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 The paper presents an algorithm for thermal 

buckling analysis of thin-walled beam-type 

structures. One-dimensional finite element is 

employed under assumptions of large 

displacements, large rotation effects but small 

strains. Stability analysis is performed in load 

deflection manner using co-rotational formulation. 

The cross- section mid-line contour is assumed to 

remain not deformed in its own plane and the 

shear strains of middle surface are neglected. The 

material properties of the beam are temperature-

dependent. Results are validated on test examples. 
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1 Introduction  
 

Thin-walled beam structures are commonly very 

susceptive to buckling failure because of their 

slenderness [1]. The thermal buckling of such 

structures has attracted significant attention in the 

design and analysis of engineering structures in 

diverse fields such as aerospace engineering, 

shipbuilding and civil engineering. As a result, 

many theoretical analyses and experimental 

investigations have been undertaken on thermal 

buckling in order to adapt to the fast development 

and changes in technologies.  

The application of the finite element method to the 

thermal analysis of structures has received 

considerable attention in the past. Thornton [2] 

studied the basic problems of complex computer 

analyses as they relate to the aerospace thermal 

structural behavior. Snyder and Bathe [3] presented 

an effective solution procedure for finite element 

thermo-elastic-plastic and creep analysis with 

temperature-dependent material properties. Kojić 

and Bathe [4] presented an algorithm for stable and 

accurate computations of stresses in finite element 

thermo-elastic-plastic and creep analysis of metal. 

Xue et al. [5] presented a thin-walled beam element 

for transient temperature analysis of large space 

structures. Duan et al. [6] derived a beam element 

for the thermal–dynamic coupling analysis by the 

updated Lagrangian formulation. Avsec and Oblak 

[7] investigated the impacts exerted by the 

temperature field in beams on vibrations of beams. 

Cui and Hu [8] dealt with thermal buckling and the 

natural vibration of a simply supported slender 

beam, which is subject to a uniformly distributed 

heating and has a frictional sliding end within a 

clearance. 

Cisternas and Holmes [9] studied the bifurcations of 

the resulting equilibrium equations under both 

traction and displacement boundary conditions and 

determined both sub- and supercritical pitchfork 

bifurcations. Saha and Ali [10] presented an exact 

mathematical model for the post-buckling of a 

uniformly heated slender rod with axially 

immovable simply supported ends on the basis of 

geometrically non-linear theory of extensible rods. 

Li and Dong [11] studied fire-induced vibration of 

full-scale continuous panels using Hilbert 

transform. 
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If the thermal effects are ignored, the geometric 

nonlinear analysis of beam structures is a highly 

classical problem, which has attracted numerous 

researchers [12-17]. Belitschko and Hsieh [12] 

explored the use of convected coordinate 

procedures, in which each element is associated 

with coordinate system that rotates but does not 

deform with the element. Izzuddin and Elnashai 

[13,14] presented corotational formulation for 

modeling the effects of large displacements on the 

response of space frames subjected to conservative 

loading. Turkalj et al. [15, 16] developed the 

external stiffness approach to the geometric non-

linear analysis of thin-walled frames. Lanc et al. 

[17] presented a one-dimensional finite element for 

creep buckling analysis of structures comprised of 

straight and prismatic beam members. 

This paper presents a finite element model for 

thermal buckling analysis of 3D framed structures 

with thin-walled open cross section. The model 

predicts structural response under conditions of 

extreme mechanical and thermal loading and it 

takes into account the actual temperature-dependent 

behavior of material, i.e., decreased moduli with 

heating. The beam cross-section geometry is 

discretized by quadratic monitoring areas and the 

structural discretization is performed throughout 

one-dimensional finite element. The co-rotational 

description used in this work is linear on the 

element level and all geometrically non-linear 

effects are introduced through the transformation 

from the local to the global coordinate system. The 

model is applicable to any shape of the cross section 

and boundary conditions.  

The method is based on premise that forces act on 

the construction static so that kinetic energy is zero. 

In that case, total work of outside forces is equal to 

the potential energy of construction deformation. 

The material is assumed to be isotropic and linearly 

elastic. Displacements and rotations are allowed to 

be large but strains are small. External load is 

assumed to be conservative, while internal moments 

are represented by the St. Venant theory of torsion 

and the Euler-Bernoulli theory of bending. 

Verification examples utilizing a numerical 

algorithm and developed on the basis of 

abovementioned procedure are presented to 

demonstrate accuracy of this model. 

 

 

 

2 Theoretical background 
 

2.1 Kinematics 
 

In a local Cartesian coordinate system in which 

beam axis that connects all cross sectional centers 

of gravity coincides with z axis while x and y are 

principal axes, whose cross sectional rigid body 

displacements are: 
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In equations above, wo, u0 and vo are the rigid body 

translations in the z, x and y directions, respectively; 

while z, x and y are the rigid body rotations 

around z, x and y axes, respectively. Displacement θ 

is a cross-sectional warping parameter. The 

displacement components of an arbitrary point of 

the cross section are defined as: 

 

0 0 0

o

0 z

0 z

d d d
,

d d d

,








   

 

 

v u
w w y x

z z z

u u y

v v x

 (2) 

 

where x and y define the position of the cross 

section, while  is a  value of the cross-sectional 

warping function. The strain tensor components can 

be written as: 
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where s is a circumferential coordinate and n is a 

normal coordinate in a coordinate system which is 

introduced into the middle contour of the cross 

section. 
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2.2 Stress resultants  
 

The constitutive equations are: 
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where E and G are the elastic and shear moduli, 

respectively. Integrating over the contour thickness 

n and the contour direction s, and transforming into 

the beam coordinate system, it follows that the 

cross-sectional internal force components are: 
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where Fz represents the axial force, Fx and Fy are 

shear forces, Mz is the St. Venant torsion moment, 

Mx and My are bending moments with respect to the 

x and y axes, respectively, M is the bi-moment and 

T is Wagner coefficient. Shear forces are treated as 

reactive ones so that they can be determined as Fx = 

-dMy/dz and Fy = dMx/dz. 

 

3 Beam finite element  
 

In Fig. 1 two-nodded beam finite element with eight 

degrees of freedom is presented.  
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Figure 1. Two-nodded spatial beam element in local 

coordinate system. 

 

The nodal displacement vector of the beam element 

is: 
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An appropriate nodal force vector is: 
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and an appropriate thermal nodal force vector is: 

 

           
T

e

t t ,0, 0, 0, 0, 0  EA Tf ,          (9) 

 

where t denotes the coefficient of thermal 

expansion and T is the temperature change. 

Incremental analysis supposes that a load-deflection 

path is subdivided into a number of steps or 

increments. This path is usually described using 

three configurations: the initial or undeformed 

configuration C0; the last calculated equilibrium 

configuration C1 and current unknown configuration 

C2. Adopting co-rotational formulation, all system 

quantities should be referred to configuration C2. 

Applying the virtual work principle and neglecting 

the body forces, the equilibrium of a finite element 

can be expressed as: 

 

       δ δU W ,   (10) 

 

in which U is potential energy of internal forces, W 

is the virtual work of external forces, while δ 

denotes virtual quantities. After making the first 

variation of Eq. (6), the following incremental 

equations can be obtained: 
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In Equation (11), 
T

e
k  denotes the local tangent 

stiffness matrix of the e-th beam element, which can 

be evaluated according to the procedure explained 

in references [14, 17]. Now the incremental 

equilibrium equation can be written in the following 

form: 

 
e e e

T
   

e

t
k u f f .  (12) 

 

The element global tangent stiffness matrix 
T

e
k  can 

be obtained as follows: 
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Matrices 
e

1
t  and 

e

2
t  are standard transformation 

matrices from local co-rotational to global 

coordinate system explained in reference [14]. 

Matrix 
e

1
t  is of dimension 14×8 and contains first 

derivations of local with respect to global 

displacements, while 
e

2
t  is 14×14×8 matrix 

containing second derivations. Matrix 
e

2
t  presents 

geometric stiffness contribution because it contains 

effects on global forces caused with change in 

geometry. The element force vector transformed 

from the local to global coordinate system is: 
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1
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After the standard assembling procedure, the overall 

incremental equilibrium equations can be obtained 

as: 
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where KT is tangential stiffness matrix of a 

structure, while U and P are the incremental 

displacement vector and the incremental external 

loads of the structure, respectively. 2P and 1P are 

the vectors of external loads applied to the structure 

at C2 and C1 configurations, respectively. 

 

4 Numerical examples  
 

4.1 Channel-section beam  
 

Thermal buckling of uniformly heated simply 

supported beam has been considered (Fig. 2). The 

beam length is L = 4 m and thin-walled channel-

section corresponding to UPN50x25 is analyzed. 

The material properties are: elastic modulus E = 

210 GPa, Poisson's ratio ν = 0.3 and coefficient of 

thermal expansion t = 1.25·10-5 1/°C. To initiate 

the occurrence of buckling, a horizontal 

perturbation force F = 0.001Fcr acting in the 

positive X axis direction is added in the middle of 

the beam.  The beam is discretized with four beam 

finite elements.  
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Figure 2.  Simply supported beam and cross-section 

geometry. 

 

The thermal buckling occurs as a result of the 

thermal stress increase. Since the temperature rise is 

low, it has no influence on the mechanical behavior 

of the beam. Fig. 4 shows the relation between 

temperature change and displacement of point C in 

perturbation force direction. Theoretical value of 

critical buckling load Fcr = 3225.5 N occurs at Tcr 

= 2.5°C. 

 

 
 

Figure 3. Temperature change vs. displacement. 

 

Buckling predictions in this paper show that very 

good accuracy is achieved in comparison with 

theoretical result marked with a dashed line. 

 

4.2 I-beam cantilever  
 

This problem is concerned with thermal buckling of 

a wide flange cantilever made of 20MnCr5 steel. 

Fig. 4 shows an axially loaded cantilever 

perturbated with F = 0,001F acting in the X-axis 

direction at the point B. The cantilever length is L = 

4 m. Mesh configuration of 4 beam elements is 

used. 
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Figure 4. Axially loaded I-beam cantilever. 

 

The cantilever is subjected simultaneously to 

thermal and mechanical load. In this case, the 

temperature rise degrades the material properties to 

withstand loads. Since the temperature is high, 

Young's modulus is significantly reduced and that 

causes thermal buckling. The effect of temperature 

on mechanical properties of 20MnCr5 steel is 

examined by Brnić et al. [18]. Temperature 

dependence of the elastic modulus is given by this 

polynomial approximation: 
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Fig. 5 shows the relation between applied load and 

cantilever tip displacement in the X-axis. 

Theoretical value of critical buckling load at 20 °C 

is 45.06 kN and 27.56 kN at 500 °C. Results are in 

good agreement with the theoretical value of critical 

buckling load at 500 °C. 

 

 
 
Figure 5. Load and temperature vs. displacement 

curves for cantilever. 

 

4.3 Space frame  
 

Fig. 13 shows a one-story space frame loaded by 

four vertical forces, each of intensity F, at the 

corners. The sway instability mode of the frame is 

analyzed. Two perturbation forces acting in positive 

X-axis direction, each of intensity F = 0,001F, are 

added at corners A and D in order to initiate sway 

buckling mode of space frame. Both columns and 

girders have a cruciform cross-section. The full 

warping restrain is assumed to exist at the ends of 

each frame member. Each frame leg is discretized 

by four beam finite elements of equal length. 

Analyzed material is X10CrAlSi25 steel. 

Temperature dependence of the elastic modulus is 

given by this polynomial approximation [19]: 
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Figure 6. One-story space frame. 

 

The failure of structure is caused by the material 

degradation at elevated temperature. The critical 

buckling loads have been determined with linear 

shell model in Nastran using 4288 finite elements 

(Fig. 7). Buckling load at 20 °C is 691.46 kN and  

309.16 kN at 600 °C. 

 

 
 

Figure 7. Sway buckling mode – shell model 

NASTRAN. 
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The horizontal displacement of the corner B in the 

X-axis direction is depicted in Fig. 8. The results are 

in good agreement with critical buckling load 

obtained by NASTRAN. 

 

 
 
Figure 8. Load and temperature vs. displacement 

curves for space frame. 

 

5 Conclusion  
 

Co-rotational formulation for the non-linear thermal 

buckling analysis of beam columns with the thin-

walled open cross section is proposed. Material 

non-linearity is included in the finite element 

model. The governing incremental equilibrium 

equations of a two-node space beam element are 

developed using the linearized virtual work 

principle. Presented test examples suggest that 

developed numerical model is an accurate tool for 

modelling the thermal buckling of the thin-walled 

beam structures. 
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