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R R R R, cos sinj i ih l h x y   = = +  (3.92) 

while, according to the Fig. 3.9 (c), the change of the thickness warping is: 

( )R R R R, cos sinj i ih l n h y x   = − + = −  (3.93) 

Finnaly if the Eqs. (3.92) and (3.93) are combined and added to the warping of the reference 

point, the warping of an arbitrary point A on the cross-section rectangle can be calculated by 

the general definition of the warping function as: 

R R R Rj jh l h n l n    = + + = + − −  (3.94) 

It should be noted that the warping of the reference point 
R  is still unknown, and the pole of 

the warping function, as defined in Eq. (3.94), is assumed to be located at the centroid of the 

cross-section, as depicted in Fig. 3.9 (b) and Fig. 3.9 (c). The determination of the warping of 

the cross-section will be initiated from the origin of the contour coordinate O, assuming zero 

warping ( R 0 = ) for this starting point. Subsequently, the warping for any arbitrarily chosen 

point adjacent to the starting point can be calculated, and it will be utilized as a reference for 

the next arbitrarily chosen point. Through this process, the warping for the entire cross-section 

can be defined, with the origin chosen at O and the pole selected at the centroid of the cross-

section. 

To determine the position of the shear center relative to the centroid of the cross-section, a 

simple formula from applied mechanics will be employed [26]: 

* *

S S* *
,

y x

x y

I I
x y

I I

 = = −  (3.95) 

where the *

xI 
 and *

yI   are the modulus-weighted second sectorial moments of the cross-section 

calculated as follows: 
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 (3.96) 
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From there, the principal warping function   can be defined for the cross-section, or in 

other words, the warping for the pole placed in the shear center with respect to the principal 

origin of the contour coordinate, as follows [51]: 

( ) ( ) ( ) ( )
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 (3.97) 

where *S
 is the modulus-weighted first sectorial moment of the cross-section calculated in the 

following way: 
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 (3.98) 

With the principal warping   defined for the cross-section, modulus-weighted warping con-

stant can be calculated as follows: 
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 (3.99) 

where: 

3 R 4

1 1
,

2 2
j jK l r K q l=  + = +  (3.100) 

The modulus-weighted torsional constant from Eq. (3.60) can be calculated in the following 

way: 
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 (3.101) 

where: 
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The integrals used in the wagner’s coefficents from Eq. (3.64) can be calculated in the fol-

lowing way: 
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(3.103) 
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Now, the calculation of the shear correction factors from the Eq. (3.49) will be carried out. 

In order to evaluate the integrals in Eq. (3.49), it is necessary to define the modulus-weighted 

first area moments and first sectorial moment as functions of the contour coordinate s: 
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(3.105) 
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(a) (b) (c) 
Fig. 3.11 Various distibutions over the cross-section contour (left: distribution without correction, right: distri-

bution with correction): (a) *

xS , (b) 
*

yS , (c) *S  

Once the modulus-weighted first area moments and the modulus-weighted first sectorial 

moment are defined as functions of a contour coordinate, s, they must be calculated along the 

entire contour of the cross-section to obtain the distribution of these properties across the cross-

section’s contour. However, for cross-sections with more than two branches that have free ends 
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(such as the I profile), a correction procedure is necessary. This procedure ensures that the 

distribution of the entire cross-section branch, which is non-zero at the free end, is adjusted to 

satisfy the required condition, as illustrated in Fig. 3.11. After this procedure is finished, the 

integrals in the Eq. (3.49) can be calculated in the following way: 
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The integrals in the Eq. (3.66) can be calculated in the following way: 
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where: 
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Lastly the integrals from the Eq (3.71) can be calculated as follows: 
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It is important to note that for a symmetric laminate, the values of 
11B , 

66B  and 
16B  are 

equal to zero. Additionally, in the case of a balanced laminate, the value of 16A  should also be 

equal to zero. 
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4 FINITE ELEMENT FORMULATION 

The finite element method (FEM) is a widely used numerical technique in engineering pra-

ctice due to its versatility, accuracy, and efficiency in analyzing complex structures and sys-

tems. It provides a systematic approach to discretize a continuous problem into a finite number 

of smaller elements, allowing engineers to simulate and understand the behavior of real-world 

systems. One of the key advantages of FEM is its ability to handle a wide range of engineering 

problems, including structural analysis, fluid dynamics, heat transfer, electromagnetic fields, 

and more. By dividing a complex geometry into smaller, simpler elements, FEM can accurately 

capture the local variations in properties and behavior, enabling engineers to model and predict 

the response of the system under different loading and boundary conditions. 

Furthermore, FEM provides a flexible framework for incorporating material nonlinearity, 

geometric nonlinearities, and various physical phenomena. It allows engineers to simulate and 

analyze the behavior of structures under extreme conditions, such as large deformations, non-

linear material behavior, and contact interactions. This capability is particularly valuable in 

designing structures that need to withstand complex loading scenarios or to optimize the per-

formance of systems under different constraints. Another advantage of FEM is its efficiency in 

terms of computational resources. By discretizing the problem domain into smaller elements, 

FEM reduces the complexity of the equations and allows for efficient solution techniques. The 

system of equations can be solved using matrix algebra and numerical methods, enabling engi-

neers to obtain accurate results in reasonable computing time. 

4.1 Thin-walled beam finite element 

A thin-walled beam finite element is a specialized element used in finite element analysis to 

model slender structures with thin walls, such as beams, trusses, and frames. This type of ele-

ment is designed to accurately capture the bending and torsional behavior of thin-walled struc-

tures while considering the geometric and material properties of the cross-section. The element 

discretizes the beam into smaller segments and approximates the displacement field along the 

beam using interpolation functions. The stiffness matrix of the thin-walled beam element is 

formulated based on the presented governing equations, incorporating the geometry, material 

properties, and interpolation functions. 
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Fig. 4.1 Thin-walled beam finite element: nodal displacements and nodal forces 

The Fig. 4.1 depicts a thin-walled beam finite element defined in a local coordinate system. 

The nodes of the finite element are marked as A and B. The z-axis represents the longitudinal 

axis of the finite element, passing through the centroids of all cross-sections. The x and y axes 

correspond to the principal central axes of inertia. O and S denote the material-weighted cen-

troid and the material-weighted shear center of the cross-section at the nodes. The finite element 

has a total of 14 degrees of freedom, i.e., 7 nodal displacement components and 7 nodal force 

components at each node. 

The vector of nodal displacements, as shown in Fig. 4.1, is given by: 

( )  
T

A

B

; , A, B
e

e e

i i i i z i xi yi ie
i   

 
= = = 
 

u
u u

u
w u v  (4.1) 

and the vector of nodal forces is represented as follows: 

( )  
T

A

B

; , A, B
e

e e

i z i xi yi z i xi yi ie
F F F M M M M i

 
= = = 
 

f
f f

f
 (4.2) 

In Eqs. (4.1) and (4.2), the superscript "e" denotes the e-th finite element. It is important to note 

that the axial displacement w, as well as the axial force Fz and the bending moments Mx and 

My, are defined relative to the material-weighted centroid of the cross-section. On the other 

hand, all other displacements and nodal forces are defined with respect to the material-weighted 

shear center. 
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4.2 Virtual work principle 

The principle of virtual work, which, in the absence of volume forces, is expressed as fol-

lows, will be applied to determine the equilibrium equations of a buckled thin-walled beam 

element: 

( )δ δ δ d δ d , 1,2,3t t t t t

ij ij i i i

V A

U W S V t u u A i j



= → = + =   (4.3) 

where, δU  is the virtual elastic strain energy, δW  is the virtual work of external forces, Sij 

represents the second Piola-Kirchhoff stress tensor, 
ij  represents the Green-Lagrange strain 

tensor, ti denotes surface forces, ui and iu represents both linear and nonlinear displacement 

components, respectively, and the symbol δ  denotes virtual values. The superscript t indicates 

that the quantities refer to total values. By neglecting initial displacements and deformations 

prior to buckling, the following is obtained: 

0 0, , ,t t t t t

ij ij ij ij ij i i i i i i iS S S t t t u u u u = + = = + + = +  (4.4) 

where, the upper left index 0 on Sij and ti indicates that they refer to their starting or initial 

values, specifically to the values of internal and external forces in the case of undeformed beam. 

Quantities without the upper left index represent incremental values. By combining the Eqs. 

(3.16), (4.3), and (4.4) the following is obtained: 

( ) ( ) ( ) ( )0 0δ d δ dij ij ij ij ij i i i i

V A

S S e e V t t u u A



+ + + = + +   (4.5) 

and by ignoring the higer-order terms: 
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V A
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
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Furthermore, assuming that the initial internal and external forces form a balanced system 

of forces, i.e. 

0 0δ d δ dij ij i i

V A

S e V t u A



=   (4.7) 

By subtracting Eq. (4.7) from (4.6), the following is obtained: 

0 0 0δ d δ d δ d δ d δ dij ij ij ij ij ij i i i i

V V V A A

S e V S V S e V t u A t u A 

 
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The linearized principle of virtual work is represented by Eq. (4.8), wherein the first integral 

corresponds to the virtual elastic strain energy of internal forces. The second integral accounts 
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for the virtual standard geometric potential stemming from initial internal forces, while the third 

and fourth integrals represent the virtual geometric potential arising from both initial internal 

and external forces, considering the effects of large rotations. Lastly, the fifth integral signifies 

the virtual work conducted by external forces. Alternatively, Eq. (4.8) can be written as: 

E GδU δU δW δ 0+ − =  =  (4.9) 

where: 
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 (4.10) 

where Π represents the total potential. The virtual elastic strain energy can be subdiveded as 

follows: 

EB SD CO L CO R

E E E E EδU δU δU δU δU= + + +  (4.11) 

Where first term represents the virtual elastic strain energy arising from EB stress resultants 

given by Eq. (3.67), second term represents the virtual elastic strain energy arising from SD 

stress resultants and is given by Eq. (3.48), while the last two terms represent the virtual elastic 

strain energy arrising due to coupling between EB and SD stress resultants and they are defined 

by Eqs. (3.72) and (3.74). The virtual elastic strain energy due to EB stress resultants can be 

calculated in the following way by applying the constitutive relation from Eq. (2.32): 
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 
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(4.12) 

The first term from Eq. (4.12) represents the virtual elastic strain energy arising from normal 

stress resultants, and is expanded by Eq. (3.19) as follows: 
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 (4.13) 

The second term from Eq. (4.12) represents the virtual elastic strain energy arising from St. 

Venant stress resultants, and it can be expanded in the following way: 
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The last term in Eq. (4.12) is due to the couplings between normal and St. Venant stress 

resultants and it can be extracted from Eq. (3.65) as: 
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 (4.15) 

If the Eqs. (4.13), (4.14) and (4.15) are combined together, the expression for the virtual 

elastic strain energy arising from EB stress resultants is obtained as follows: 
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 (4.16) 

The virtual elastic strain energy arising from SD stress resultants can be rewritten from Eq. 

(3.48) in terms of displacements as: 
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Furthermore, the virtual standrad geometric potential from Eq. (4.10) can be written as fol-

lows 

G G1 G2 G3δU δU δU δU= + +  (4.18) 

where: 
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By applying Eq. (3.21) the follwing can be obtained:  
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(4.20) 

and by ignoring the higer-order terms: 
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 (4.21) 

If the stress resultants from Eq. (3.24) are included in the Eq. (4.21) the following is obtai-

ned: 
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 (4.22) 

By applying Eq. (3.22) in the Eq. (4.19) the follwing can be obtained:  
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(4.23) 

If the Eq. (4.22) and (4.23) are added together, the following is obtained: 
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 (4.24) 

From [64] it can be seen that: 

( )0 0 0 0 0dzy zx z x s y s

A

x y A M F y F x − = − +  (4.25) 

and by combining Eqs. (4.24) and (4.25) the following can be obtained: 
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(4.26) 

If the axial force 0

zF  is acting in the centroid of the cross-section, and if forces 0

xF  and 0

yF  

are acting in the shear center of the cross-section the following is valid: 

( ) ( )

( ) ( ) ( )

0 0 0 0 0 0
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δU δ δ δ d δ d

, , , d
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 
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 

 



w u v w u v

w u v

 (4.27) 

Where ( ),x y  and ( ),s sx x y y − −  are the Dirac delta functions. On the basis of the Eq. (3.22) 

the solutions of the Dirac delta function are: 
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 − − = − + 
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w

u

v

 (4.28) 

and by combining the Eqs. (4.27) and (4.28) it can be otained: 

( ) ( ) ( ) 0 0 2 0 2

G3
0

1
δU δ δ δ

2

l

z s x z s y z x s y s x y y s x y s xF x y F x y F x y         = + + − − −  (4.29) 

If the forces 0

zF , 0

xF , and 0

yF  are constant along the beam element length l, then Eq. (4.29) 
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can be written as follows: 
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 (4.30) 

If the beam finite element from Fig. 4.1 is loaded only in the nodes A and B, then the virtual 

standard geometric potential is calculated by combing the Eqs. (4.26) and (4.30): 
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(4.31) 

4.3  Updated Lagrangian (UL) formulation 

Fig. 4.2 shows the incremental displacements of a thin-walled beam finite element. Here C0 

represents the original or undeformed configuration, C1 represents the last known deformed 

configuration, and C2 represents the first upcoming unknown configuration. The Cartesian co-

ordinate system (Z, X, Y) represents the global coordinate system, while (z, x, y) represents the 

local coordinate system of the finite element. The upper left index on the local axes defines the 

configuration of the finite element. 
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Fig. 4.2 Incremental displacements of the beam finite element 

The principle of virtual work for the configuration C2 can be stated as follows [9]: 

2 2 2

2 2

2

δ d δ Wij ij

V

e V =  
(4.32) 

where τij represents the Cauchy (Euler) stress tensor, δ ije  represents the strain tensor corres-

ponding to virtual displacements, and δW represents the virtual work done by external forces: 

( ) ( )2 2 2 2 2

2 2 2

2 2

δ W= δ d δ di i i i i i

A V

t u u A f u u V



+ + +   
(4.33) 

In Eq. (4.33) ti represents surface or contact forces, fi represents volumetric forces, and ui and 

iu  represent the linear and nonlinear displacement components from Eq. (3.4). In Eqs. (4.32) 

and (4.33), the upper left index denotes the configuration in which the respective quantity ap-

pears. The absence of such an index indicates an incremental value. The lower left index repre-

sents the reference configuration for the given quantity. If both left indices are equal, the lower 

index can be omitted, for example, 2 2

2 ij ij = . Assuming further that there are no volumetric 

forces acting on the finite element, the Eq. (4.33) reduces to: 

( )2 2 2

2 2

2

δ W= δ di i i

A

t u u A



+  
(4.34) 

Since all the values in Eq. (4.34) are defined with respect to the unknown configuration C2, 

according to the Updated Lagrangian formulation, it is necessary to express them in terms of 

the last known configuration C1. This is done as follows: 
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2 2 2 1

2 1 1

2 1

δ d δ dij ij ij ij

V V

e V S V =   
(4.35) 

where Sij represents the second-order Piola-Kirchhoff stress tensor and εij represents the Green-

Lagrange strain tensor. On the other hand, since: 

2 2 2 1

2 1d di it A t A =  (4.36) 

by substituting Eqs. (4.35), (4.36) and (4.37) back into Eq. (4.32), the following is obtained: 

( )2 1 2 1

1 1 1

1 1

δ d δ dij ij i i i

V A

S V t u u A



 = +   
(4.37) 

Eq. (4.37) represents the equilibrium equations of the finite element in configuration C2, with 

all quantities defined with respect to configuration C1. 

Furthermore, in incremental analysis, the tensor Sij can be expressed as: 

2 1 1

1 1 1 1ij ij ij ij ijS S S S= + = +  (4.38) 

While according to Eq. (3.16): 

1 1 1 1δ δ δ δij ij ij ije e = + +  (4.39) 

By substituting Eqs. (4.38) and (4.39) back to Eq. (4.37), the following is obtained: 

( ) ( )2 1 2 1
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(4.40) 

or, by the further arrangement: 

1 1 1 1 1 2 1
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 
 (4.41) 

Furthermore, the incremental constitutive equations can be expressed as follows: 

1 1 1ij ijkl klS C =  (4.42) 

where Cijkl is the tensor of elastic constants [36], and it can be assumed that: 

( )2 1 1 1 1 1

1 1 1 1

1 1 1

δ d δ d δ di i i i i i i

A A A

t u A t t u A t u A  

  

= +     
(4.43) 

Then, according to Eq. (4.41) it follows that: 
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 (4.44) 

Eq. (4.44) represents the tensor form of the finite element incremental equilibrium equations 

during the incremental shift from configuration C1 to configuration C2, formulated according 

to the updated Lagrangian approach. However, since the Eq. (4.44) cannot be solved directly 

due to its nonlinearity during the incremental displacement, an approximate solution can be 

sought by introducing the following assumption: 

1 1 1 1 1δ δij ij ij ijkl kle S C e  →   (4.45) 

which, ultimately, yields: 

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1
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 (4.46) 

where, for the finite element shown in Fig. 4.1: 
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( )

T
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u f
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 (4.47) 

The Eq. (4.46) represents the linearized incremental equilibrium equations of the finite ele-

ment formulated according to the Updated Lagrangian approach. If the Eq. (4.9) is rewritten as 

follows: 

E GδU δU δW+ =  (4.48) 

Then, by comparing the Eq. (4.46) and (4.48) it can be concluded that both equations have the 

same left-hand side, with the only difference being the configuration with respect to which the 

values are defined. To define left hand-side of Eq. (4.48) in the configuration of the Eq. (4.46), 

the virtual standard geometric potential needs to be rewritten as follows: 
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(4.49) 

then the the final solution of Eq. (4.46) can be expressed as follows: 

( ) ( )
T

1 2 1

GδU δ U δ e e e

E + = −u f f  (4.50) 

In Eq. (4.50), the first part, in matrix formulation, yields the elastic or linear stiffness matrix 

e

Ek  of the finite element and is given by Eq. (4.11), while the second term yields the geometric 

or nonlinear stiffness matrix e

Gk  of the finite element and is given by the above Eq. (4.49). 

4.4 Hermite shape functions 

To avoid shear locking, the shape functions for rotations due to bending and torsion and the 

shape functions for translations due to bending and torsion must be connected. To achieve this, 

special Hermite shape functions are used. To obtain these Hermite shape functions, interpola-

tions for transaltions and rotations must first be made with the following expression:  

2 3

1 2 3 4 5 6

2 3 2 3

7 8 9 10 11 12 13 14

, ,

,

O S

S z

z z z z

z z z z z z

     

        

= + = + + +

= + + + = + + +

w u

v
 (4.51) 

where 1  through 14  are the constants of integration. Due to sake of simplicity, if the shear 

stress increments are taken from Eq. (3.51) without coupling terms and by applying the Eq. 

(3.11), the following is obtained: 
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Also the following expressions are valid: 

1 * 1 * 1 *
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 (4.53) 

If the expression for the incremental force 1

yF  from Eq. (4.52) is differentiated with respect 

to variable z, the following is obtained: 

1 2

S

* 2

66R

d d d

d d d
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Q A z z z
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v
 (4.54) 

and if Eq. (4.53) is applied to Eq. (4.54): 
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Q A z z Q I
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v
 (4.55) 

Now, by taking a further derivative of Eq. (4.55) with respect to the variable z, the following 

can be obtained: 

2 1 3 1
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Q A z z Q I z
= +

v
 (4.56) 

and lastly, by applying expressions from Eq. (4.53) it can be obtained that: 

3
1 * S

11R 3

d

d
y xF Q I

z
= −

v
 (4.57) 

From Eq. (4.51), the derivatives of vertical displacement Sv  follow as: 

3
2 3 2

7 8 9 10 8 9 10 103

d d
, 2 3 , 6

d d

S S
S z z z z z

z z
       = + + + = + + =

v v
v  (4.58) 

Finaly by applying Eqs. (4.52), (4.57) and (4.58), the expression for x  can be obtained as: 

*

11R2

8 9 10 *

66R

2 3 2
x

x y

Q I
z z K

Q A
   

 
= − − − + 

 
 

 (4.59) 
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By taking the similar procedure, as to obtain x , the expressions for 
y  and   can be ob-

tained as: 

*

11R2

4 5 6 *

66R

*

11R2

12 13 14 *

66R

2 3 2

2 3 2

y

y x

t

Q I
z z K

Q A

Q I
z z K

Q I





   

   

 
= + + + 

 
 

 
= − − − + 

 
 

 (4.60) 

If the expression for vertical displacement from Eq. (4.51) and the rotation around x axis 

from Eq. (4.59) is written in tensor notation, it can be seen that: 

,S xS S x S= =a α a αv v vv  (4.61) 

where: 

   

 

2 3 2

*

11RT

7 8 9 10 *

66R

1 , 0 1 2 3 ,

, 6

yS x

x

y y
S

z z z z z

Q I
K

Q A

 

    

= = − − − −

= =

a a

α

v

v

 (4.62) 

By applying the boundary conditions for the A and B node of the finite element, it can be 

seen that: 

7 A 8 10 A

2 3

7 8 9 10 B

2

8 9 10 10 B

0 ,

,

2 3

S S x y x

S S

x y x

z

z l l l l

l l

     

   

      

= → = = = − − =

= → = + + + =

= − − − − =

v v

v v  (4.63) 

Where the vector of vertical displacements u
v

 take the following form: 

A 7

A 8

2 3

B 9

2

B 10

1 0 0 0

0 1 0

1

0 1 2 3

S

yx

S
S

yx

l l l

l l



 



 

    
    − −    = = =   
 

   
 

   − − − −     

u Aαvv

v

v
 (4.64) 

The vector of the constants of integrations can be derived from Eq. (4.64) as: 

1

S

−=α A uv v
 (4.65) 

and by combining Eqs. (4.61) and (4.65), the following can be obtained: 

1 1,S xS x x − −= = = =a A u N u a A u N uv vv v v v
v  (4.66) 

where: 
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1 1,
S x x 

− −= =N a A N a Av v  (4.67) 

If the derivatives of the respective shape function vector is needed the following procedure 

is employed: 

1 1
d d dd

,
d d d d

S x x

xz z z z

 



− −= = = =
a N aN

B A B A
vv

v  (4.68) 

By applying the similar procedure, as to obtain Eqs. (4.61)-(4.67), the interpolations for the 

displacements and twist rotations take the following form: 

• axial displacement: 

 

 

T

A B

d d
, ,

d d

d 1 1
1 ,

d

O
O

z z

z l l
 

= = =

 
= − = = − 

 

N
N u u u

N
N B

w
w ww w

w
w w

w
w w w

 (4.69) 

• bending in the (z, y) plane: 

 

( )( ) ( )( )

( ) ( )( )

T

A A B B

2

2

2 2

2

dd d d
, , ,

d d d d

1 2 1 1 2

2

3 2 1 1 2 1

2

1 6 6 1 6 2 6d

d 2

1 6 6 1 6

S x x
S x x

S x S x

y y

y y

y y

y y

y y y

y y

y y

y

z z z z

l

l

z l

l








 

       

 

       

 

      

 

   



= = = =

=

 − + − − + −
= −


+ − − − + −
−


 − − + − − + + −
= = 



− + + − − + +

NN
N u N u u u

u

N

N
B

v
v v v v v

v

v

v
v

v
v

v v

( ) ( )( ) ( ) ( )

2

2 2

2 6

2

1 3 3 36 1 6 1

d 3 6 3 66 12 12 6

d

y

y

y y

x
y y y y

y yx

x
y y y y

l l

z l l l l







  



        

   

    

   

− −



 − − + −− −
= − − 
  

 − − + − + +− −
= =  

  

N

N
B

 

(4.70) 

• bending in the (z, x) plane: 
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 

( )( ) ( )( )

( ) ( )( )

T

A A B B

2

2

2 2

2

ddd d
, , ,

d d d d
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2
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2
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x

z z z z

l

l

z l

l








 
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
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= − − 
 
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 
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(4.71) 

• torsion: 

 

( )( ) ( )( )

( ) ( )( )
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d d dd
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d
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(4.72) 
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where: 

* * *

11R 11R 11R

2 * 2 * 2 *

66R 66R 66R

12 12 12
, 1 , 1 , 1

y x x y

y x

t

K Q I K Q I K Q Iz

l l Q A l Q A l Q I

 

   = = + = + = +  (4.73) 

As previously stated, the elastic stiffness matrix of a finite element is derived from the first 

term of the Eq. (4.50), i.e. 

( )
T

EB SD CO L CO R

E E E EδU δU δU δU δ e e e

E+ + + = u k u  (4.74) 

The geometric stiffness matrix is derived from the second term of the Eq. (4.50): 

( )
T

1

Gδ U δ e e e

G= u k u  (4.75) 

Since the beam finite element shown in Fig. 4.1 has 14 degrees of freedom, the dimensions 

of the elastic and the geometric stiffness matrix from Eqs. (4.74) and (4.75) will be 14×14. The 

elements of these matrices can be obtained by decomposing the total deformation of the finite 

element into those due to: axial loading, bending in the (z, y) plane, bending in the (z, x) plane 

and torsion, for which the interpolations are given in Eqs. (4.69)-(4.72). 

For example, if the particular integral form Eq. (4.15) is solved, the following procedure is 

applied: 

( ) ( )

16R 25 16R 25

0 0

TT

16R 25

0

d d
2 δ d 2 δ d

d d

δ 2 d

l l

x x

l

x z

Q E z Q E z
z z

Q E z  

 
 = =

 
=  

 

 

u B N uv

 (4.76) 

and after integration, the following expression is derived: 

( ) ( ) ( ) ( )
TT T

16R 25 B N

0

δ 2 d δ

l

e

x z x z
Q E z    

 
= 

 
u B N u u k uv v  (4.77) 

where matrix 
B N

e

x 
k  take the following form: 
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B N 16R 25
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l l

l l
Q E

l l

l l
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 
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 
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 
− 

 
    
 − − − + − + +          

=  
 −
 
 
    

− − − + −       
     

k  (4.78) 

It is important to note that the virtual displacements are defining the rows of the stiffness 

matrix, while the real displacements are defining the columns of the stiffness matrix. With that 

in hand, if the 
B N

e

x 
k  is added to the corresponding stiffness matrix, it would be responsible 

for change of the following elements of the stiffness matrix: 

Column 4 Column 7 Column 11 Column 14

3,4 B N 1,1 3,7 B N 1,2 3,11 B N 1,3 3,14 B N 1,4Row 3

Row 5 5,4 B N 2,1 5,7 B N 2,2 5,11 B N 2,3 5,14

Row 10

Row 12

e e e e e e e e

E E E Ex x x x

e e e e e e e

E E E Ex x x

e

E

      

    

+ + + +

+ + + +

=

k k k k k k k k

k k k k k k k k

k

B N 2,4

10,4 B N 3,1 10,7 B N 3,2 10,11 B N 3,3 10,14 B N 3,4

12,4 B N 4,1 12,7 B N 4,2 12,11 B N 4,3 12,14 B N 4,4

e

x

e e e e e e e e

E E E Ex x x x

e e e e e e e e

E E E Ex x x x

 

      

      

 
 
 
 
 
 
 
 
 + + + +
 
 
 

+ + + +
 
 
 

k k k k k k k k

k k k k k k k k

 (4.79) 

With solving all the integrals from Eq. (4.74), by following the procedure shown in Eqs. 

(4.76)-(4.79), and by adding them to the corresponding place in elastic stiffness matrix, the final 

element elastic stiffness matrix is defined. To obtain the geometric stiffness matrix of the ele-

ment, the incremental beam-stress resultants at the z-cross section defined with reference to 

those at the element nodes should be introduced, i.e. 
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( )

( )

( )
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1 1 1 1 1
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1 1 1 1 1

1
,

1

1

1

,
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y yA yB xA xB

x x yA x x

y y xA y y

z z z

z z x x y y

F F F F F F M M
l

F F F M M
l

z z
M M F z M M

l l

z z
M M F z M M

l l

M M M M M M

K F M M M

  
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= − = = − = = − +

= − = = +

 
= − − = − − + 

 

 
= − + = − − + 

 

= − = = − =

= + + + =

1 1 1 1 1 1

B A B A B B1 1z z x x x y y y

z z z z
F M M M M M

l l l l
    

      
= + − − + + − − + +      

      

 
(4.80) 

After employing Eq. (4.80) in Eq. (4.75), and by solving all the integrals, following the same 

procedure as in Eqs. (4.76)-(4.79), and by adding them to the corresponding place in geometric 

stiffness matrix, the final element geometric stiffness matrix is derived. 

4.5  Finite element equation 

Equation for the equilibrium of the e-th finite element, for the incremental displacement from 

configuration C1 to configuration C2, with all quantities defined with respect to configuration 

C1 in accordance with the UL formulation, is given by: 

( ) ( ) ( ) ( )
T T

1 1 2 1

1 E G 1 1 1 1δ δe e e e e e e+ = +u k k u u f f  (4.81) 

or if written in matrix form: 

1

1 1

e e e

T =k u f  (4.82) 

where e

Tk  is the tangent stiffness matrix of the e-th finite element: 

1 1 1e e e

T E G= +k k k  (4.83) 

while e
f  represents the corresponding vector of incremental nodal loads: 

2 1

1 1 1

e e e= +f f f  (4.84) 

Once the vector 
e

u  is available, one can obtain from Eq. (4.81) the following: 

( )2 1 1 1

1 1 E G 1

e e e e e= + +f f k k u  (4.85) 

in which the vector 2

1

e
f  contains the force components acting on the element at C2, but which 



Damjan Banić: A shear deformable beam model for stability analysis of composite frames  

74 

are stated in the direction of the element axes at C1. To obtain the nodal force vector which 

contains components acting on and stated in C2, a force recovery procedure based on the con-

ventional approach [43] is adopted, i.e. 

2 2 2

2 1 1

e e e=f T f  (4.86) 

where 2

1

e
T  is the incremental transformation matrix for relating the axes of the e-th beam ele-

ment in C1 and C2, respectively. In this work, the procedure for developing such a matrix is 

based on the concept of semitangential rotations [4] and is reported in [65,68]. 

After performing the standard assembling procedure, the overall incremental equilibrium 

equations for the structure can be obtained as: 

( ) ( ) ( )
T T

1 1 2 1 1 1 1 1 1 1 1 1

E G 1 E E G G, ,e e e e e e

e e

+ = − = = K K U P P K t k t K t k t  (4.87) 

where 1

EK  and 1

GK  denote the incremental elastic and geometric stiffness matrices of the 

structure, respectively, U is the incremental displacement vector, 1
P  and 2

P  denote the vectors 

of external loads applied on the structure at C1 and C2, respectively, while the matrix 
1 e
t  trans-

forms the e-th beam element from the corresponding local coordinate system (1z, 1x, 1y) in C1 

configuration to the global coordinate system (Z, X, Y). 

When the linearised stability analysis is sufficient, which provides no message concerning 

pre- and post-buckling response of a structure, an eigenvalue approach can be appealing. In 

such a case, C1 is assumed to be an undeformed stressed configuration of the structure, C2 is a 

buckled configuration. During the buckling deformation from C1 to C2, and the external loads 

are assumed to remain unchanged. Thus, the buckling (critical) load crP  can be represented as 

a multiplication of a reference load P̂  by a proportional parameter , i.e. 
2 1

cr
ˆΛ= = =P P P P . 

Accordingly, the incremental geometric stiffness matrix KG can be linearized as G G
ˆΛ=K K , 

where ( )G G
ˆ ˆK K U , and one can derive from Eq. (4.87) the following eigenvalue problem: 

( )E G
ˆΛ+ =K K U 0  (4.88) 

where the eigenvalue  and eigenvector U denote a buckling load parameter and correspon-

ding buckling deformation, respectively. For the sake of completeness, readers interested in 

further details about this procedure can refer to the work [64], conducted by the candidate’s 

mentor. 
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5 COMPUTER PROGRAMS CCSC AND 

THINWALL V18 

The CCSC computer program was developed based on the numerical algorithm presented 

in Chapter 3. Similarly, the computer program THINWALL, originally developed by the can-

didate's mentor in [64], was updated using the numerical algorithm presented in Chapter 4, 

resulting in a revised version called THINWALL V18. 

The program CCSC, an acronym for Composite Cross-Section Calculation, was developed 

by the author to implement the procedure described in Chapter 3. A description of this program 

is given in the following subsection.  

The most significant difference in THINWALL V18 compared to its previous versions lies 

in the updates made to the Elastic and Geometric stiffness matrices, which are now based on 

Eqs. (4.74) and (4.75) respectively. Additionally, new shape functions described in Eqs. (4.69) 

to (4.72) have been applied. THINWALL V18 relies on the finite element method and is pro-

grammed in Fortran. It consists of a main program and several subroutines, all operating in 

double precision mode. For more detailed information about this program, readers are encou-

raged to refer to the candidate's mentor work [64]. In the following subchapter, only a brief 

description of the computer program THINWALL V18 will be provided. 

In addition, numerical examples are given in this section to demonstrate the accuracy and 

reliability of the above programs.  

5.1  CCSC program description 

The purpose of developing the CCSC program is to calculate the properties of composite 

cross-sections, which are required as input for the THINWALL V18 computer program. The 

main components of the CCSC program are the numerical algorithms presented in Chapter 3. 

Additionally, a flowchart depicting the program's structure can be found in Fig. 5.1.  
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Fig. 5.1 Flowchart of the CCSC program 

From Fig. 5.1, it is evident that the CCSC program consists of 13 different subroutines in 

addition to the main program. CCSC is a straightforward program that runs linearly from 

START to END without iterations. The program begins by reading input parameters through 

the subroutine INPUT. The input file is a txt file containing the following information: 

• the first line specifies the number of branches in the cross-section. 

• For each branch, the start and end points, start and end branch thickness, and the 

number of divisions or elements in the branch need to be provided. 

• After defining the branches of the cross-section, the number of layers need to be 

specified for the first branch. 

• For each layer of the first branch, the program requires information about the material 

properties, including E
1
, E

2
, G

12
, v

12
, ply angle (θ), and the relative ply thickness (a 

multiplier used to calculate the layer thickness based on the actual thickness of the 

branch). 

• The previous two points need to be repeated for the each following branch of the 

cross-section. 

Examples of input files for U and I sections are shown in Fig. 5.2. 

The subroutine MESH generates the mesh based on the input parameters and calculates the 

reduced stiffness, reference moduli and composite thickness components according to Eqs. 

(2.32), (3.25), (3.80), (3.85), (3.102), (3.104), (3.109) and (3.111). It should be noted that the 

initial position of the cross-section axes is determined by the point with coordinates (0, 0).  
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The subroutine CHAR1 calculates various cross-section properties, including 
*A , 

*ˆ
xS , 

*ˆ
yS , 

*ˆ
xI , 

*ˆ
yI , 

*ˆ
xyI  and 

*

tI  based on the Eqs. (3.79), (3.84) and (3.101). 

In the MAIN AXES subroutine, the position of the material-weighted centroid is first calcu-

lated by the Eq. (3.78). Then, the entire cross-section is translated to the centroid position based 

on the Eq. (3.81). Using the parallel axis theorem, Eq. (3.89), 
*

xI , 
*

yI  and 
*

xyI  are computed. 

The position of the main axes is determined by the Eq. (3.83), and the cross-section is rotated 

accordingly, Eq. (3.87). 

  

 
(a) (b) 

Fig. 5.2 Examples of the txt input files for: (a) U profile, (b) I profile 

After the MAIN AXES subroutine, the CHAR1 subroutine is executed again to calculate the 
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cross-section properties 
*

xI  and 
*

yI . It also verifies if the properties 
*

xS , 
*

yS  and 
*

xyI  are equal to 

zero. 

The ω START subroutine calculates the warping function for the entire cross-section, consi-

dering the pole set at the centroid of the cross-section and the starting point defined by the first 

point specified in the input file, Eq. (3.94). The coordinates of the starting point are adjusted 

based on the translation and rotation of the cross-section. 

The CHAR2 subroutine calculates the properties *S
, *

xI 
 and *

yI   by the Eqs. (3.96) and 

(3.98) and determines the position of the material-weighted shear center by the Eq. (3.95). 

The ωr subroutine calculates the principal warping function for the entire cross-section, Eq. 

(3.97). 

The CHAR3 subroutine determines the warping constant *I , by the Eq. (3.99). 

In the S DISTRIB subroutine, the distributions of *

xS , 
*

yS  and *S
 are calculated for the entire 

cross-section, Eq. (3.105). 

The SCOR subroutine carries out the correction procedure, if necessary, as depicted in Fig. 

3.11. 

In the subsequent S FACTORS and WAGNER subroutines, all the shear factors and Wagner 

coefficients are computed, Eqs. (3.49), (3.52), (3.64), (3.66), (3.71) and Eq. (3.73). 

Lastly, in the OUTPUT subroutine, a file containing all the output information required for 

the THINWALL V18 program is generated. 

5.2 THINWALL V18 brief program description 

The THINWALL V18 program was developed for the analysis of the stability of thin-walled 

structures, both linear and nonlinear. Its purpose is to discretize structures using the finite ele-

ment for thin-walled beams, detailed in Fig. 4.1. 

Linear stability analysis, also known as bifurcation stability, is based on the assumption that 

the relationship between the internal forces in the structure is qualitatively the same for each 

level of external loading. This relationship is described by Eq. (4.88). 

The nonlinear stability analysis is performed by solving the problem defined by Eq. (4.87). 

For this purpose, an incremental-iterative method with automatic adjustment of the load incre-

ments (generalized displacement control method), as described in the paper [64], is used. To 

perform the nonlinear stability analysis, perturbations must be introduced into the ideal systems 
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(structures) considered in the bifurcation stability. These perturbations trigger the correspond-

ing deformation patterns and allow tracking of these patterns during loading of the structure. 

Within each increment, iterations are repeated until the convergence condition is satisfied or 

until the maximum number of iterations allowed within an increment is reached to prevent in-

finite iterations. The deformation process continues until the external load falls below the max-

imum allowable value or until the maximum allowable number of increments is reached again. 

The interested reader is advised to refer to the candidate's mentor paper [64] for more detailed 

information on this program. Some brief information is given on the subroutines of the 

THINWALL V18 program shown in Fig. 5.3.  

The subroutine INPUT reads the input file, which defines the following parameters: 

• Geometry of the structure 

• Type of analysis 

• Geometry and characteristics of the finite elements 

• Boundary conditions and external loads 

The subprogram TRANMAT0 generates transformation matrices for the finite element con-

figuration C0, or the components of the vector 0zs, 
0xs, and 0ys. 

The subroutine PREF, based on the initial values of external loads from the input file, con-

structs the reference load vector P̂ . 

The subroutine INITIAL initializes the initial values of all necessary parameters for: 

• the structure 

• each node of the structure 

• each finite element 

The subroutine ELMAT constructs the stiffness matrices of all finite elements, transforms 

them into the global coordinate system, and then subroutine EMATKON assembles them into 

the elastic stiffness matrix of the structure. 

Similarly, the subroutine GMAT constructs the geometric stiffness matrices of the finite 

elements and transforms them into the global coordinate system. Subsequently, the subroutine 

GMATKON assembles them into the geometric stiffness matrix of the structure, to which cor-

rective stiffness matrices are optionally added by calling the subroutine KORMAT. 

In the case of bifurcation stability, the subroutine EIVALUE condenses the elastic and geo-

metric stiffness matrices of the structure, forms the eigenvalue problem, calculates and outputs 

the eigenvalues and eigenvectors, with the previously obtained eigenvector expanded by adding 
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zero displacements. 

The subroutine EXTMAT constructs the external stiffness matrices of the finite elements for 

the force recovery phase. 

 

Fig. 5.3 Flowchart of the THINWALL V18 program 

The subroutine POMACI1 condenses the tangent stiffness matrix of the structure and deter-

mines the incremental nodal displacement vector of the structure, while the subroutine 

POMACI2 condenses the unbalanced load vector and determines the incremental nodal dis-

placement vector of the structure. 

The subroutine POMACI determines the total incremental nodal displacement vector of the 

structure, as well as the incremental nodal displacement vectors of the finite elements in the 

local coordinate system. 

For each finite element, the subroutine FKELEM determines the nodal force vector based 

on its incremental nodal displacement vector. 

The subroutine KOREKCIJA1 corrects the coordinates of the structure nodes and the posi-

tion of the reference axes of the nodes, while the subroutine KOREKCIJA2 corrects the geom-

etry of the finite elements and constructs the transformation matrices of the finite elements for 

the next iteration. 
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The subroutine FKONST transforms the nodal force vectors of the finite elements and con-

structs the internal force vector of the structure. 

Then, the subroutine KONTROLA calculates the unbalanced load vector and the specific 

work of the unbalanced load. If the specific work is greater than the allowed energy criterion 

tolerance defined by the input parameter, the program proceeds to a new iteration. If the specific 

work is smaller than the allowed energy criterion tolerance, the program proceeds to a new 

increment. 

5.3 Numerical examples 

The nonlinear stability analysis was performed using the generalised displacement control 

method [75], which served as an incremental-iterative procedure. It was necessary to introduce 

a small perturbation load. The updating of nodal coordinates and orientations of the cross-sec-

tion axes for each beam element was carried out at the end of each loading step [64]. Iteration 

was stopped using an energy criterion with a tolerance value of 10–6. 

To analyze the significance of shear effects on the stability behavior of the structure under 

consideration, a comparison of four beam models was conducted. The first model completely 

ignored shear deformability effects and was labeled 'SR' in the presented results. The second 

model included shear deformation couplings as presented in this paper and was labeled 'SD'. 

The third model, previously introduced by the authors in [67] and labeled 'SD1', neglected the 

off-diagonal members in Eq. (3.50) and introduced the shear deformation coupling effects thro-

ugh the virtual incremental strain energy. The last model completely ignored the shear coupling 

effects and was referred to as 'SD2' in the diagrams and tables. In all examples, except Example 

1, the assumption was made that s = 0, which satisfies Eq. (2.30). It was assumed that all plies 

have the same thickness1. 

  

                                                 

 

1 Part of the work described in this section was published by the author of the thesis and his collaborators in 

peer-reviewed scientific papers ([7] and [8]), which were produced and published as part of the obligations fore-

seen in the curriculum of the doctoral study of the Faculty of Engineering of the University of Rijeka, Croatia, 

hence this section is based, partly directly derived and cited from this work.   
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5.3.1 Example 1 

In the first example, the effects of anisotropy and laminate stacking sequence on the locations 

of the material-weighted centroid and shear center are investigated. This investigation is con-

ducted by considering a thin-walled composite beam with an open section. The structural ma-

terial used possesses the following properties: E
1
 = 140 GPa, E

2
 = 3.5 GPa, G

12
 = 2.1 GPa, v

12
 

= 0.25. Two cross-section shapes are considered and depicted in Fig. 5.4. It should be noted 

that the same thickness is maintained for all cross-section branches. A comparison is made 

between the results obtained and the work conducted by Lee [37]. 

  
(a) (b) 

Fig. 5.4 Example 1 cross-section geometry: (a) monosymmetric U profile, (b) monosymmetric I profile 

The positions of the material-weighted centroid and shear center for the monosymmetric U 

profile shown in Fig. 5.4 (a) are presented in Fig. 5.5. The fiber angle is varied in two ways. 

Firstly, an angle-ply laminate with the stacking sequence [θ/–θ]2S is used for the flanges of the 

U profile, while a unidirectional laminate with the stacking sequence [0°]8 is employed for the 

web. Secondly, a unidirectional laminate [0°]8 is utilized for the flanges, while an angle-ply 

laminate [θ/–θ]2S is employed for the web. In this example, separate tables for cross-section 

properties will not be provided due to the variations in the cross-section. However, the data 

pertaining to the material-weighted centroid and material-weighted shear center can be found 

in the figures presented. 

Both simplification cases from Chapter 2 are also taken into consideration. The first assum-

ption assumes εs = 0, which corresponds to Eq. (2.27). This assumption can be achieved by 

restricting the cross-section from deforming in the contour direction. The second assumption is 

that s = 0, corresponding to Eq. (2.30). It should be noted that the results in [37] only consider 

the first assumption. 
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Fig. 5.5 Positions of material-weighted centroid and shear centre for the monosymmetric U profile with respect 

to fiber angle change in the flanges and the web 

By observing Fig. 5.5, it becomes apparent that the results obtained through the comparable 

assumption align with the findings presented in [37]. The classical isotropic solution corres-

ponds to a fiber angle of 0°. As the fiber angle is altered in the web, the material-weighted 

centroid shifts closer to the center of the flanges, while the shear center moves farther away. 

This indicates an increase in the distance between the centroid and the shear center. Conversely, 

when the fiber angle is changed in the flange, both the center of gravity and the shear center 

move towards the web, which is in contrast to the previous case. 

Table 5.1 Example 1 U profile cross-section properties. 

*A  

(cm2) 

*

maxxI  

(cm4) 

*

maxyI  

(cm4) 

*

tI  

(cm4) 

*

maxI  

(cm4) 

11R maxQ  

(GPa) 

66RmaxQ  

(GPa) 

80 31486 3557 26.67 1069270 140 6.31967 

Kx max Ky max Kω max Kyω max maxz  

(cm2) 

maxy

(cm) 
 

7.2267 6.3476 0.003253 7.0793 815.362 47.226  

 

Cross-section properties are not independent of the material variations. Variations of the 

material-weighted cross-section properties for the monosymmetric U profile with respect to 

fiber angle change in the flanges and the web can be observed in the Fig. 5.6. The properties 

presented in the Fig. 5.6 are divided by their maximum values shown in the Table 5.1. It should 
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be noted that values prresented in the Table 5.1 and Fig. 5.6 are calculated acording to assum-

ption that s = 0, corresponding to constituve equation given in Eq. (2.30). 

  
(a) (b) 

  
(c) (d) 

Fig. 5.6 Various U profile cross-section properties with respect to fiber angle change in the flanges and the web: 

(a) 
*

xI , 
*

yI  and 
*I , (b) 

z  and y , (c) 11RQ  and 66 RQ , (d) Kx, Ky, Kω and Kyω 

Fig. 5.7 depicts the positions of the material-weighted centroid and shear center for the mo-

nosymmetric I profile shown in Fig. 5.4 (b). The fiber angle is varied in the top and bottom 

flanges following the same principle as in the previous variation. In the first case, the bottom 

flange of the I profile is composed of an angle-ply laminate with the stacking sequence [θ/–

θ]2S, while the web and top flange consist of a unidirectional laminate with the stacking sequ-

ence [0°]8. In the second case, a unidirectional laminate is used in the bottom flange and the 
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web [0°]8, while the top flange is constructed with an angle-ply laminate [θ/–θ]2S. 

 

Fig. 5.7 Positions of material-weighted centroid and shear centre for the monosymmetric I profile with respect 

to fiber angle change in the top and the bottom flange  

Table 5.2 Example 1 I profile cross-section properties with respect to fiber angle change in the top and bottom 

flange. 

*A  

(cm2) 

*

maxxI  

(cm4) 

*

maxyI  

(cm4) 

*

tI  

(cm4) 

*

maxI  

(cm4) 

11R maxQ  

(GPa) 

66RmaxQ  

(GPa) 

90 24893 2920 30 834845 140 4.913116 

Kx max Ky max Kω max maxxK   maxz  

(cm2) 
maxx  

(cm) 
 

2.1538 5.5071 0.002259 0.46387 383.382 30.221  

 

Similar to the previous analysis, the results obtained by the comparable assumption a-lign 

are consistent with those presented in [37]. When the fiber angle in the bottom flange is varied, 

the center of gravity moves slightly upward and the shear center approaches the top flange. 

When the fiber angle is varied in the upper flange, the centroid gradually moves downward, 

while the shear center rapidly approaches the bottom flange. As a result, the cen-troid and the 

shear center coincide near θ = 50° or θ = 30°, depending on the assumption of εs or s. This 

indicates that bendingand torsion can be decoupled for certain stacking sequences of laminates, 

even for monosymmetric cross sections.  
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(a) (b) 

  
(c) (d) 

Fig. 5.8 Various I profile cross-section properties with respect to fiber angle change in the top and bottom 

flange: (a) 
*

xI , 
*

yI  and 
*I , (b) z  and x , (c) 11RQ  and 66 RQ , (d) Kx, Ky, Kω and Kxω 

 

Variations of the material-weighted cross-section properties for the monosymmetric I profile 

with respect to fiber angle change in the top and the bottom flange can be observed in the Fig. 

5.8. The properties presented in the Fig. 5.8 are divided by their maximum values shown in the 

Table 5.2. It should be noted that values prresented in the Table 5.2 and Fig. 5.8 are calculated 

acording to assumption that s = 0, corresponding to constituve equation given in Eq. (2.30). 
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Table 5.3 Example 1 I profile cross-section properties with respect to fiber angle change in the flanges and the 

web. 

*A  

(cm2) 

*

maxxI  

(cm4) 

*

maxyI  

(cm4) 

*

tI  

(cm4) 

*

maxI  

(cm4) 

11R maxQ  

(GPa) 

66RmaxQ  

(GPa) 

90 34152 5147 30 1452567 140 6.788527 

Kx max Ky max Kω max Kxω max maxz  

(cm2) 
maxx  

(cm) 
 

6.009 7.5277 0.004646 0.505254 484.763 20.613  

 

 

Fig. 5.9 Positions of material-weighted centroid and shear centre for the monosymmetric I profile with respect 

to fiber angle change in the flanges and the web  

The positions of the material-weighted centroid and shear center for the monosymmetric I 

profile shown in Fig. 5.4 (b) are illustrated in Fig. 5.9. The fiber angle is varied in the flanges 

and the web following the same principle as in Fig. 5.5. It is evident that the results obtained 

through the comparable assumption align with the findings presented in [37]. Moreover, the 

location of the shear center remains nearly unchanged regardless of variations in the fiber angle, 

while the position of the centroid exhibits slight variations as the fiber angle is altered. 
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(a) (b) 

  
(c) (d) 

Fig. 5.10 Various I profile cross-section properties with respect to fiber angle change in the flanges and the 

web: (a) 
*

xI , 
*

yI  and 
*I , (b) z  and x , (c) 11RQ  and 66 RQ , (d) Kx, Ky, Kω and Kxω 

Variations of the material-weighted cross-section properties for the monosymmetric I profile 

with respect to fiber angle change in the top and the bottom flange can be observed in the Fig. 

5.10. The properties presented in the Fig. 5.10 are divided by their maximum values shown in 

the Table 5.3. It should be noted that values prresented in the Table 5.3 and Fig. 5.10 are cal-

culated acording to assumption that s = 0, corresponding to constituve equation given in Eq. 

(2.30). 
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5.3.2 Example 2 

In the second example, the behavior of a cantilever beam (CF), simply supported beam (SS), 

and clamped-clamped beam (CC) under an axial force at the centroid is considered. The cross-

section under analysis is depicted in Fig. 5.4 (b), with dimensions of b1=b3=5 cm and b2=3cm. 

The cross-section properties are listed in Table 5.4. Both the flanges and the web consist of 16 

layers, with each layer having a thickness of 0.013 cm, resulting in a branch thickness of t = 

0.208 cm. The laminate is composed of the stacking sequence [θ/–θ]8S. 

Table 5.4 Example 2 cross-section properties. 

*A  

(cm2) 

*

xI  

(cm4) 

*

yI  

(cm4) 

*

tI  

(cm4) 

*I  

(cm4) 
ys (cm) 11RQ  

(GPa) 

66RQ  

(GPa) 

2.704 12.173 2.638 0.0389 9.649 1.225 varies varies 

Kx Ky Kω Kxω     

1.9421 2.8678 0.00409 0.2353     

The structural material employed in this analysis is glass-epoxy, which possesses the fol-

lowing properties: E
1
 = 53.78 GPa, E

2
 = 17.93 GPa, G

12
 = 8.96 GPa, v

12
 = 0.25. The length of 

the beam is denoted as L. The critical buckling loads obtained from the present model are com-

pared with those of Vo and Lee [73]. 

  
(a) (b) 

Fig. 5.11 Buckling load vs. ply orientation (θ) for L=100 cm and: (a) CF, (b) SS 

Fig. 5.11 presents the critical buckling load for different ply orientations under CF and SS 

boundary conditions. The results exhibit good agreement with [73], although there is minimal 

difference observed between the SD and SR models.  

In Fig. 5.12 to Fig. 5.14, the critical buckling load for various beam lengths is shown for 

three boundary conditions and two ply angles. It can be observed that the SR model exhibits 

significant differences from the SD model in the case of a CC beam when the L/b3 ratio is below 
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7. Additionally, for an SS beam with a ratio below 5, a noticeable difference between the SR 

and SD models can be seen. However, the CF beam model shows negligible differences 

between the SR and SD models. 

  
(a) (b) 

Fig. 5.12 Buckling load vs. beam length for CF beam and: (a) θ=0°, (b) θ=15° 

  
(a) (b) 

Fig. 5.13 Buckling load vs. beam length for SS beam and: (a) θ=0°, (b) θ=15° 

  
(a) (b) 

Fig. 5.14 Buckling load vs. beam length for CC beam and: (a) θ=0°, (b) θ=15° 
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5.3.3 Example 3 

In Fig. 5.15 (a), a simply supported column subjected to an axial force F is depicted. The 

column adopts a mono-symmetric cross-section from Fig. 5.15 (b), with properties listed in 

Table 5.5. Two stacking sequences, [0°/0°]S and [0°/90°]S, are assumed for the cross-section. 

The structural material employed in this analysis is graphite-epoxy (AS4/3501), which posses-

ses the following properties: E
1
 = 144 GPa, E

2
 = 9.65 GPa, G

12
 = 4.14 GPa, v

12
 = 0.3. 

Fig. 5.15 Simply supported column: (a) geometry, (b) cross-section, (c) torsional-flexural buckling mode 

Table 5.5 Example 3 cross-section properties 

 
*A  

(cm2) 

*

xI   

(×103 cm4) 

*

yI   

(×103 cm4) 

*

tI  (cm4) 

*I   

(×106 cm4) 

xs 

(cm) 
11RQ  

(GPa) 

66RQ  

(GPa) 

[0°/0°]S 540 378.270 216.135 1620 139.657 45.675 144 4.14 

[0°/90°]S 540 378.447 216.224 1620 140.284 45.648 76.825 4.14 

 Kx Ky Kω Kyω     

[0°/0°]S 1.9476 3.3768 0.0043 – 0.2441     

[0°/90°]S 1.9460 3.3622 0.0043 – 0.2412     

 

The torsional-flexural mode depicted in Fig. 5.15 (c) corresponds to the lowest buckling 

load. This mode is analyzed using five different mesh configurations, each consisting of two, 

four, eight, sixteen, and thirty-two beam elements.  

 

 

 

(a) (b) (c) 
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(a) (b) 

Fig. 5.16 Buckling load convergence for SS column, L = 400 cm: (a) [0°/0°]S, (b) [0°/90°]S 

The obtained results are presented in Fig. 5.16 and compared with the analytical solution 

provided by Cortinez in [23]. It can be observed that none of the shear deformable models 

experience shear locking, and the results obtained from the SD model closely align with the 

analytical solution. On the other hand, the results obtained from the SD1 and SD2 models un-

derestimate the buckling strength of the column. 

Additionally, the shear deformability leads to a reduction of 44% and 29% in the buckling 

strength when compared to the shear rigid model for the stacking sequences [0°/0°]S and 

[0°/90°]S, respectively. 

 

Fig. 5.17 Buckling load vs. column length for SS column 
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Fig. 5.17 displays the variations in the buckling load value as a function of the column slen-

derness ratio. It is observed that the difference in results obtained between the SR and SD mo-

dels decreases as the slenderness ratio increases. 

5.3.4 Example 4 

In Fig. 5.18 (a), a cantilever column subjected to an axial force F is depicted. The column 

adopts a mono-symmetric cross-section from Fig. 5.18 (b), with the properties provided in Ta-

ble 5.6. The structural material utilized for the column is graphite-epoxy (AS4/3501), which 

possesses the following properties: E
1
 = 144 GPa, E

2
 = 9.65 GPa, G

12
 = 4.14 GPa, v

12
 = 0.3. 

Each wall of the cross-section has the same thickness and is composed of a single AS4/3501 

ply. The ply orientations are indicated in Fig. 5.18 (b). 

 

 

  

(a) (b) (c) (d) 

Fig. 5.18 Cantilever column: (a) geometry, (b) cross-section, (c) flexural buckling mode,(d) torsional-flexural 

buckling mode 

Table 5.6 Example 4 cross-section properties. 

*A  

(cm2) 

*

xI  

(cm4) 

*

yI  

(cm4) 

*

tI  

(cm4) 

*I  (cm4) xc (cm) xg (cm) xs (cm) 

22 532.343 72.525 7.333 1718.819 3.159 4.364 5.767 

11RQ  

(GPa) 

66RQ  

(GPa) 
Kx Ky Kω Kyω   

82.932 4.14 2.1504 2.3969 0.0217 – 0.4999   
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Fig. 5.19 Buckling load convergence for the CF column, L=50 cm 

The force F is applied at the geometric centroid of the cross-section. Since the neutral axis 

passes through the material-weighted centroid, the force acting through the geometric centroid 

behaves as an off-axis load. 

The torsional-flexural (TF) mode is identified as the lowest buckling load, as depicted in 

Fig. 5.18 (d). The second buckling mode is the flexural (F) mode, shown in Fig. 5.18 (c). Both 

modes are analyzed using five different mesh configurations, consisting of one, two, four, eight, 

and sixteen beam elements. 

The obtained results are presented in Fig. 5.19 and are compared with the laminate shell 

results from NX Nastran. 
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Fig. 5.20 Buckling load vs. column length for the CF column 

It should be noted that shear locking does not occur in any of the shear deformable models, 

and the results obtained with the SD model are very close to the shell solution. However, the 

results of the SD2 model underestimate the buckling strength of the column in the TF model, 

indicating that neglecting the shear coupling effects is a conservative estimate for design pur-

poses. 

Since the beam model assumes a rigid cross-section and cannot capture cross-sectional de-

formation, some differences between the beam model and the shell model are expected, espe-

cially for higher loads and shorter beams where cross-sectional deformation has a significant 

effect on the critical load. This is evident in the results for the F mode. 

In addition, the reduction in buckling strength due to shear deformability is 8% and 12% for 

the TF and F modes, respectively, compared to the shear rigid model. The inclusion of shear 

coupling effects results in a 6% increase in buckling strength for the TF mode, while there is 

no influence of shear coupling for the F mode. 

Fig. 5.20 shows the changes in buckling load values as a function of the slenderness ratio of 

the column. It can be seen that the differences between the results of the models SR and SD 

decrease with increasing slenderness ratio.  
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5.3.5 Example 5 

A cantilever column with a length of L = 50 cm is being analyzed in this example. The 

column is subjected to an axial force F, as shown in Fig. 5.21 (a). The cross-section shape being 

analyzed is depicted in Fig. 5.21 (b) with the properties listed in Table 5.7. The structural ma-

terial utilized for the column is graphite-epoxy (AS4/3501), which possesses the following pro-

perties: E
1
 = 144 GPa, E

2
 = 9.65 GPa, G

12
 = 4.14 GPa, v

12
 = 0.3. 

Fig. 5.21 Cantilever column: (a) geometry, (b) cross-section, (c) torsional-flexural buckling mode 

 

Table 5.7 Example 5 cross-section properties. 

*A  
(cm2) 

*

xI  

(cm4) 

*

yI  

(cm4) 

*

tI  

(cm4) 

*I  

(cm4) 
xs (cm) ys (cm) α (°) 

8 114.935 7.648 0.667 73.348 1.586 -2.473 6.395 

11RQ  

(GPa) 

66RQ  

(GPa) 
Kx Ky Kω Kxy Kxω Kyω 

varies varies 5.0081 1.7419 0.01634 – 22.2823 – 3.696 – 1.9182 

 

The asymmetric channel profile under analysis exhibits buckling in a torsional-flexural 

mode, as shown in Fig. 5.21 (c). The cross-section's branches are constructed using a symmetric 

and balanced laminate with a [θ/–θ]2S stacking sequence, where all plies have uniform 

thickness. Fig. 5.22 illustrates the relationship between the buckling load and the ply orientation 

angle θ. It can be observed that the column achieves its maximum buckling strength when the 

ply angle is approximately 15°. 

 

 

 

(a) (b) (c) 
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Fig. 5.22 Buckling load vs. ply orientation (θ) for the CF column 

To perform the nonlinear stability analysis, a small perturbation force with an intensity of 

0.001F is applied in the X-direction. Fig. 5.23 displays the convergence study for the nonlinear 

analysis conducted using four different mesh configurations, comprising one, two, four, and 

eight beam elements. The results shown in Fig. 5.23 are normalized by the critical buckling 

force obtained from the laminate shell solution using NX Nastran software. The critical 

buckling force for a ply orientation of θ = 0° is Fcr = 40.5 kN, while for a ply orientation of θ = 

15°, it is Fcr = 44.5 kN. It is evident that the SD model accurately predicts the buckling behavior 

across all the mesh configurations employed, while the SR model overestimates the buckling 

strength by approximately 10%. 

  
(a) (b) 

Fig. 5.23 Convergence analysis for the CF column: (a) θ=0°, (b) θ=15° 
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5.3.6 Example 6 

In Fig. 5.24 (a), a cantilever beam is depicted, subjected to a lateral force F applied at the 

free end in the Y-direction. The force is applied through the shear centre of the asymmetric 

cross-section, as shown in Fig. 5.24 (b). 

   
  

(a) (b) (c) 
Fig. 5.24 Cantilever beam: (a) geometry, (b) cross-section, (b) lateral-torsional buckling mode 

 

Table 5.8 Example 6 cross-section properties. 

 
*A  

(cm2) 

*

xI  

(cm4) 

*

yI  

(cm4) 

*

tI  

(cm4) 

*I  

(cm4) 
xs (cm) ys (cm) α (°) 

[0°/0°]S 16 230.248 15.918 5.333 160.765 1.582 -2.351 6.402 

[0°/90°]S 16 230.579 16.462 5.333 172.694 1.578 -2.253 6.409 

 11RQ  

(GPa) 

66RQ  

(GPa) 
Kx Ky Kω Kxy Kxω Kyω 

[0°/0°]S 144 4.14 4.5809 1.7228 0.0547 – 23.1153 – 4.0434 – 2.4496 

[0°/90°]S 76.825 4.14 4.2175 1.7099 0.0474 – 24.4762 – 2.5619 – 1.9877 

 

In Table 5.8, the cross-section properties for the asymmetric beam are provided. The beam 

is made of graphite-epoxy (AS4/3501) material, which has the following properties: E
1
 = 144 

GPa, E
2
 = 9.65 GPa, G

12
 = 4.14 GPa, v

12
 = 0.3. The lateral-torsional buckling mode, as shown 

in Fig. 5.24 (c), is analyzed for two stacking sequences: [0°/0°]S and [0°/90°]S. The analysis is 

performed using four different mesh configurations, consisting of two, four, eight, and sixteen 

beam elements. It should be noted that due to the asymmetry of the cross-section, there may be 

a difference in the buckling load for the positive and negative directions of the applied force 

[21]. The results obtained from the eigenvalue approach for both force directions are presented 

in Fig. 5.25, along with the results obtained from NX Nastran's laminate shell model. 
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(a) (b) 

Fig. 5.25 Buckling load convergence for the CF beam: (a) +F, (b) –F 

It is observed that for the positive force direction, the shear deformability results in a reduc-

tion of 7% and 4% in the buckling strength for the stacking sequences [0°/0°]S and [0°/90°]S, 

respectively. On the other hand, for the negative force direction, the reduction in buckling stren-

gth is 17% and 10% for the same stacking sequences. 

To conduct the nonlinear stability analysis, a small perturbation force with an intensity of 

0.001F is applied in the X-direction at the free end of the beam, acting through the shear centre. 

  
(a) (b) 

Fig. 5.26 Buckling load for the +F vs. free end displacement in the X-direction: (a) [0°/0°]S, (b) [0°/90°]S 
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(a) (b) 

Fig. 5.27 Bbuckling load for the –F vs. free end displacement in the X-direction: (a) [0°/0°]S, (b) [0°/90°]S 

The load-deflection curves for both stacking sequences and force directions, obtained using 

sixteen beam elements, are presented in Fig. 5.26 and Fig. 5.27. Additionally, the convergence 

study is depicted in Fig. 5.28. 

  
(a) (b) 

Fig. 5.28 Buckling load convergence for the –F vs. free end displacement in the X-direction: (a) [0°/0°]S, (b) 

[0°/90°]S 

In all the figures, the buckling load values Fcr are taken from Fig. 5.25, which were obtained 

using the shell model. It can be observed that all the mesh models accurately identify the 

buckling load, and significant differences occur only in the post-buckling range above F > 3 Fcr 

and F > 2.5 Fcr, respectively. 
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5.3.7 Example 7 

Fig. 5.29 (a) presents an L-frame structure subjected to a load F in the Y-direction, acting 

through the centroid of the cross-section at the free end. The beam lenght is L = 100 cm. The 

cross-section is a mono-symmetric U-profile with properties provided in Table 5.9 for the 

stacking sequences [0°/0°]S and [0°/90°]S, respectively. The structural material used in this a-

nalysis is graphite-epoxy (AS4/3501), which possesses the following properties: E
1
 = 144 GPa, 

E
2
 = 9.65 GPa, G

12
 = 4.14 GPa, v

12
 = 0.3. 

 

 

(a) (b) 
Fig. 5.29 L-frame: (a) geometry, (b) lateral-torsional buckling mode. 

Table 5.9 Example 7 and Example 8 cross-section properties. 

 
*A  

(cm2) 

*

xI   

( cm4) 

*

yI   

(cm4) 

*

tI   

(cm4) 

*I   

(cm4) 

xs 

(cm) 
11RQ  

(GPa) 

66RQ  

(GPa) 

[0°/0°]S 22 384.333 85.924 7.333 1521.472 3.970 144 4.14 

[0°/90°]S 22 384.989 86.471 7.333 1546.574 3.961 76.825 4.14 

 Kx Ky Kω Kyω     

[0°/0°]S 2.7267 2.3635 0.0248 – 0.6490     

[0°/90°]S 2.6923 2.3325 0.0240 – 0.6160     

 

Assuming full warping restraint at the frame corner, the lateral-torsional buckling mode de-

picted in Fig. 5.29 (b) is analyzed using four different mesh configurations: one, two, four, and 

eight beam elements per frame member. The eigenvalue approach is employed to obtain the 

results, which are presented in Fig. 5.30. These results are compared with those obtained from 

the NX Nastran's laminate shell model. 
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Fig. 5.30 Buckling load convergence for the L-frame 

To conduct the nonlinear stability analysis, a small perturbation force with an intensity of 

0.001F is introduced in the X-direction. In all the figures, the buckling load values Fcr are taken 

from Fig. 5.30, which were obtained using the shell model. The obtained results for the [0°/0°]S 

stacking sequence are shown in Fig. 5.31, while the results for the [0°/90°]S stacking sequence 

are presented in Fig. 5.32. 

 
 

(a) (b) 
Fig. 5.31 Buckling load convergence vs. free end displacement in the X-direction for the [0°/0°]S stacking se-

quence: (a) prebuckling response, (b) postbuckling response 
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(a) (b) 
Fig. 5.32 Buckling load convergence vs. free end displacement in the X-direction for the [0°/90°]S stacking se-

quence: (a) prebuckling response, (b) postbuckling response 

As observed, the SD model accurately identifies the buckling state across all the mesh con-

figurations used, while the SR model overestimates the buckling strength by a significant mar-

gin. 

5.3.8  Example 8 

In this case, an L-frame structure is considered, where a load F is applied in the negative Z-

direction through the shear center of the cross-section at the free end, Fig. 5.33. The cross-

section used is a mono-symmetric U-profile, as shown in Fig. 5.29 (a), and its properties are 

provided in Table 5.9 under [0°/0°]S row. The structural material employed is graphite-epoxy 

(AS4/3501), with the following properties: E
1
 = 144 GPa, E

2
 = 9.65 GPa, G

12
 = 4.14 GPa, v

12
 

= 0.3. The cross-section branches of the L-frame are composed of an angle-ply laminate with 

the stacking sequence [θ/–θ]2S. The specific values of 11RQ  and 66RQ  depend on the angle θ but 

are not listed in Table 5.9 for this particular example. 
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Fig. 5.33 L-frame with lateral force 

In this analysis of the L-frame structure, where full warping restraint is assumed at the frame 

corner, the results obtained by the eigenvalue approach are shown in Fig. 5.34. These results 

are compared with those obtained from the NX Nastran's laminate shell model. 

Fig. 5.34 illustrates the relationship between the buckling load and the ply orientation θ for 

two different force directions: +F acting in the negative Z-direction and –F acting in the positive 

Z-direction. In the eigenvalue analysis, eight beam elements per frame member are used. 

The results obtained from the SD beam model show good agreement with the shell model, 

indicating accurate prediction of the buckling strength. It can be observed that the structure 

exhibits the highest buckling strength when the ply angle is near 10°. Notably, the difference 

between the SR and SD models is only significant for ply angles θ < 15°. 

 

Fig. 5.34 Buckling load of the L-frame vs. ply orientation (θ) for the +F and –F 

To perform the nonlinear stability analysis, a small perturbation force of intensity 0.001F, 
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acting in the X-direction is introduced, and obtained results are shown in Fig. 5.35 to Fig. 5.40, 

for the various angles (θ) and for both F directions. The results shown in these figures are nor-

malized by the critical buckling force obtained from the laminate shell solution using NX Nas-

tran software. The critical buckling force for a ply orientation of θ = 10° is Fcr = 26.3 kN for 

the +F, and Fcr = 28.5 kN for the –F. For a ply orientation of θ = 15°, the critical buckling force 

for the +F is Fcr = 25.5 kN, and for the –F is Fcr = 27.8 kN. While, for a ply orientation of θ = 

20°, the critical buckling force for the +F is Fcr = 22.9 kN, and for the –F is Fcr = 25.3 kN. 

 
 

(a) (b) 
Fig. 5.35 Buckling load convergence vs. free end displacement in the X-direction for the +F and θ=10°: (a) pre-

buckling response, (b) postbuckling response 

  
(a) (b) 

Fig. 5.36 Buckling load convergence vs. free end displacement in the X-direction for the –F and θ=10°: (a) pre-

buckling response, (b) postbuckling response 
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(a) (b) 

Fig. 5.37 Buckling load convergence vs. free end displacement in the X-direction for the +F and θ=15°: (a) pre-

buckling response, (b) postbuckling response 

  
(a) (b) 

Fig. 5.38 Buckling load convergence vs. free end displacement in the X-direction for the –F and θ=15°: (a) pre-

buckling response, (b) postbuckling response 
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(a) (b) 

Fig. 5.39 Buckling load convergence vs. free end displacement in the X-direction for the +F and θ=20°: (a) pre-

buckling response, (b) postbuckling response 

  
(a) (b) 

Fig. 5.40 Buckling load convergence vs. free end displacement in the X-direction for the –F and θ=20°: (a) pre-

buckling response, (b) postbuckling response 

The results clearly demonstrate that SD model accurately identifies the buckling state across 

all the mesh configurations employed. In contrast, SR model tends to significantly overestimate 

the buckling strength. 

5.3.9 Example 9 

The structural configuration depicted in Fig. 5.41 (a) represents a one-storey, one-bay space 

frame with fixed bases. The frame is subjected to vertical forces of equal intensity, denoted as 

F. The structural material employed for this analysis is graphite-epoxy (AS4/3501), characteri-

zed by the following properties: E
1
 = 144 GPa, E

2
 = 9.65 GPa, G

12
 = 4.14 GPa, v

12
 = 0.3. 
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Fig. 5.41 Space frame: (a) geometry, (b) twist-sway mode, (c) sway mode 

The cross-section properties for the columns and beams can be found in Table 5.10. Each 

column and beam in the space frame has a length of L = 100 cm. Full warping restraint is 

assumed at all the upper frame joints. Two buckling modes are analyzed: the twist-sway 

buckling mode, depicted in Fig. 5.41 (b), and the sway buckling mode, depicted in Fig. 5.41 

(c). To investigate these modes, five different mesh configurations are used, with each confi-

guration consisting of one, two, four, eight, and sixteen beam elements per frame member. 

  

 
(a) 

  
(b) (c) 
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Table 5.10 Example 9 and Example 10 cross-section properties. 

 
*A  

(cm2) 

*

xI  

(cm4) 

*

yI  

(cm4) 

*

tI  

(cm4) 

*I  

(cm4) 

11RQ  

(GPa) 

66RQ  

(GPa) 

t = 1 cm        

[0°/0°]S 30 585 167.5 10 4187.5 144 4.14 

[0°4/90°]S 30 585.367 167.684 10 4192.088 117.13 4.14 

[0°2/90°]S 30 585.669 167.834 10 4195.859 99.217 4.14 

[0°2/90°2/0°]S 30 585.476 167.738 10 4193.454 90.26 4.14 

[0°/90°]S 30 586.093 168.046 10 4201.162 76.825 4.14 

t = 1.5 cm        

[0°/0°]S 45 880.625 252.812 33.75 6320.313 144 4.14 

[0°4/90°]S 45 881.864 253.432 33.75 6335.797 117.13 4.14 

[0°2/90°]S 45 882.882 253.941 33.75 6348.523 99.217 4.14 

[0°2/90°2/0°]S 45 882.233 253.616 33.75 6340.407 90.26 4.14 

[0°/90°]S 45 884.314 254.657 33.75 6366.423 76.825 4.14 

t = 2 cm        

[0°/0°]S 60 1180 340 80 8500 144 4.14 

[0°4/90°]S 60 1182.936 341.468 80 8536.705 117.13 4.14 

[0°2/90°]S 60 1185.350 342.675 80 8566.869 99.217 4.14 

[0°2/90°2/0°]S 60 1183.811 341.905 80 8547.631 90.26 4.14 

[0°/90°]S 60 1188.744 344.372 80 8609.299 76.825 4.14 

 Kx Ky Kω     

t = 1 cm        

[0°/0°]S 1.7821 3.3604 0.0238     

[0°4/90°]S 1.7782 3.3561 0.0237     

[0°2/90°]S 1.775 3.3527 0.0237     

[0°2/90°2/0°]S 1.7771 3.3549 0.0237     

[0°/90°]S 1.7706 3.3478 0.0236     

t = 1.5 cm        

[0°/0°]S 1.7602 3.3366 0.0528     

[0°4/90°]S 1.7516 3.3272 0.0525     

[0°2/90°]S 1.7446 3.3195 0.0523     

[0°2/90°2/0°]S 1.7490 3.3244 0.0525     

[0°/90°]S 1.7348 3.3088 0.052     

t = 2 cm        

[0°/0°]S 1.7301 3.3036 0.0923     

[0°4/90°]S 1.7153 3.2873 0.0915     

[0°2/90°]S 1.7032 3.2739 0.0908     

[0°2/90°2/0°]S 1.7109 3.2824 0.0912     

[0°/90°]S 1.6865 3.2552 0.0899     
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Table 5.11 Critical buckling load convergence for the twist-sway mode (MN). 

Number of elements per 

beam 

SR SD Fcr 

 1 2 4 8 16  

[0°/0°]S 

t = 1 cm 2.549 1.515 1.499 1.479 1.474 1.473 1.416 

t = 1.5 cm 3.846 2.289 2.265 2.235 2.228 2.226 2.105 

t = 2 cm 5.169 3.084 3.052 3.012 3.001 2.999 2.827 

[0°4/90°]S 

t = 1 cm 2.076 1.331 1.319 1.301 1.297 1.296 1.267 

t = 1.5 cm 3.135 2.015 1.996 1.970 1.963 1.961 1.908 

t = 2 cm 4.221 2.720 2.694 2.659 2.650 2.648 2.569 

[0°2/90°]S 

t = 1 cm 1.760 1.193 1.183 1.167 1.163 1.162 1.154 

t = 1.5 cm 2.661 1.808 1.792 1.768 1.763 1.761 1.737 

t = 2 cm 3.588 2.444 2.422 2.391 2.383 2.381 2.341 

[0°2/90°2/0°]S 

t = 1 cm 1.6 1.117 1.107 1.093 1.089 1.089 1.094 

t = 1.5 cm 2.418 1.691 1.676 1.655 1.649 1.648 1.644 

t = 2 cm 3.258 2.283 2.264 2.234 2.227 2.226 2.214 

[0°/90°]S 

t = 1 cm 1.364 0.997 0.989 0.976 0.974 0.973 0.985 

t = 1.5 cm 2.066 1.513 1.501 1.482 1.477 1.476 1.484 

t = 2 cm 2.791 2.049 2.033 2.007 2.001 2 2.005 

 

Table 5.12 Critical buckling load convergence for the sway mode (MN). 

Number of elements per 

beam 

SR SD Fcr 

 1 2 4 8 16  

[0°/0°]S 

t = 1 cm 3.868 1.715 1.691 1.67 1.665 1.663 1.632 

t = 1.5 cm 5.828 2.589 2.553 2.521 2.513 2.511 2.497 

t = 2 cm 7.818 3.483 3.435 3.392 3.381 3.379 3.383 

[0°4/90°]S 

t = 1 cm 3.149 1.547 1.527 1.508 1.503 1.502 1.499 

t = 1.5 cm 4.748 2.339 2.309 2.279 2.272 2.27 2.275 

t = 2 cm 6.379 3.152 3.111 3.072 3.062 3.059 3.084 

[0°2/90°]S 

t = 1 cm 2.669 1.417 1.4 1.381 1.377 1.376 1.384 

t = 1.5 cm 4.028 2.143 2.118 2.09 2.083 2.081 2.098 

t = 2 cm 5.417 2.892 2.857 2.82 2.811 2.809 2.844 

[0°2/90°2/0°]S 

t = 1 cm 2.427 1.343 1.327 1.309 1.305 1.304 1.321 

t = 1.5 cm 3.661 2.030 2.006 1.980 1.973 1.971 1.994 

t = 2 cm 4.920 2.736 2.704 2.668 2.660 2.657 2.696 

[0°/90°]S 

t = 1 cm 2.068 1.224 1.21 1.194 1.190 1.189 1.21 

t = 1.5 cm 3.125 1.854 1.833 1.809 1.803 1.802 1.832 

t = 2 cm 4.210 2.506 2.478 2.445 2.437 2.435 2.484 

 

The results of the eigenvalue approach for the twist-sway and sway buckling modes, along 

with the results from the NX Nastran's laminate shell model, are presented in Table 5.11 and 

Table 5.12, respectively. It is evident that the SR beam model significantly overestimates the 

buckling strength for all the considered cases. 
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For the nonlinear stability analysis, to obtain twist-sway buckling mode a small perturbation 

force with an intensity of 0.001F is applied in the X-direction at corner A of the space frame. 

Additionally, to obtain sway buckling mode, two small perturbation forces, each with an inten-

sity of 0.001F, are applied in the X-direction at corners A and B. The results obtained from this 

analysis are plotted in Fig. 5.42. 

  

(a) (b) 
Fig. 5.42 Space frame, lateral deflection of corner C for the [0°2/90°2/0°]S stacking sequence, t = 1 cm, in:      

(a) Y-direction, twist-sway mode, (b) X-direction, sway mode 

As observed, all the SD meshes accurately capture the buckling behavior without experien-

cing shear locking. However, the SR beam model significantly overestimates the buckling 

stage, with an overestimation of over 40% for the twist-sway buckling mode and approximately 

80% for the sway buckling mode. 

5.3.10 Example 10 

In Fig. 5.43 (a), a three-storey one-bay space frame with fixed bases is depicted. The frame 

is subjected to vertical forces of intensity F. The structural material used for the frame is 

graphite-epoxy (AS4/3501) with the following properties: E
1
 = 144 GPa, E

2
 = 9.65 GPa, G

12
 = 

4.14 GPa, v
12

 = 0.3. 
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(a) (b) (c) 
Fig. 5.43 Three storey one bay space frame: (a) geometry, (b) twist-sway mode, (c) sway mode 

Analysed cross-section shape is I profile from Fig. 5.41 (a), while the cross-section proper-

ties can be found in Table 5.10 under [0°/0°]S row. The cross-section branches are composed 

of an angle-ply laminate with the stacking sequence [θ/–θ]2S, where the values of 11RQ  and 66RQ  

vary depending on the angle θ and they are not listed in Table 5.10 for this example. 

Each column and beam in the frame has a length of L = 100 cm, and each cross-section 

branch is 1 cm thick. Full warping restraint is assumed in all the frame joints. The analysis 

considers both the twist-sway buckling mode and the sway buckling mode, using four different 

mesh configurations consisting of one, two, four, and six beam elements per frame member. 

Fig. 5.44 and Fig. 5.45 illustrate the relationship between the buckling load and the ply ori-

entation θ for the twist-sway and sway buckling modes, respectively. The eigenvalue analysis 

is conducted using six beam elements per frame member. The results obtained from the SD 

beam model are in good agreement with the shell model, indicating that the structure's buckling 

strength is highest when the ply angle is near 15°. The discrepancy between the SR and SD 

models is noticeable for ply angles θ < 30°. 
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Fig. 5.44 Three-storey one-bay space frame, buckling load vs ply orientation for twist-sway buckling mode 

 

Fig. 5.45 Three-storey one-bay space frame, buckling load vs ply orientation for sway buckling mode 

To perform the nonlinear stability analysis, two cases of applied perturbation forces are 

considered. In the first case, to obtain the twist-sway buckling mode, three perturbation forces 

are applied in the X-direction: one in each corner beneath corner A and one at corner A. Addi-

tionally, three perturbation forces are applied in the Y direction: one in each corner beneath 

corner D and one at corner D. In the second case, to obtain the sway buckling mode, six pertur-

bation forces are applied. These forces are applied in all the corners beneath corners A and B, 

as well as at corners A and B. All the perturbation forces have an intensity of 0.001F. 

The results obtained from these analyses are plotted in Fig. 5.46 for the twist-sway buckling 



Damjan Banić: A shear deformable beam model for stability analysis of composite frames  

114 

mode and Fig. 5.47 for the sway buckling mode. The results shown in these figures are norma-

lized by the critical buckling force obtained from the laminate shell solution using NX Nastran 

software. The critical buckling force for a twist-sway buckling mode and ply orientation of θ = 

0° is Fcr = 506.6 kN, for a ply orientation of θ = 15° is Fcr = 613.7 kN, for a ply orientation of 

θ = 30° is Fcr = 303.4 kN, while for a ply orientation of θ = 90° is Fcr = 60.5 kN. 

  
(a) (b) 

  
(c) (d) 

Fig. 5.46 Three-storey one-bay space frame, twist-sway buckling mode – lateral deflection of corner C in 

Y-direction: (a) θ=0°, (b) θ=15°, (c) θ=30°, (d) θ= 90° 

The critical buckling force for a sway buckling mode and ply orientation of θ = 0° is Fcr = 

554.6 kN, for a ply orientation of θ = 15° is Fcr = 771.3 kN, for a ply orientation of θ = 30° is 

Fcr = 424.7 kN, while for a ply orientation of θ = 90° is Fcr = 83.2 kN. 
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(a) (b) 

  
(c) (d) 

Fig. 5.47 Three-storey one-bay space frame, sway buckling mode – lateral deflection of corner C in X-direction:            

(a) θ=0°, (b) θ=15°, (c) θ=30°, (d) θ= 90° 

From the presented cases, it is clear that neglecting the shear deformation effects leads to 

significant errors, with the critical buckling load being underestimated by up to 2.5 times in 

certain cases. 
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6 CONCLUSION 

This dissertation deals with finite element analysis to study the stability of thin-walled 

composite beam structures. The research uses the theory of shear deformable bending, specifi-

cally the adapted Timoshenko bending theory, along with the adapted Vlasov constrained tor-

sion theory. These theories, in conjunction with the refined shear correction factors, allow the 

derivation of a finite beam element with fourteen degrees of freedom. A notable aspect of this 

model is its ability to analyze asymmetric thin-walled cross sections and to account for the 

complicated coupling between shear deformations due to bending and torsion. 

To introduce geometric nonlinearity, a nonlinear displacement field is incorporated into 

the cross section to account for the effect of large rotations assuming small deformations. More-

over, the cross section is assumed to remain undeformable in its plane, while the shear defor-

mation of the mean surface is assumed to be zero. The equilibrium equations of the finite beam 

element are established by applying the principle of virtual work. 

This model proves to be applicable to open thin-walled cross sections, considering different 

boundary conditions and allowing different warping modeling. Moreover, it can analyze differ-

ent types of laminate stacks, although exclusively for symmetric and balanced laminates. 

The stability analyzes performed in this study include both linearized and nonlinear ap-

proaches. In the linearized stability analysis, the problem is transformed into a matrix eigen-

value problem, where the resulting eigenvalues represent critical loads and the corresponding 

eigenvectors represent buckling modes. The nonlinear behavior is described using an incremen-

tal iterative method, in particular the generalized displacement method, while an updated La-

grangian formulation is used to represent the incremental process. A conventional approach 

based on semitangential rotations is used to facilitate force recovery. In the nonlinear analysis, 

a perturbation is introduced to initiate the deformation mode where the structure loses its sta-

bility.  

The scientific contribution of this work manifests in the development of an original nume-

rical model based on the finite element method. This model serves as an enhancement to an 

existing computer program developed at the Department of Technical Mechanics, Faculty of 

Engineering, University of Rijeka. The enhanced computer programs, CCSC and THINWALL 

V18, have been thoroughly verified against test cases, and the obtained results have been com-

pared with those available in the literature and obtained through the utilization of shell and solid 

models. Remarkably, the results indicate that the presented beam element experiences no shear 
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locking phenomenon. 

The CCSC and THINWALL V18 computer programs stand as a significant contribution 

to the technical sciences, offering a reliable tool for describing and analyzing the geometrically 

nonlinear behavior of composite beams including the effects of the shear deformations. Nota-

bly, the influence of shear deformations holds particular significance for shorter beams, parti-

cularly those with clamped and boundary conditions featuring restrained warping, which are 

commonly encountered in civil and mechanical engineering structures. Compared to commer-

cial software relying on shell and solid finite element models, which often face memory limi-

tations and prolonged computation times, THINWALL V18 enables more efficient and expe-

dited analysis of the studied problems. 

Nevertheless, further work is necessary to extend the algorithm’s capabilities to encompass 

closed profiles, thick-walled and solid profiles. Moreover, there are plans to enhance the nume-

rical model to facilitate the analysis of asymmetric and unbalanced laminates, as well as Fun-

ctionally Graded materials. Additionally, the author aims to incorporate one of the well-known 

models for cross-sectional deformation, such as CUF (Carrera Unified Formulation) or GBT 

(Generalized Beam Theory), in order to enable deformation analysis of the cross-section within 

the cross-sectional plane. 
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List of symbols and abbreviations 

List of symbols 

symbol description 

A The arbitrary point 

A The surface of the cross-section [m2] 

A  The area over a surface forces are acting [m2] 

ijA  Tensor connecting shear stress resultants with the shear strains [m2] 

*A  The modulus-weighted cross-sectional area [m2] 

S
av ,

x
a  The vector of the corresponding variables 

S
αv  The vector of the corresponding constants of the integrations 

A  The matrix needed to derive Hermite shape functions 

11A ,
11B ,

11D , 

11E  

The 
11RQ  modulus-weighted various thickness integrals over the cross-section branch lami-

nate ([m], [m2], [m3], [m4]) 

16A ,
16B ,

16D  
The 

16RQ  modulus-weighted various thickness integrals over the cross-section branch lami-

nate ([m], [m2], [m3]) 

66A ,
66D  

The 
66RQ  modulus-weighted various thickness integrals over the cross-section branch lami-

nate ([m], [m3]) 

Bw , Bv ,
x

B ,

Bu ,
y

B ,
z

B ,

B  

The derivations of the various shape functions 

C The constant of the integration 

ijC  or 
ijklC  Stiffnes matrix or the tensor of elastic components [Pa] 

C0, C1, C2 The starting, the last known and the unknown configuration 

COQ  The coupling relation matrix between the stress resultants and the strains 

d, ,δ ,  Derivative, partial derivative, the variational operator and the Dirac delta function, respectively 

ije ,
ij ,

ije  
Cauchy strain tensor, nonlinear strain tensor obtained from the linear rigid body displacemnts 

and linear strain tensor obtained from the nonlinear rigid body displacements, respectively ([-], 

[-], [-]) 

ze , zse  
Axial strain and contour shear strain components of the Cauchy strain tensor, respectively ([-], 

[-]) 

zxe ,
zye  Shear strain components of the Cauchy strain tensor in global reference system ([-], [-]) 

SD

zxe ,
SD

zye ,
SD  Shear strain components of the Cauchy strain tensor due to the shear deformability ([-], [-], [-]) 

E Elastic or Young’s modulus [Pa] 

15E , 25E , 35E ,

45E  

The modulus-weighted coupling stiffnesess used to relate the couplings between normal stress 

resultants and the St. Venant’s torsional moment ([m3], [m4], [m4], [m5]) 

EBQ  
The relation matrix between the normal stress resultants and the normal strains plus the St. Ve-

nants terms 

zF  Axial force applied at the modulus-weighted centroid [N] 
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xF ,
yF  Shear forces applied at the modulus-weighted shear centre in the x and y directions, respec-

tively ([N] , [N]) 
e

f , e

if  The force vector and the nodal force vector for the e-th beam finite element, respectively 

G Shear modulus [Pa] 

Rh ,
Rh  

Distance from the modulus-weighted centroid to the reference point R along the thickness coor-

dinate n and along the contour coordinate s, respectively ([m], [m]) 

xI ,
yI , I  The second area moments around x and y axes and the warping constant, respectively ([m4], 

[m4], [m6]) 

*

xI ,
*

yI ,
*

xyI  
The modulus-weighted second area moments around x and y axes and the modulus-weighted 

product of inertia ([m4], [m4], [m4]) 

*

xI 
,

*

yI  , *I  
The modulus-weighted second sectorial moments around x and y axes and the modulus-we-

ighted warping constant, respectively ([m5], [m5], [m6]) 
*

tI  The modulus-weighted torsional constant [m4] 

K  Wagner’s coefficient [Nm2] 

ijk ,
ijK  The shear correction factors depending on the stress resultants with strain relation direction ([-], 

[-]) 

61k - 84k , 61K -

84K  

The coupling shear correction factors depending on the stress resultants with strain relation di-

rection ([-]-[-], [-]-[-]) 

1K , 2K , 3K , 4K  The various simplifications ([m], [m], [m2], [m]) 

e

Ek , e

Gk , e

Tk  
The elastic stiffness matrix, the geometric stiffness matrix and the tangent stiffness matrix, res-

pectively 

EK , GK , U , P  The elastic stiffness matrix of the structure, the geometric striffness matrix of the structure, the 

displacement vector of the structure, the vector of the external loads applied to the structure 

GK̂  The linearized geometric stiffness matrix of the structure 

l The lenght of the beam element [m] 

jl  The lenght of the j-th division in the i-th rectangle [m] 

xM ,
yM  Bending moments applied at the modulus-weighted centroid around x and y axes, respectively 

([Nm], [Nm]) 

zM  Torsional moment applied at the modulus-weighted shear centre [Nm] 

M   Bimoment [Nm2] 

kn , 1kn −  The thickness coordinates of the k-th ply, upper and lower point along the thickness coordinate 

n, respectively ([m], [m]) 

N The number of plies in the cross-section branch 

Nw , Nv ,
x

N ,

Nu ,
y

N ,
z

N ,

N  

The various shape functions 

O Modulus-weighted cross-section centroid 

ωO  The staring point of the contour coordinate s or the sector null point 

crP  The buckling load 

P̂  The reference load 

ijQ  Reduced stiffnesses [Pa] 

ijQ  Transformed reduced stiffnesses [Pa] 

11Q ,
16Q ,

66Q  Transformed reduced stiffneses for the case when 0s =  ([Pa], [Pa], [Pa]) 
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11kQ ,
16kQ ,

66kQ  

Transformed reduced stiffneses for the case when 0s =  and for the k-th lamina of the lami-

nate ([Pa], [Pa], [Pa]) 

11RQ ,
16RQ ,

66RQ  
The reference transformed reduced stiffneses ([Pa], [Pa], [Pa]) 

r, q 
Distance from the modulus-weighted shear center to the reference point R along the thickness 

coordinate n and along the contour coordinate s, respectively ([m], [m]) 

R The reference point 

R1 The number of the rectangles (branches) present in the cross-section [-] 

R2 The number of divisions within the i-th rectangle [-] 

s, n Contour and thickness coordinate in a cross-section plane ([m], [m]) 

S Modulus-weighted cross-section shear center 

1xS ,
1yS , 1S  The first area moments around x and y axes and the first sectroial moment, all for the part of the 

cross-section cut off, respectively ([m3], [m3], [m4]) 

*

1xS ,
*

1yS *

1S  
The modulus-weighted first area moments around x and y axes and the modulus-weighted first 

sectroial moment, all for the part of the cross-section cut off, respectively ([m3], [m3], [m4]) 

*

0xS , *

0yS , *

0S  
The modulus-weighted first area moments around x and y axes and the modulus-weighted first 

sectroial moment calculated for the each reference point R , respectively. Results of each gene-

rate the distibution of the desired property along the whole cross-section ([m3], [m3], [m4]) 

*

xS ,
*

yS , *S
 

The modulus-weighted first area moments around x and y axes and the modulus-weighted first 

sectorial moment, respectively ([m3], [m3], [m4]) 

ijS  In the 2nd chapter: Compliance matrix [Pa-1]. In the 4th chapter: the second Piola-Kirchhoff 

stress tensor [Pa]. 

SDQ  
The relation matrix between the shear stress resultants and the shear strains due to the shear de-

formability 

t, kt  Thickness of the cross-section branch and the thickness of the k-th lamina, respectively ([m], 

[m]) 

it  The surface forces [Pa] 

SVT ,T ,T  St. Venant torsional moment, torsional moment due to restrained warping and additional tor-

sional moment due to Wagner’s effect, respectively ([Nm], [Nm], [Nm]) 

T , T  Stress and strain transformation matricies for a plane stress assumption ([-],[-]) 

2

1

e
T  The incremental transformation matrix 

e
u , e

iu  
The displacement vector and the nodal displacment vector for the e-th beam finite element, res-

pectively  

δU ,δW  The virtual elastic strain energy and the virtual work of extaernal forces, respectively 

EU , GU ,  The elastic strain energy, the standard geometric potential and the total potential, respectively 

([J], [J], [J]) 
EB

EU ,
SD

EU ,

CO L

EU ,
CO R

EU  

The elastic strain energy arising from: EB stress resultants, SD stress resultants and the cou-

pling terms, respectively ([J], [J], [J], [J]) 

w ,u , v  or iu  Linear rigid body displacements along z, x and y axes, respectively ([m], [m], [m]) 

Ow , Su , Sv  
Rigid body displacements along z, x and y axes, respectively, where displacement along z axis 

is measured from the modulus-weighte centroid, while other ones are measured from the modu-

lus-weighted shear centre ([m], [m], [m]) 

w ,u , v  or iu  Nonlinear rigid body displacements along z, x and y axes, respectively ([m], [m], [m]) 

W, U, V Total rigid body displacements along z, x and y axes, respectively ([m], [m], [m]) 

Sx , Sy  Modulus-weighted shear center coordinates along x and y axes, respectively, measured from the 

modulus-weighted cross-section centroid ([m], [m]) 

x̂ , ŷ  The system of the reference axes for the cross-section ([m], [m]) 

x , y  The system of the centroid axes for the cross-section ([m], [m]) 
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x, y The cross-section principal axes ([m], [m]) 

Rx , Ry  The position coordinates of the reference point R ([m], [m]) 

Ox̂ , Oŷ  The modulus-weighted centroid position ([m], [m]) 

0z, 0x, 0y The loacal coordinate system in C
0
 configuration 

1z, 1x, 1y The loacal coordinate system in C
1
 configuration 

Z, X, Y The gloabl coordinate system 

  or i  
In the 3rd chapter: Angular position of the i-th cross-section rectangle in the system of principal 

axes ([rad] or [°]).In the 4th chapter: the constants of integration used in Hermite shape func-

tions 

̂  or ˆ
i  Angular position of the i-th cross-section rectangle in the system of reference axes ([rad] or [°]) 

z , x ,
y ,   The subcoefficients resulting from the Wagner’s coefficient K  ([m2], [m], [m], [-]) 

12 , 13 , 23  Shear strain components [-] 

 ,   The contour warping and the thickness warping change, respectively ([m2], [m2]) 

j  Strain components [-] 

1 , 2 , 3  Normal strain components [-] 

ij  Green-Lagrange strain tensor [-] 

S ,
S  Rigid body displacement in the contour s and thickness n direction, respectively ([m], [m]) 

i  Fiber angle orientation ([rad] or [°]) 

 Warping parameter ([rad/m] or [°/m]) 

[1/…/k/…/N] The general laminate inscription 

[1/…/N/2]S The inscription for the symmetric laminate 

 The proprtional parameter 

v Poisson’s ratio [-] 

i  Stress components [Pa] 

1 , 2 , 3  Normal stress components [Pa] 

z , z  Axial stress and strain ([Pa],[-]) 

s , s  Contour normal stress and strain ([Pa],[-]) 

zk ,
zsk  Axial stress and contour shear stress for the k-th lamina of the laminate ([Pa], [Pa]) 

Rz  The reference normal stress [Pa] 

12 , 13 , 23  Shear stress components [Pa] 

zs , zs  Contour shear stress and strain([Pa],[-]) 

SV

zs , SV

zse  
Shear stress and cauchy shear strain due to the St. Venant torsional moment along the contour 

coordinate s, respectively ([Pa], [-]) 

SD

zs , SD

zse  
Shear stress and the contour shear strain component of the Cauchy strain tensor due to the shear 

deformability, respectively ([Pa], [-]) 
SD

Rzs  The reference contour shear stress due to the shear deformability [Pa] 

z , x , y  Rigid body rotations around z, x and y axes, respectively ([rad] or [°], [rad] or [°], [rad] or [°]) 

  The principal axes angle ([rad] or [°]) 

  St. Venant stress function [N/m] 

 ,  The warping function and the primary warping function, respectively ([m2], [m2]) 
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R , R  
The sectorial coordinate and the principal sectorial coordinate of the reference point R, respecti-

vely ([m2], [m2]) 
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List of abbreviations 

abbreviation description 

CC Beam/column clamped at both ends 

CF Clamped-free end 

cFSM Constrained finite strip method 

CO Coupling relations 

CUF Carrera unified formulation 

EB Euler-Bernoulli relations 

F Flexural buckling mode 

FEM Finite element method 

GBT General beam theory 

SD Shear deformable or Shear deformable relations 

SR Shear rigid 

SS simply supported beam/column at both ends 

TF Torsional-flexural buckling mode 

UL Updated Lagrangian 

1D One dimensional 

2D Two dimensional 
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