NC programiranje obradnog centra primjenom mastercama

Šimić, Teo

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Rijeka, Faculty of Engineering / Sveučilište u Rijeci, Tehnički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:190:980103

Rights / Prava: Attribution 4.0 International/Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-01-02

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of Engineering

SVEUČILIŠTE U RIJECI **TEHNIČKI FAKULTET**

Sveučilišni diplomski studij strojarstva

Diplomski rad

NC PROGRAMIRANJE OBRADNOG CENTRA PRIMJENOM MASTERCAMA

Rijeka, rujan 2024.

Teo Šimić 0069084621

SVEUČILIŠTE U RIJECI **TEHNIČKI FAKULTET**

Sveučilišni diplomski studij strojarstva

Diplomski rad

NC PROGRAMIRANJE OBRADNOG CENTRA PRIMJENOM MASTERCAMA

Mentor: prof. dr. sc. Zoran Jurković Komentor: Hana Vukotić; univ. mag. ing. mech.

Rijeka, rujan 2024.

Teo Šimić 0069084621

Rijeka, 14.03.2024.

 Zavod:
 Zavod za industrijsko inženjerstvo i menadžment

 Predmet:
 CNC/NC obradni strojevi

ZADATAK ZA DIPLOMSKI RAD

Pristupnik:	Teo Šimić (0069084621)	
Studij:	Sveučilišni diplomski studij strojarstva (1100)	
Modul:	Industrijsko i proizvodno inženjerstvo (1121)	

Zadatak: NC programiranje obradnog centra primjenom Mastercam-a / NC programming of machining center using Mastercam

Opis zadatka:

U radu je potrebno dati pregled osnovnih karakteristika i podjela alatnih strojeva s osvrtom na glodalice i obradne centre. Prikazati moguće tipove obrade, te navesti bitne značajke stroja za koji je potrebno izraditi NC program, temeljem definiranog izratka i upravljačke jedinice, primjenom Mastercam programa. Poseban osvrt u radu dati na upravljačku jedinicu, koordinatni i mjerni sustav stroja, te razraditi tehnološki postupak izrade. Na kraju je potrebno izraditi virtualnu provjeru dobivenog NC programa. U radu treba navesti korištenu literaturu, druge izvore informacija (internet, katalozi), kao i eventualno dobivenu pomoć.

Rad mora biti napisan prema Uputama za pisanja diplomskih / završnih radova koje su objavljene na mrežnim stranicama studija.

Zadatak uručen pristupniku: 20.03.2024.

Mentor: prof. dr. sc. Zoran Jurković

> Komentor: Hana Vukotić

Predsjednik povjerenstva za diplomski ispit: izv. prof. dr. sc. Igor Bonefačić

IZJAVA

Sukladno Pravilniku o diplomskom radu, diplomskom ispitu i završetku diplomskih sveučilišnih studija izjavljujem da sam samostalno izradio diplomski rad u razdoblju od 04. ožujka do 1. srpnja 2024. pod nazivom "NC programiranje obradnog centra primjenom Mastercam-a". Rad sam izradio prema zadatku Povjerenstva za diplomske ispite sveučilišnog diplomskog studija strojarstva, a pod vodstvom mentora prof.dr.sc. Zorana Jurkovića i komentorice univ. mag. ing. mech. Hane Vukotić.

Rijeka, rujan 2024

Teo Šimić

ZAHVALA

Želim izraziti iskrenu zahvalnost prof. dr. sc. Zoranu Jurkoviću na nesebičnoj podršci, stručnim savjetima i neprocjenjivom vodstvu tijekom izrade ovog diplomskog rada. Njegova stručnost i uvidi bili su od iznimne važnosti za uspješan završetak diplomskog rada. Također se zahvaljujem Hani Vukotić, univ. mag. ing. mech. na izdvojenom vremenu i prijedlozima prilikom izrade rada.

Zahvaljujem tvrtki Elcon Geraetebau d.o.o. na pruženoj podršci i savjetima tijekom izrade rada. Posebnu zahvalnost dugujem industrijskom mentoru Tadiji Šimiću.

Posebnu zahvalnost želim izraziti svojim roditeljima i bratu Alanu, čija su podrška i razumijevanje bili temelj tijekom cijelog mog obrazovanja. Hvala vam na svemu što ste učinili za mene na svakom savjetu, ohrabrenju i vjeri u moje sposobnosti.

Od srca zahvaljujem svojoj djevojci Sabini na strpljenju, ljubavi i neprekidnoj podršci kroz sve izazove i uspone tijekom studiranja. Hvala ti što si uvijek tu.

SADRŽAJ

1. UVOD
2. POVIJEST I RAZVOJ CNC/NC
2.1 Općenito
2.2 Razvoj alatnih strojeva
2.3 Tipovi obrade7
3. STRUKTURIRANJE TEHNOLOŠKOG PROCESA IZRADE
4. OBRADNI SUSTAV 12
4.1. Ulazni materijal
4.2. Stezna naprava
4.3. Akira Seiki SV 1350
4.4. Alati
5. SIMULACIJA OBRADA POMOĆU PAKETA MASTERCAM
5.1. Simulacija glodanja steznih čeljusti za drugo stezanje
5.1.1. Definiranje koordinatnog sustava
5.1.2. Definiranje postprocesora
5.1.3. Definiranje sirovca
5.1.4. Operacija 10 (stezne čeljusti)
5.1.5. Operacija 20 (stezne čeljusti)
5.2. Simulacija operacije 10 (izradak)

5.2.1. Definiranje koordinatnog sustava, postprocesora i sirovca	
5.2.2. Operacija 10 (izradak)	
5.3. Simulacija operacije 20 (izradak)	
5.3.1. Definiranje koordinatnog sustava operacije 20	
5.3.2. Operacija 20 (izradak)	
6. OBRADE POMOĆU CNC STROJA	
6.1. Provjera i stavljanje alata u revolversku glavu	
6.2. Umjeravanje alata i centriranje škripa	
6.3. Glodanje steznih čeljusti	
6.4 Umjeravanje alata i centriranje sirovca izratka	64
6.5. Izrada izratka (operacija 10)	64
6.6. Izrada izratka (operacija 20)	
7. ZAVRŠNA KONTROLA PROIZVODA	66
7.1. Završna kontrola	66
8. ZAKLJUČAK	
LITERATURA	
POPIS TABLICA	
POPIS SLIKA	
SAŽETAK	
SUMMARY	
POPIS PRILOGA	
	11

1. UVOD

Industrijska revolucija i tehnološki napredak neodvojivo su povezani s razvojem alatnih strojeva koji su omogućili masovnu proizvodnju i preciznu obradu materijala. Jedna od najznačajnijih prekretnica u povijesti industrijske proizvodnje bio je razvoj numerički upravljanih (NC) strojeva koji su kasnije evoluirali u računalno numerički upravljane (CNC) strojeve. Ova evolucija otvorila je novo poglavlje u proizvodnji, omogućujući izradu složenih dijelova s visokom razinom preciznosti i ponovljivosti, dok su istovremeno smanjeni troškovi i vrijeme obrade.

Cilj ovog diplomskog rada je prikazati i analizirati praktičnu primjenu CNC tehnologije u suvremenoj proizvodnji, s posebnim naglaskom na programiranje obradnih operacija korištenjem Mastercam softvera. U središtu istraživanja nalazi se proces izrade steznih čeljusti i izratka na CNC stroju Akira Seiki SV 1350. Ovaj rad detaljno obrađuje sve faze tehnološkog procesa od pripreme tehnološke dokumentacije, umjeravanja alata, centriranja sirovca i kontrole proizvoda. Kroz kombinaciju teorijskih osnova i praktične primjene rad pruža cjeloviti pregled mogućnosti koje CNC tehnologija nudi u suvremenoj industriji. Na slici 1.1. prikazan je 3D model proizvoda, a detaljan nacrt proizvoda nalazi se u prilogu 1.

Slika 1.1. 3D model proizvoda

2. POVIJEST I RAZVOJ CNC/NC

2.1 Općenito

CNC (engl. *Computer Numerical Control*) je sustav koji koristi programirane računalne softverske upute za upravljanje strojnom obradom materijala. Razvijen je kao nadogradnja tradicionalnih numerički kontroliranih NC (engl. *Numerical Control*) strojeva. Ključnu točku u povijesti automatizacije predstavlja prijelaz s NC strojeva na CNC strojeve. Ova evolucija nije samo tehničke prirode, već predstavlja promjenu u načinu razmišljanja o proizvodnji. CNC se koristi u širokom spektru industrija, uključujući automobilski, zrakoplovni i proizvodni sektor. Uz povećanu točnost, ponovljivost i produktivnost CNC tehnologija donijela je revoluciju u proizvodnji tijekom posljednjih nekoliko desetljeća. Radi se o jednoj od najvažnijih tehnologija u obradi materijala i proizvodnji proizvoda.

Koncept numeričkog upravljanja pojavio se tijekom Drugog svjetskog rata zbog potreba vojne industrije za povećanjem preciznosti i ponovljivosti dijelova. John T. Parsons i njegov tim su u MIT-jevom laboratoriju za instrumentalizaciju razvili prve strojeve gdje je Parsons prepoznao potrebu za preciznijom izradom kompleksnih dijelova, posebice za zrakoplovnu industriju. Projekt je službeno započeo nakon što je Parsons dobio podršku američke vojske i Air Forcea za razvoj tehnologije koja bi poboljšala proizvodnju rotora helikoptera.

Lakše upravljanje stroja omogućeno je korištenjem sistema bušenih kartica za pohranu uputa koje su upravljale kretanjima alata stroja. Ovaj sistem omogućavao je automatsku obradu bez potrebe za ručnim upravljanjem, što je značajno povećalo preciznost i efikasnost. Sposobnost stroja da izvodi operacije rezanja uzduž više osi simultano predstavljala revolucionarnu promjenu u obradi omogućujući izradu složenijih geometrija s visokom točnošću. Bušene kartice sadržavale su upute za kretanje alata, brzinu i dubinu rezanja. Bile su osnovni oblik programiranja te su omogućile operaterima da reproduciraju iste obrade više puta s visokom razinom dosljednosti. Prvi NC stroj prikazan je na slici 2.1.

Slika 2.1. Prvi NC stroj [1]

Nakon Drugog svjetskog rata krenulo je uvođenje numeričkog upravljanja kao standardnog jezika za programiranje obradnih strojeva čime je NC tehnologija postala svestranija. Razvoj računala omogućio je prijelaz na CNC sustav, čime je strojna obrada postala automatiziranija i preciznija.

Razvitkom treće industrijske revolucije, koja se naziva digitalna revolucija, počinje se s uvođenjem računalnih tehnologija, elektronike i automatizacije u proizvodne procese. Proizvodnja postaje sofisticiranija, a globalna povezanost omogućuje brži protok informacija i resursa. Pojava CAD/CAM (računalno potpomognut dizajn i proizvodnja) softvera omogućila je dizajnerima da izravno prenesu modele u CNC strojeve. Napredak u poluvodičkoj tehnologiji i mikroprocesorima učinio je CNC strojeve pristupačnijima i korištenim u sve više proizvodnih pogona. Jedan od najpoznatijih programa današnjice za programiranje CNC-a je Mastercam a njegovo sučelje je prikazano na slici 2.2.

Slika 2.2. Prikaz programiranja u Mastercam-u

Danas CNC tehnologija dominira modernom proizvodnjom. Umreženi i automatizirani CNC strojevi omogućuju praćenje i upravljanje procesima u stvarnom vremenu. Integracija umjetne inteligencije i strojnog učenja omogućuje CNC strojevima da automatski prilagode parametre obrade, dok tehnologija aditivne proizvodnje (3D printanje) otvara nove mogućnosti za bržu izradu prototipova. CNC tehnologija ima ključnu ulogu u industriji s razvojem novih tehnologija i automatizacije. Prikaz modernog CNC stroja s 5 osi prikazan je na slici 2.3.

Slika 2.3. CNC stroj s 5 osi [2]

Razvoj robotike i računalno upravljanih sustava stvorio je nove mogućnosti u proizvodnji. Osim klasičnih CNC strojeva, industrijski roboti sve se više koriste u proizvodnim procesima zbog svoje fleksibilnosti, točnosti i sposobnosti automatizacije ponavljajućih zadataka. U samoj obradi odvajanjem čestica nisu primjenjivi zbog male krutosti. Slika 2.4. prikazuje prednosti i nedostatke CNC strojeva u odnosu na robote.

CNC obradni stroj	Robot
Ograničen na strojnu obradu	Mogućnost obavljanja različitih zadataka (prihvat komada, postavljanje komada na stroj, strojna obrada, preuzimanje gotovog komada) → bolja prilagodljivost
3/4/5 osi	6+ osi
Zahtijeva ljudski unos podataka, postavljanje i kontrolu tijekom strojne obrade	Mogućnost rada bez čovjekovog prisutstva (prilagodba okolini) te uz čovjeka (kolaboracija)
Izrada istih proizvoda u velikim proizvodnim količinama; duža priprema stroja za promjenu proizvodnog asortimana	Izrada proizvoda različite geometrije uz brzu i jednostavnu prilagodbu robota na novu okolinu
Manji radni prostor	Veći radni prostor
Veća točnost i preciznost izrade proizvoda	lako poboljšana, manja točnost i preciznost dimenzija proizvedenih komada (izuzev komada s kompleksnom geometrijom)
Materijali: aluminij, čelik, titan	Materijali: polistiren, drvo, plastika

Slika 2.4. Usporedba CNC-a i robota [3]

2.2 Razvoj alatnih strojeva

Razvoj alatnih strojeva predstavlja ključnu fazu u povijesti industrijske obrade materijala. Ovi strojevi evoluirali su kako bi zadovoljili rastuće potrebe za preciznom, brzom i učinkovitom obradom dijelova u različitim industrijama (automobilska, zrakoplovna i proizvodna industrija). Etape razvoja alatnih strojeva:

	KARAKTERISTIKE	PREDNOSTI	NEDOSTACI
1. ETAPA Počeci alatnih strojeva	 Mehanički pogonjeni strojevi za osnovne operacije bušenja, tokarenja i glodanja. Ručno podešavanje parametara za svaki zadatak. Osnovno upravljanje putem mehaničkih kontrola. 	 Omogućili su osnovnu obradu materijala i proizvodnju jednostavnih dijelova. Relativno jednostavni za korištenje i održavanje. 	 Ograničena preciznost i ponovljivost. Kompliciranije podešavanje i postavljanje.
2. ETAPA Numerička kontrola	 Uvođenje numeričke kontrole omogućilo je programiranje strojeva putem bušenih kartica ili traka. Ova tehnologija omogućila je automatizaciju 	 Povećana preciznost i ponovljivost u usporedbi s mehaničkim strojevima. Skraćeno vrijeme potrebno za 	- Ograničena fleksibilnost programiranja.

Tablica 2.1. Razvoj alatnih strojeva

(NC) strojeva	upravljanja strojevima bez potrebe za ručnim podešavanjem.	postavljanje i podešavanje strojeva.	
3. ETAPA Računalna numerička kontrola (CNC) strojeva	 Računalna tehnologija zamijenila je mehaničke i električne kontrolne sustave. Digitalni računalni programi omogućili su složenije operacije i preciznije upravljanje. 	 Veća fleksibilnost i kompleksnost u programiranju. Poboljšana preciznost i brzina obrade. 	 Potreba za obukom operatera za rad s računalnom tehnologijom. Povećana složenost održavanja i dijagnostike kvarova.
4. ETAPA Integracija CAD/CAM sustava	 Integracija CAD/CAM softvera omogućila je direktno generiranje CNC programa iz 3D modela. Ova integracija povećala je brzinu i smanjila mogućnost ljudske greške. 	 Brže i preciznije programiranje. Smanjena ovisnost o operaterima za postavljanje programa. 	 Visoki troškovi implementacije CAD/CAM sustava. Potreba za obukom operatera za rad s novim softverom.

Kroz ove etape razvoj alatnih strojeva i tehnologije obrade materijala postigao je značajne napretke u smislu preciznosti, brzine i fleksibilnosti. Svaka faza donijela je svoje inovacije i izazove potičući daljnji razvoj i unapređenje tehnologije. U budućnosti se očekuje daljnji napredak u području alatnih strojeva s naglaskom na povećanje automatizacije, integraciju s umjetnom inteligencijom i

poboljšanje energetske učinkovitosti. To će omogućiti proizvodnju složenijih dijelova uz manju potrošnju resursa i veću fleksibilnost u proizvodnji.

2.3 Tipovi obrade

Kroz povijest, alatni strojevi su se koristili za različite vrste obrade materijala, ovisno o potrebama industrije i dostupnoj tehnologiji. Napredak tehnologije i inovacije nastavljaju proširivati mogućnosti obrade materijala otvarajući put novim tehnikama i metodama koje poboljšavaju preciznost, brzinu i efikasnost proizvodnje. Navedeni su neki od glavnih tipova obrade koji su se razvijali tijekom vremena:

- Tokarenje je obradni proces uklanjanja materijala s rotirajućeg obratka pomoću reznih alata. Koristi se za izradu cilindričnih i koničnih oblika, provrta, navoja i drugih oblika na metalu ili plastici. Proces uključuje stezanje obratka u tokarski stroj koji se rotira dok alat pomiče duž obratka za uklanjanje materijala.
- 2. Glodanje je obradni proces uklanjanja materijala pomoću rotirajućih alata. Glodalice se koriste za stvaranje ravnih ili zakrivljenih površina te za izradu utora, žljebova i drugo.
- Bušenje je vrsta strojne obrade odvajanjem čestica gdje se posebnim alatom, tj. svrdlom izrađuju cilindrične rupe u obratku. Alat obavlja glavno rotacijsko gibanje i pravocrtno posmično gibanje koje mora biti u smjeru osi rotacije.
- 4. Brušenje je oblikovanje materijala odvajanjem čestica kojim se postiže velika glatkoća i točnost površine. Brušenje se obavlja alatnim brusom.
- 5. Izrada navoja je vrsta strojne obrade odvajanjem česticama kojom se izrađuje željeni navoj na vanjskoj ili unutarnjoj površini materijala.
- 6. Savijanje je obradni proces kojim se mijenja oblik materijala primjenom sile kako bi se postigao željeni kut ili zakrivljenost. Ovaj proces se najčešće koristi za oblikovanje metala.

 Elektroerozijska obrada (EDM) koristi električnu energiju za uklanjanje materijala. Koristi se u mikro-obradi (bušenje provrta promjera od 10 μm) i makro-obradi (izrada matrica za prešanje, teških i do nekoliko tona).[3]

3. STRUKTURIRANJE TEHNOLOŠKOG PROCESA IZRADE

Prvi korak u procesu rada CNC strojeva je tehnička priprema i izrada tehnološke dokumentacije. Ova faza je ključna jer osigurava sve potrebne dokumente koji su potrebni za pripremu prije same proizvodnje proizvoda.

Tehnološka dokumentacija obuhvaća sljedeće:

Popis operacija koji pruža kronološki pregled svih koraka koje je potrebno poduzeti tijekom proizvodnog procesa od početne obrade do završne kontrole proizvoda. Popis operacija omogućuje operaterima da razumiju točan redoslijed koraka potrebnih za izradu proizvoda, osiguravajući dosljednost, preciznost i optimizaciju vremena obrade.

Operacijski listovi koji pružaju detaljne upute za svaku pojedinu operaciju obrade, uključujući opis operacije, potrebne alate, parametre obrade kao što su brzina vretena, posmak, vrijeme potrebno za operaciju, posebne napomene i dr.

Popis alata koji sadrži sve alate koji će se koristiti tijekom proizvodnog procesa, uključujući detalje o svakom alatu kao što su naziv, dimenzije, materijal, proizvođač i serijski broj. Popis alata omogućuje operaterima i inženjerima da identificiraju i pripreme sve potrebne alate prije početka proizvodnje osiguravajući tako dostupnost i ispravnost svih alata.

Tehnička dokumentacija uključuje i popis strojeva kako bi se osiguralo da svi potrebni resursi budu dostupni za proizvodni proces. U ovom radu to nije od značaja jer se za izradu zadanog proizvoda koristiti jedan specifičan CNC stroj Akira Seiki SV 1350. Stroj je opremljen svim potrebnim funkcijama i alatima koji omogućuju preciznu i učinkovitu izradu proizvoda prema zadanim specifikacijama.

Dobro strukturirana i detaljna tehnička dokumentacija ključna je za osiguranje učinkovite i precizne proizvodnje. Ona osigurava jasnoću, dosljednost i preciznost u svim fazama proizvodnje, smanjuje mogućnost pogrešaka i optimizira korištenje resursa. Pravilno izrađena dokumentacija omogućuje operaterima i inženjerima dosljedno postizanje visokih standarda kvalitete i učinkovitosti u

proizvodnji čime se osigurava ispunjavanje svih zadanih specifikacija i standarda kvalitete konačnog proizvoda.

Strukturiranjem tehnološkog procesa određuje se redoslijed i aktivnosti koje treba primijeniti pri izradi stezne čeljusti i izratka. Tehnološka dokumentacija stezne naprave tj. operacijski list nalazi se u prilogu 2, a operacijski list izratka u prilogu 3. Popis alata za izradu stezne naprave nalazi se u prilogu 4, a popis alata za izradu izratka u prilogu 5.

Broj operacije	Vrsta operacije	Skica operacije	Alat
10	Glodanje		Čeono glodalo Ø63, glodalo Ø10
20	Glodanje		Čeono glodalo Ø63,

Tablica 3.1. Proces izrade stezne čeljusti

Tablica 3.2. Proces izrade izratka

4. OBRADNI SUSTAV

Obradni sustav je skup povezanih komponenti koje zajedno omogućuju preciznu obradu materijala, uključujući stroj, alate, upravljačke sustave i tehnologije za kontrolu procesa. Izbor i priprema materijala izravno utječu na kvalitetu i učinkovitost konačnog proizvoda u proizvodnim procesima. Odabrani materijal za izradu je čelik. Čelik je jedan od najčešće korištenih materijala koji pruža širok raspon mogućnosti zbog svoje izvrsne čvrstoće, tvrdoće i pristupačnosti. Poznavanje svojstava čelika i pravilna priprema ulaznog materijala osigurava optimalnu strojnu obradu te smanjuju vrijeme i troškove proizvodnje.

4.1. Ulazni materijal

Definiranje dimenzija ulaznog materijala jedan je od prvih korak u procesu proizvodnje. Da bi se osigurala učinkovitost i preciznost obrade, potrebno je točno odrediti dimenzije dodataka za obradu. Dimenzije sirovca moraju omogućiti izradu proizvoda željenih dimenzija uz minimalnu količinu otpada i troškova.

Dimenzije sirovca odabrane su prema nacrtu koji je dan u prilogu 6.

X = 98 mm Y= 35 mm Z= 18 mm

Izgled sirovca i približne dimenzije vidljive su na sljedećim slikama.

a) b) Slika 4.2. a) Y dimenzija sirovca, b) Z dimenzija sirovca

4.2. Stezna naprava

U sklopu tehnološkog procesa izrade zadanog proizvoda posebno se ističe operacija 20 koja zahtijeva pažljivu pripremu i izradu steznih čeljusti. Pravilna izrada stezne čeljusti osigurava stabilnost i preciznost tijekom obrade jer omogućuje sigurno pričvršćivanje izratka u stezni škrip.

Za izradu steznih čeljusti odabran je aluminij. Aluminij je poznat po svojoj laganoj, ali izdržljivoj strukturi, što ga čini idealnim izborom za primjene gdje je potreban materijal s visokim omjerom čvrstoće i težine. Osim toga, aluminij se lako obrađuje, omogućavajući precizno oblikovanje i prilagodbu dimenzijama potrebnim za izradu proizvoda.

Model steznih čeljusti izrađen je u SolidWorks, jednom od najnaprednijih alata za 3D modeliranje i dizajn. SolidWorks omogućuje stvaranje detaljnih i točnih modela, osiguravajući tako da svi aspekti dizajna budu precizno definirani prije fizičke proizvodnje.

Nakon što je model izrađen u SolidWorksu, slijedi faza fizičke proizvodnje. Stezne čeljusti se obrađuju prema tehničkoj dokumentaciji koja detaljno opisuje svaki korak procesa obrade.

Nakon izrade stezne čeljusti ona se postavlja u škripac koji služi za sigurno pričvršćivanje izratka za vrijeme operacije 20. Ovaj postupak osigurava zadovoljavanje svih zadanih specifikacija i standarda kvalitete konačnog proizvoda te demonstrira važnost pažljive pripreme i korištenja naprednih tehnologija u modernoj proizvodnji. Na slici 4.3. prikazan je 3D model stezne čeljusti. Nacrt stezne čeljusti dan je u prilogu 7.

Slika 4.3. 3D model stezne čeljusti

4.3. Akira Seiki SV 1350

Za izradu zadanog komada korišten je CNC stroj Akira Seiki SV 1350. Ovaj stroj predstavlja vrhunac suvremene tehnologije u obradi materijala i pruža širok spektar mogućnosti za preciznu i učinkovitu proizvodnju. Akira Seiki SV 1350 je poznat po svojoj robusnoj konstrukciji, visokoj preciznosti i fleksibilnosti što ga čini idealnim izborom za složene zadatke.

Akira Seiki SV 1350 opremljen je naprednim funkcijama koje omogućuju preciznu kontrolu i optimizaciju procesa obrade. Njegova glavna vretena imaju impresivnu brzinu okretaja omogućujući brzu i učinkovitu obradu različitih materijala. Maksimalna brzina vretena doseže 15,000 okretaja po minuti (engl. *Revolutions per minute*), što omogućuje brzu i preciznu obradu čak i najzahtjevnijih materijala.

Veličina radnog stola od 1500 mm x 600 mm pruža dovoljno prostora za obradu velikih komada, dok maksimalno opterećenje stola iznosi 1,200 kg, što omogućuje rad s teškim i masivnim dijelovima. Putanje po osima su: X os ima radni hod od 1350 mm, Y os od 600 mm, a Z os od 600 mm. Ove karakteristike omogućuju obradu velikih i složenih dijelova s visokom preciznošću. Preciznost stroja dodatno je poboljšana zahvaljujući naprednom sustavu za kontrolu položaja koji osigurava točnost pozicioniranja unutar nekoliko mikrona.

Upravljačka jedinica koja je standardno ugrađena u Akira Seiki SV 1350 je Mitsubishi. Ona omogućuje programiranje složenih operacija i jednostavno upravljanje strojem. Intuitivno sučelje kontrolera Mitsubishi pruža korisniku mogućnost brzog podešavanja parametara obrade i praćenja procesa u realnom vremenu. Ova razina kontrole omogućuje optimizaciju svakog koraka proizvodnje smanjujući vrijeme ciklusa i povećavajući kvalitetu završnog proizvoda.

Slika 4.4. Akira Seiki SV 1350

4.4. Alati

Alati predstavljaju srž svakog proizvodnog procesa. Na konačnu kvalitetu proizvoda direktno utječe kvaliteta alata, bez obzira na stupanj automatizacije. U tablici 4.1. su prikazani alati potrebni za obradu stezne čeljusti, a u tablici 4.2. alati za obradu izratka.

N	Pozicija alata u revolverskoj glavi	Naziv alata i namjena	Slika alata
1	<i>№</i> _1	Čeono glodalo Ø63 poravnavanje čela	
2	N_22	Glodalo Ø10 izrada konture	

Tablica 4.1. Alati za obradu stezne čeljusti

N_	Pozicija alata u revolverskoj glavi	Naziv alata i namjena	Slika alata
1	<i>N</i> <u>°</u> 1	Čeono glodalo Ø63 poravnavanje čela	
2	N <u>°</u> 2	Glodalo Ø10 izrada konture	
3	N_3	Glodalo Ø6 izrada otvorenog džepa	

Tablica 4.2. Alati za obradu izratka

4	N_º4	Zabušivač	
5	<i>№</i> 25	Svrdlo Ø9.8	
6	<i>№</i> 6	Svrdlo Ø8.5	
7	N_07	Svrdlo Ø6	

8	<i>№</i> 28	Trkač od 45° skošenje rubova	
9	<i>N</i> _9	Razvrtač Ø10 H7	
10	<i>N_</i> ⁰ 10	Ureznik M10	

11	N <u>°</u> 12	Pupitas	
12	<i>N</i> _13	Glava Ø25 Izrada konture grubo	

5. SIMULACIJA OBRADA POMOĆU PAKETA MASTERCAM

Mastercam je jedan od najpoznatijih i najraširenijih softverskih paketa za CNC programiranje koji je postao nezaobilazan alat u suvremenoj industrijskoj proizvodnji. Jedna od glavnih prednosti Mastercama je sposobnost integriranja CAD (engl. *Computer-Aided Design*) i CAM (engl. *Computer-Aided Manufacturing*) funkcionalnosti u jedan sveobuhvatan sustav. To omogućuje kreiranje detaljnih 3D modela i njihovu neposrednu pripremu za proizvodnju.

Korištenjem Mastercama moguće je precizno definirati sve aspekte obradnog procesa, uključujući putanje alata, brzinu vretena, dubinu reza i druge ključne parametre. Ovaj softver podržava širok raspon obradnih operacija kao što su glodanje, tokarenje, bušenje i rezanje navoja. Njegova fleksibilnost i prilagodljivost omogućuju optimizaciju proizvodnih procesa smanjujući vrijeme ciklusa i poboljšavajući kvalitetu gotovih dijelova.

Jedna od značajki koja čini Mastercam posebno korisnim je mogućnost simulacije obradnih operacija prije same izvedbe na CNC stroju. Simulacija omogućuje identifikaciju i ispravljanje potencijalnih problema u programiranju što značajno smanjuje rizik od grešaka i oštećenja alata ili obradaka.

5.1. Simulacija glodanja steznih čeljusti za drugo stezanje

5.1.1. Definiranje koordinatnog sustava

Nakon što je učitan 3D model potrebno je definirati koordinatni sustav za odabrani 3D model (Slika 5.1.). Definiranje koordinatnog sustava prikazano je na slikama 5.2. i 5.3.

Slika 5.1. a) Odabir opcije Dynamic, b) Odabir modela

Slika 5.2. a) Traženje sredine izratka, b) Odabir pozicije koordinatnog sustava

Slika 5.3. Definirani koordinatni sustav

5.1.2. Definiranje postprocesora

Nakon definiranja koordinatnog sustava potrebno je odabrati postprocesor. Postprocesor omogućuje stroju čitanje NC programa koji se generira unutar Mastercam-a. Da bi se definirao, potrebno je

otvoriti karticu **Machine**, a zatim odabrati **Mill** (Slika 5.4.), pri čemu se otvara padajući izbornik u kojem se odabire postprocesor pod nazivom Akira Seiki 3AX (Slika 5.5.).

Slika 5.4. Definiranje postprocesora

Slika 5.5. Definirani postprocesor

5.1.3. Definiranje sirovca

U stablu prikazanom na slici 5.5. nalazi se kartica **Stock setup** u kojoj se definira sirovac. Klikom na karticu otvara se prozor za definiranje sirovca koji je prikazan na slici 5.6. Sljedeći korak je odabir izgleda sirovca **Rectangular** te odabir modela i dimenzija sirovca (Slika 5.7.).

Selection (0)	۲
* 🞯 🗐 🗊	N C X
Origin	۲
Rectangular	۲
Cylindrical	۲
Push Pull	۲
Stock Plane Transformation	۲
Current Top	- +
Attributes	۲
Colon	12
Preview Settings	۲
Show wireframe entities	
Show stock plane	
Engineering Information	۲
Material: ALUMINUM mm - 2024	
	15
Volume (m²) 0.0	

Slika 5.6 Definiranje sirovca

Slika 5.7. Dimenzije sirovca

5.1.4. Operacija 10 (stezne čeljusti)

Zahvat 1: Čeono glodanje čela

Kod ovog zahvata potrebno je odabrati opciju **Face**, koja se nalazi pod karticom **Toolpaths** te prozor 2D kao što je prikazano na slici 5.8.

Slika 5.8. Opcija Face

Kod opcije **Face** nije potrebno odabrati površinu ili konturu nego se samo odabire zelena kvačica kao što je prikazano na slici 5.9.

olid Chaining	×
Mode	>
Selection Method	
1	
•	
1	
Cavities All	~
Selection	
N	
3	
Branches	
S 14 1	¥
Start/End	
14ki 🔶	

Slika 5.9. Otvoreni izbornik naredbe Face

Nakon odabira geometrije pod karticom **Tools** definira se alat koji će se koristiti za poravnavanje čela. Za učitavanje alata potrebno je pritisnuti opciju **Select library tool** kako bi se prikazali svi alati koji se nalaze unutar knjižice alata. Odabir alata i njegovi režimi obrade prikazani su na slici 5.10.

Slika 5.10. Odabir alata (zahvat 1)

Nakon odabranog alata definira se strategija obrade. Pod karticom **Cut parameters** (Slika 5.11.) definira se metoda, tip kompenzacije alata i drugo. Odabire se čeono glodalo Ø63 sa sljedećim režimima rada:

Posmak po zubu (engl. *Feed per tooth*): 0,16 mm/zub Posmična brzina (engl. *Feed rate*): 800 mm/min Brzina vrtnje (engl. *Spindle speed*): 1000 okr/min Brzina rezanja (engl. *Cutting speed*): 197,92 m/min

Slika 5.11. Definiranje cut parameters (zahvat 1)

Unutar kartice Cut parameters definira se dubina rezanja Depth Cuts (Slika 5.12.).

Slika 5.12. Definiranje dubine prolaza (zahvat 1)

Na kraju se još definira Linking parameters (Slika 5.13) odnosno definiraju se Depth, Top of stock, Feed plane i Clearance.

Slika 5.13. Definiranje dubine obrade (zahvat 2)

Ukupno vrijeme zahvata 1 prikazano je na sljedećoj slici.

Slika 5.14. Vrijeme obrade (zahvat 1)

Zahvat 2: Izrada vanjske konture

Pod karticom Toolpaths odabire se opcija Contour (Slika 5.15.)

Slika 5.15. Odabir opcije Contour (zahvat 2)

Nakon otvaranja prozora odabire se kontura koju je potrebno izraditi (Slika 5.16.).

Slika 5.16. Odabir konture (zahvat 2)

Nakon odabira konture odabire se alat kojim se izrađuje kontura. Odabir alata prikazan je na slici 5.17.

Slika 5.17. Odabir alata (zahvat 2)
Odabire se glodalo Ø10 sa sljedećim režimima rada:

Posmak po zubu (engl. *Feed per tooth*): 0,1 mm/zub Posmična brzina (engl. *Feed rate*): 500 mm/min Brzina vrtnje (engl. *Spindle speed*): 2500 okr/min Brzina rezanja (engl. *Cutting speed*): 78,54 m/min

Kartica **Cut parameters** je jednaka kao i kod prethodnog zahvata. **Depth cuts** postavke vidljive su na slici 5.18.

Slika 5.18. Definiranje dubine prolaza (zahvat 2)

Pod karticom **Multi passes** (Slika 5.19. a)) definira se broj prolaza po konturi, a na kraju se još definira dubina obrade (Slika 5.19 b)). Dubina rezanja je -40 mm.

Slika 5.19. a) Definiranje Multi passes-a (zahvat 2), b) Definiranje dubine rezanja (zahvat 2)

Ukupno vrijeme zahvata 2 prikazano je na sljedećoj slici:

Details	Information	
		Cycle Time
	Feed	🕒 6m:41.56s
	Rapid	🕒 3.85s
Total		💮 6m:46.41s
		Path Length
	Feed	👄 3402.32208
	Rapid	802.99495

Slika 5.20. Vrijeme obrade (zahvata 2)

Zahvat 3: Glodanje otvorenog džepa

Pod karticom Toolpaths odabire se opcija **Dynamic mill** (Slika 5.21.)

File	Home	Wirefr	ame S	urfaces	Solids
Contou		ill c	Dynamic	Face	+ +
		20)		

Slika 5.21. Odabir opcije Dynamic mill (zahvat 3)

Nakon otvaranja prozora odabire se površina otvorenog džepa koja je prikazana na slici 5.22.

Slika 5.22. Odabir konture (zahvat 3)

Alat koji se odabire isti je kao kod zahvat 2 s istim režimima obrade. Dubina jednog prolaza prikazana je na slici 5.23. te iznosi 2 mm.

ng 2D High Speed Toolpath - Dynam	nic Mill	
T 🗔 🗗 🖬 🖼		
Toolpath Type Tool Holder CutParameters CutParameters CutParameters CutParameters CutParameters CutParameters CutParameters CutRing Parameters Cut	Depth cuts Aaxinum rough step: Constraints Number of cuts: O Step: Override Feed Speed Feed rate Spindle speed 2500	Depth cut order
Arc Filter / Tolerance Planes Coolant Canned Text Misc Values Axis Control Axis Control	Use island depths Subprogram Absolute Incremental	Taper angle 0.0 Island taper angle 0.0

Slika 5.23. Definiranje dubine prolaza (zahvat 3)

Kartica Linking parametars prikazana je na slici 5.24.

Slika 5.24. Definiranje dubine (zahvat 3)

Ukupno vrijeme zahvata 3 prikazano je slici 5.25.

Slika 5.25. Vrijeme obrade (zahvata 3)

Simulacija operacije 10 prikazana je na slici 5.26.

Slika 5.26. Simulacija operacije 10 (stezna čeljust)

5.1.5. Operacija 20 (stezne čeljusti)

Kod operacije 20 potrebno je okrenuti komad. U Mastercam-u se stvara novi **Toolpath group** što označava drugo stezanje. Nakon toga definira se novi koordinatni sustav koji je prikazan na slici 5.27.

Slika 5.27. Definirani koordinatni sustav (operacija 20)

Zahvat 1: Čeono glodanje donje strane

Nakon odabira opcije **Face** definira se alat koji je isti kao i kod 1. zahvata operacije 10. Sljedeće što se definira je **Depth cuts** koji je također jednak kao i kod 1. zahvata operacije 10 dok se kartica **Linking parameters** (Slika 5.28.) razlikuje zbog različitog koordinatnog sustava.

Slika 5.28. Definiranje dubine obrade

Ukupno vrijeme zahvata 1 prikazano je slici 5.29., simulacija obrade 20 prikazana je na slici 5.30., a ukupno vrijeme obrade operacije 10 i 20 prikazano je na slici 5.31. te iznosi 27 minuta i 32,66 sekundi.

Slika 5.29. Vrijeme obrade (zahvat 1)

Slika 5.30. Simulacija operacije 20 (stezna čeljust)

Details	Information	
		Cycle Time
	Feed	😋 27m:23.61s
	Rapid	🕒 6.05s
	Total	🕒 27m:32.66s

Slika 5.31. Ukupno vrijeme izrade stezne čeljusti

5.2. Simulacija operacije 10 (izradak)

5.2.1. Definiranje koordinatnog sustava, postprocesora i sirovca

Potrebno je ponoviti postupak definiranja koordinatnog sustava i postprocesora kao kod simulacije stezne čeljusti. Na slici 5.32. prikazan je definirani koordinatni sustav za izradak.

Slika 5.32. Definirani koordinatni sustav za izradak

Nakon definiranja koordinatnog sustava definiraju se dimenzije sirovca koje su prikazane na slici 5.33.

Slika 5.33. Definiranje dimenzija sirovca

5.2.2. Operacija 10 (izradak)

Zahvat 1: Čeono glodanje čela izratka

Odabire se opcija **Face** koja se nalazi pod karticom **Toolpaths**, a prikazana je na slici 5.34. Za opciju **Face** nije potrebno odabrati geometriju već samo potvrditi opciju kao i kod simulacije stezne čeljusti. Nakon toga odabiru se alati potrebni za poravnavanje čela. Odabrano je čeono glodalo Ø63 sa sljedećim režimima obrade:

Posmak po zubu (engl. *Feed per tooth*): 0,16 mm/zub Posmična brzina (engl. *Feed rate*): 800 mm/min Brzina vrtnje (engl. *Spindle speed*): 1000 okr/min Brzina rezanja (engl. *Cutting speed*): 197,92 m/min

Slika 5.34. Odabir opcije Face

Pod karticom **Cut parameters** (Slika 5.35. a)) odabire se metoda obrade, tip kompenzacije alata i drugo. Zatim slijedi definiranje **Depth Cuts** (Slika 5.35. b)) kojim se određuje dubina rezanja za jedan prolaz.

Slika 5.35. a) Cut parameters, b) Depth Cuts

Karticom **Linking parameters** određuje se ukupna dubina rezanja koja je prikazana na slici 5.36. Ukupno vrijeme zahvata 1 za izradak prikazano je na slici 5.37. Dubina rezanja je -1 mm.

Slika 5.36. Definiranje dubine rezanja (zahvat 1) Slika 5.37. Vrijeme obrade (zahvat 1)

Zahvat 2: Glodanje vanjske konture – grubo

Odabire se opcija **Contour** te kontura koja je prikazana na slici 5.38.

Slika 5.38. Odabir konture (zahvat 2)

Alat koji se odabire za ovu obradu (Slika 5.39.) je glava Ø25 sa sljedećim režimima rada:

Posmak po zubu (engl. *Feed per tooth*): 0,2727 mm/zub Posmična brzina (engl. *Feed rate*): 1200 mm/min Brzina vrtnje (engl. *Spindle speed*): 2200 okr/min Brzina rezanja (engl. *Cutting speed*): 172,92 m/min

Toolpath Type	Status 1	ool Number	Assembly N	Tool Name	Holder Name	Diameter	Corner Radius	Length	Flutes	
Helder	7 1	1		G AVA 63		63.0	0.0	15.0	5	
1000	1 ÷ 🗸	2		GLODALO 10		10.0	0.0	20.0	2	
- Out Parameters	1 9 5	3		GIODALO 6		6.0	0.0	40.0	2	
Openth Cuts	9.	4		ZABLISTVAC 4		4.0	0.0	10.0	1	
Lead In/Out	1 2 2	5		SVRDLO 8.5		8.5	0.0	50.0	1	
Ø Break Through	1 9 2	6		SVRDLO 6		6.0	0.0	50.0	1	
— O Multi Passes	11 A J	7		SVRDLO 9.8		9.8	0.0	50.0	2	
🔬 🤣 Tabs	11 ÷ Č	8		RATURTAC		10.0	0.0	50.0	2	
Linking Parameters	1 ÷	0		LIREZNOK M		10.0-1.5	0.0	50.0	-	
Home / Ref. Points	1 ÷ .	10		TRKAC 6		6.0.45	0.0	10.0	-	
	÷ .	11		0.0000.025		25.0	0.0	20.0	2	
Arc Filter / Tolerance		**		GLODINEO 23		23.0	0.0	20.0	-	
Planes	<									
Axis Combination Rotary Axis Control	Tool name: Tool dameter: Tool #: Length offset: Diameter offset	25.0 11 11	Corner rad Head #:	us: 0.0 -1	Feed FPT: Plung Retri	irate: perate: actrate:	1200.0 S 0.2727 c 1200.0 S 5000.0 S	pindle direc pindle spee S Rapid ret	tion: [d: [ract	2200 172.79
Tool GLODALO 25	1									
lool Diameter 25	Settings									
Corner Radius 0	Comment:									
eed Rate 1200					^					
pindle Speed 2200										
ioolant On										
ool Length 70					-					
ength Offset 11	To batch									
iameter 0 11										
plane / Tpl Top										
kxis Combi Default (1)										
- edited	1									

Slika 5.39. Odabir alata (zahvat 2)

Slika 5.40. Definiranje Cut parametar (zahvat 2)

Pod karticom **Cut parameters** definirano je da kontura ide po rampi u dubinu. Dubina po rampi je 0,6 mm uz dodatak na zidu od 0,2 mm kako bi se fino obradila kontura. Za ovu obradu definira se još dubina tj. **Linking parametars** (Slika 5.41.) koja iznosi -13 mm. Ukupno vrijeme zahvata 2 prikazano je na slici 5.42.

Slika 5.41. Definiranje dubine rezanja (zahvat 2)

Slika 5.42. Vrijeme obrade (zahvat 2)

Cycle Time

🕒 0.30s

🕒 6m:4.70s

Zahvat 3: Glodanje vanjske konture – fino

Odabrana je kontura prošlog zahvata te je promijenjen alat. Alat koji se koristi u ovom zahvatu je glodalo Ø10 sa sljedećim režimima rada (odabir alata prikazan je na sljedećoj slici):

Posmak po zubu (engl. *Feed per tooth*): 0,25 mm/zub Posmična brzina (engl. *Feed rate*): 800 mm/min Brzina vrtnje (engl. *Spindle speed*): 1600 okr/min Brzina rezanja (engl. *Cutting speed*): 50,267 m/min

Toolpath Type	Status	Tool Number	Assembly N	Tool Name	Holder Name	Diameter	Corner Radiu	s Length	Flutes	
Holder	Τ 🗸	1		GLAVA 63		63.0	0.0	15.0	5	
	1 -	2		GLODALO 10		10.0	0.0	20.0	2	
Cut Parameters	I 🗸	3		GLODALO 6		6.0	0.0	40.0	2	
📀 Depth Cuts	II 🗸	4		ZABUSIVAC 4		4.0	0.0	10.0	1	
Lead In/Out	I	5		SVRDLO 8.5		8.5	0.0	50.0	1	
Break Inrough Multi Danson	II 🖌	6		SVRDLO 6		6.0	0.0	50.0	1	
Tabs		7		SVRDLO 9.8		9.8	0.0	50.0	2	
Linking Parameters	14 - 1	8		RAZVRTAC		10.0	0.0	50.0	2	
Home / Ref. Points	4 .	9		UREZNIK M		10.0-1.5	0.0	50.0	1	
	4 7	10		CLODALO 25		25.0	0.0	20.0	-	
Arc Filter / Tolerance	. · ·			GLOUALO 23		2310	0.0	20.0	2	
Planes	۲.									
Avis Control Avis	Tool name: Tool diamete Tool #: Length offse Diameter offs	GLODA 2 10.0 2 11 2 12 10 10 2 11 2 10 10 10 10 10 10 10 10 10 10 10 10 10	LO 10 Corner rad Head #:	Bus: 0.0	Feed r FPT: Plunge Retrac	ate: :rate: :t rate:	800.0 9 0.25 0 1200.0 9	Spindle direc Spindle spee CS Rapid ret	tion: C d: 1 s	W 1600 50.26
ol Diameter 10	Settings									
omer kadus 0 eed Rate 800 pindle Speed 1600 bolant On ool Length 70 ength Offset 2					~ ~					
iameter O 2 plane / Tpl Top										

Slika 5.43. Odabir alata (zahvat 3)

Pod karticom **Cut parameters** sve je ostavljeno kako je zadano na slici 5.43. a). Kartica **Depth Cuts** je ugašena jer se glodalom ide direktno na konačnu dubinu koja je prikazana pod karticom **Linking parameters** (Slika 5.43. b))

Slika 5.44. a) Cut parameters, b) Linking parameters

Ukupno vrijeme zahvata 3 prikazano je na sljedećoj slici:

Cycle Time
🕒 19.74s
🕒 0.30s
🕒 21.04s

Slika 5.45. Vrijeme obrade (zahvat 3)

Zahvat 4: Glodanje otvorenog džepa

Ponovno je korištena opcija **Contour**. Na slici 5.46. je prikazana odabrana kontura.

Slika 5.46. Odabir konture (zahvat 4)

Zatim je odabrano glodalo Ø6 (Slika 5.47.) sa sljedećim režimima obrade.

Posmak po zubu (engl. *Feed per tooth*): 0,0353 mm/zub Posmična brzina (engl. *Feed rate*): 165 mm/min Brzina vrtnje (engl. *Spindle speed*): 2340 okr/min Brzina rezanja (engl. *Cutting speed*): 44,1 m/min Pod karticom **Cut parameters** ne mijenja se ništa, a pod karticom **Depth Cuts** definira se dubina po prolazu koja iznosi 1 mm, a prikazana je na slici 5.48.

Kod izrade ove konture potrebno je odabrati opciju **Multi passes** koja je prikazana na slici 5.49 a). Kartica **Linking parameters** prikazana je na slici 5.49. Dubina rezanja je -6,4 mm.

Slika 5.49. a) Multi passes, b) Linking parameters

Ukupno vrijeme zahvata 4 prikazano je slici 5.50.

Details	Information	
		Cycle Time
	Feed	🔄 3m:3.40s
	Rapid	🕒 4.33s
	Total	🕒 3m:8.73s

Slika 5.50. Vrijeme obrade (zahvata 4)

Zahvat 5: Zabušivanje za 3 provrta

Kod ovog zahvata odabire se opcija **Drill** koja se nalazi pod karticom **Toolpaths** te prozor **2D** kao što je prikazano na slici 5.51. Nakon toga odabiru se sve rupe koje će se bušiti kao što je prikazano na slici 5.52.

Slika 5.51. Opcija Drill

Slika 5.52. Odabir provrta

Nakon odabira geometrije potrebno je pod karticom **Tools** definirati alat koji će se koristiti kod zabušivanja. Odabir alata je prikazan na slici 5.53.

Slika 5.53. Odabir alata (zahvat 5)

Režimi rada su sljedeći:

Posmak po zubu (engl. *Feed per tooth*): 0,125 mm/zub Posmična brzina (engl. *Feed rate*): 150 mm/min Brzina vrtnje (engl. *Spindle speed*): 1200 okr/min Brzina rezanja (engl. *Cutting speed*): 15,1 m/min

Nakon odabira alata odabire se vrsta bušenja. Za ovaj zahvat odabrana je **Drill/Counterbore** kao što je prikazano na slici 5.54. Na kraju se definira **Linking parameters** tj. dubina rezanja koja iznosi -1 mm (Slika 5.55.).

- Tool	Cyde	Drill/Counterbore	~		T III	
foode -		Firstpeck	0.0			
Cut Parameters		Subsequent peck	0.0			
- Tool Axis Control Limits		Park degraphe	0.0	and the second second		
Hole Segments		Petro celarante	0.0			
Home / Ref. Points		Retract amount	0.0	and the second value of th		
Safety Zone		Dwell	0.0	-	.	
Arc Filter / Tolerance		skin	0.0	-		
Planes		Apply custom drill parameters				
- Canned Text		L/ellocative #1	0.0			
Misc Values						
Axis Control Axis Combination		1-Orill parameter #2	0.0			
Rotary Axis Control		1-Orill parameter #3	0.0			
		1-Orill paraevoter #4	0.0			
		1-Oril parameter #5	0.0			
View Settings		Collowandur #6	0.0			
ZABUSIVAC 4						
Diameter 4		1-Drill paraevoter #7	0.0			
Rate 150		1-Drill paraevoter #8	0.0			
de Speed 1200		1-Oril parameter #9	0.0			
ant On						
offset 4		1-Drill par seveter #10	0.0			
er 0 88						
r/Tpl Top						

Slika 5.54. Vrsta bušenja

Slika 5.55. Definiranje dubine rezanja (zahvat 5)

Ukupno vrijeme zahvata 5 prikazano je na slici 5.56.

Details	Information	
		Cycle Time
	Feed	🕒 4.80s
	Rapid	🕒 1.05s
	Total	🕒 6.85s

Slika 5.56. Vrijeme obrade (zahvat 5)

Zahvat 6: Bušenje rupe Ø8,5 mm

Odabire se ista opcija kao u prošlom zahvatu, a to je **Drill**. Potrebno je definirati novi alat na isti način, novi alat koji se odabire je svrdlo Ø8,5 (Slika 5.57.). Pod karticom **Cut Parameters** mijenja se vrsta bušenja u **Peck Drill**. S **Peck Drill** definira se dubina koju zabušimo zatim se alat vraća kako bi osigurao izlaz strugotine. Kartica je prikazana na slici 5.58. Režimi obrade su sljedeći:

Posmak po zubu (engl. *Feed per tooth*): 0,125 mm/zub Posmična brzina (engl. *Feed rate*): 150 mm/min Brzina vrtnje (engl. *Spindle speed*): 1200 okr/min Brzina rezanja (engl. *Cutting speed*): 15,1 m/min

or 2D Toolpaths - Drill Peck drill	- full retract						>	🕰 2D Toolpaths - Drill Peck dri	ll - full retract				
T 🖪 🖞 • 🎯 •	2							T 🗖 🕁 • 🎯•					
Trougeth Type Trougeth Type Trougeth Sold Gold Parameters Gold Parameters Trout Asis Control Trout Asis Control Trout Asis Control Trout Asis Sold Parameters	Status Tool Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status Image: Constraint of the status	Number Assembly liter active SVRDLO 8.5 8.5 Come	N Tool Name GAVA 63 GCOMO 10 GCOMO 6 ZABUSTVAC 4 SVRICKO 6.3 SVRICKO 6.3 SVRICKO 6.3 SVRICKO 6.3 GLODALO 23 GLODALO 25 Tr redus:	+older Name Diameter 5.0 32.0 32.0 4.0 4.0 4.0 8.5 6.0 5.8 32.0 -1.1 6.0 -45 25.0 10.0 -1.1 6	Corner Ra 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	dus Length File 15.0 5 20.0 2 40.0 2 10.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 2 50.0 4 20.0 2 50.0 4 20.0 2 50.0 5 50.0 1 50.0 2 50.0 4 50.0	tes >	Totachi Toe Totachi Toe Totachi Toe Totachi Toe Totachi Totach	Cyde	And Drift Peta pack Sobrequent perfect Peta pack Sobrequent perfect Peta destance Refract amount Devel Shyt Shyt Coll parameter #1 2:046 parameter #2 2:046 parameter #2	 10 00 <li< th=""><th></th><th>Ĭ</th></li<>		Ĭ
di View Settings ol SVBLO.0.5. omer Radia 0 ener Radia 0 omer Radia 0 oscilator 0 on ol caroph 75 sunder 0 oscilator 0 oscilator 0 oscilator 1 pisme / Fish Top oscilator 1 oscilator 1	Teol #: Length offset: Diameter offset: Settings Comments [] To betch	5 Head	#: -1	PPT: Plunge rafe: Refract rafe:	0.0625 120.0 5000.0	CS	21.3635	Quick View Settings Tool SVRLO 0.5 Tool Counter 8.3 Counter 8.45 Counter 8.45 Counter 8.45 Counter 8.5 Counter 8.5		2016 paranter #4 2016 paranter #5 2016 paranter #5 2016 paranter #7 2016 paranter #7 2016 paranter #7 2016 paranter #7	0.0 0.0 0.0 0.0 0.0 0.0 0.0		
- edited = disabled			R	Generate toolpath	٢	8	0	edited edited edited			🗹 Generate t	xolpath 🥥	0

Slika 5.57. Odabir alata (zahvat 6)

Slika 5.58. Opcija Peck Drill

Potrebno je definirati **Linking parameters**. Dubina rezanja iznosi -23 mm zbog toga što se provrt proteže kroz cijeli izradak. Kartica je prikazana na slici. 5.59. Ukupno vrijeme zahvata 6 prikazano je na slici 5.60.

Slika 5.59. Definiranje dubine rezanja (zahvat 6) Slika 5.60. Vrijeme obrade (zahvat 6)

Zahvat 7: Izrada navoja M10

Radi se istom opcijom kao i na prošlom zahvatu te se odabire provrt Ø8,5. Alat koji se korist je ureznik M10. Odabir alata prikazan je na slici 5.60 a). Zatim se odabire **Cut Parameters** kod kojeg se mijenja vrsta bušenja u **Tap. Tap** je opcija za izradu navoja koja je prikazana na slici 5.60 b).

Slika 5.61. a) Odabir alata (zahvat 7), b) Definiranje Cut Parameters

Otvaranjem kartice **Linking parameters** definira se dubina rezanja koja iznosi -14 mm. Kartica je prikazana na slici 5.62. Ukupno vrijeme zahvata 7 prikazano je na slici 5.63.

Režimi obrade su sljedeći:

Posmak po zubu (engl. *Feed per tooth*): 1,5 mm/zub Posmična brzina (engl. *Feed rate*): 150 mm/min Brzina vrtnje (engl. *Spindle speed*): 100 okr/min Brzina rezanja (engl. *Cutting speed*): 3,14 m/min

Slika 5.62. Definiranje dubine rezanja (zahvat 7)

Details	Information	
		Cycle Time
	Feed	🕒 6.80s
	Rapid	🕒 0.29s
	Total	🕙 8.09s

Slika 5.63. Vrijeme obrade (zahvat 7)

Zahvat 8: Bušenje provrta Ø6

Odabire se opcija Drill. Odabir provrta prikazan je na slici 5.64.

Slika 5.64. Odabir provrta (zahvat 8)

Alat koji je odabran je svrdlo Ø6. Odabir alata prikazan je na slici 5.65. a). Pod karticom **Cut Parameters** odabran je **Peck Drill** kao i kod zahvata 6. Na kraju se još definira kartica **Linking parameters** (Slika 5.65 b)).

Režimi obrade su sljedeći:

Posmak po zubu (engl. *Feed per tooth*): 0,05 mm/zub Posmična brzina (engl. *Feed rate*): 50 mm/min Brzina vrtnje (engl. *Spindle speed*): 1000 okr/min Brzina rezanja (engl. *Cutting speed*): 18,85 m/min

Slika 5.65. *a) Odabir alata* (*zahvat* 8), *b*) *Definiranje dubine obrade* (*zahvat* 8)

Ukupno vrijeme zahvata je prikazano na sljedećoj slici.

Details	Information	
		Cycle Time
	Feed	🕒 30.00s
	Rapid	🕒 3.22s
	Total	(
		~

Slika 5.66. Vrijeme obrade (zahvat 8)

Zahvat 9: Bušenje provrta Ø9,8 mm

Opcija koja se odabire je Drill. Geometrija koja je odabrana prikazana je na slici 5.67.

Slika 5.67. Odabir provrta (zahvat 9)

Alat koji je odabran za ovaj zahvat je svrdlo Ø9,8 zbog toga što je ovaj provrt toleriran. U sljedećem zahvatu dolazi se do točnog provrta od Ø10. Odabir alata prikazan je na slici 5.68. a), a kartica **Linking parameters** prikazana je na slici 5.68. b), a dubina rezanja i iznosi -23 mm. Režimi obrade su sljedeći:

Posmak po zubu (engl. *Feed per tooth*): 0,041 mm/zub Posmična brzina (engl. *Feed rate*): 50 mm/min Brzina vrtnje (engl. *Spindle speed*): 600 okr/min Brzina rezanja (engl. *Cutting speed*): 18,47 m/min

Slika 5.68. a) Odabir alata (zahvat 9), b) Definiranje dubine obrade (zahvat 9)

Ukupno vrijeme zahvata 9 prikazano je na sljedećoj slici.

Details Information	
	Cycle Time
Feed	실 30.00s
Rapid	🕒 3.22s
Total	🕒 34.22s

Slika 5.69. Vrijeme obrade (zahvat 9)

Zahvat 10: Razvrtavanje provrta Ø10 H7

Kod ovog zahvata također je korištena opcija **Drill**, a alat koji je korišten je razvrtač Ø10 H7. Odabir alata prikazan je na slici 5.70. a). Pod karticom **Cut Parameters** odabran je **Drill/Counterbore**. Parametri koji su odabrani za **Cut parameters** prikazani su na slici 5.70. b). Režimi obrade su sljedeći:

Posmak po zubu (engl. *Feed per tooth*): 0,125 mm/zub Posmična brzina (engl. *Feed rate*): 30 mm/min Brzina vrtnje (engl. *Spindle speed*): 120 okr/min Brzina rezanja (engl. *Cutting speed*): 3,77 m/min

ng 2D Toolpaths - Drill Simple di	ill - no peck							×	a 2D Toolpaths - Drill Simple d	Irill - no peck					 ×
🍸 🔚 🏦 • 🎯 •									T 🗔 🕁 • 🎯 •	N					
Tolicith Type Tolicith Type Stock Stock Cut Parameters Hole Segnetic Hol	Status Too J 1 J 2 J 3 J 4 J 6 J 6 J 8 J 9 J 10 J 10 J 10 J 10	I Number Assembly N.	Tool Name GLVAA 63 GLODALO 10 GLODALO 6 ZABUSTWAC 6 SIRDLO 6.5 SIRDLO 6.5 SIRDLO 6.8 RAZIRTAC UREZIRK M TRKAC 6 GLODALO 25	Holder Name 63.0 10.0 6.0 4.0 8.5 6.0 9.8 10.0 -1 6.0-45 25.0	r Corner 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 0.0 0.0	Radus Length 15.0 20.0 40.0 50.0 50.0 50.0 50.0 50.0 50.0 20.0	Flutes 5 2 2 1 1 1 2 2 2 1 4 2		Toolseth Type Tool Ava Control Holder Stode International Ava Control International Ava Control International Ava Control International Ava Control International Ava Control International Ava Control Safety Zone Ava Filter (Tolerance Partice Control Control Text	Cyde	DriftCounterbore Pritt peck Suberspunt peck Peck dearance Retract amount Direl Shit	0.0 0.0 0.0 0.0 0.0 0.0		Ű	
Misc Values Axis Control Axis Combination Patrax Avia Combination	Tool Tool name:	RAZVRTAC 10 H7		Cutting Paramet	ers	Spindle dire	ction: CW		Misc Values Axis Control Axis Combination Determination		1-Drill parameter #2	0.0			
Kotary Axis Control	Tool diameter: Tool #:	8 Head #	adus: 0.0	Feed rate FPT:	30.0	Spindle spee	ed: 120 3.77		Rotary Axis Control		1-Drill parameter #3 1-Drill parameter #4	0.0			
	Length offset:	8		Plunge rate:	60.0						1-Drill parameter #5	0.0			
Quick View Settings Tool RAZVRTAC 1	Diameter offset:	81 Ford	e tool change	Retract rate:	60.0	Rapid re	tract		Quick View Settings Tool RAZVRTAC 1	1	1-Drill parameter #6	0.0			
Tool Diameter 10 Corner Radius 0	Settings Comment:								Tool Diameter 10 Corner Radius 0		1-Drill parameter #7	0.0			
Feed Rate 30 Spindle Speed 120									Feed Rate 30 Spindle Speed 120		1-Drill parameter #8	0.0			
Coolant On Tool Length 100 Length Offset 8	To batch								Coolant On Tool Length 100 Length Offset 8		1-Drill parameter #10	0.0			
Diameter O 81 Cplane / Tpl Top Axis Combi Default (1)									Diameter O 81 Cplane / Tpl Top Axis Combi Default (1)						
✓ = edited	1			Constant to character		•	0		edited	1		12 Gene	vate toohath		0
 asaaco 			<i>a</i>))							b)			

Slika 5.70. a) Odabir alata (zahvat 10), b) Cut Parameters

Sljedeće što je potrebno definirati je **Linking Parameters** kod kojeg se definira dubina rezanja koja iznosi -23 mm. Kartica **Linking parameters** prikazana je na slici 5.71. Ukupno vrijeme zahvata 10 je prikazano na slici 5.72.

2D Toolpaths - Drill Simple dr	ill - no peck		×
T 🗔 🔂 🛛 🎯 🗖	N		
Toolpath Type Tool Holder	25.0 Absolute v	(0) 👌 🥝	Plane Display Settings
Stock Cut Parameters Tool Axis Control Limits Hole Segments	Conly at start and end of operation Retract	0 0	
Critico Parameters Home / Ref. Points Safety Zone Arc Filter / Tolerance Planes Coolant	Top of Stock		
Carned Text Misc Values Axis Control Axis Combination Rotary Axis Control	0.0		
uick View Settings	Calculate depth from top of stock		
Tool RAZVRTAC 1 Tool Diameter 10 Corner Radius 0 Feed Rate 30	Amount: Tip Angle:	1.0	
Coolant On Tool Length 100 Length Offset 8 Dameter C 81	Settings Arc fit maximum radius	0.0	Subprogram
Cplane / Tpl Top Axis Combi Default (1)	Cultput feed move Calculate incremental values from holes/lines	0.0	Incremental Check Collisions Display collisions
edited edited edited	,	Generate toolpa	m 📀 🕄 🖸 😧

Details	Information	
		Cycle Time
	Feed	🍑 50.00s
	Rapid	🕒 0.34s
	Total	🕒 51.34s

Slika 5.71. Definiranje dubine obrade (zahvat 10)

Slika 5.72. Vrijeme obrade (zahvat 10)

S ovim zahvatom završena je operacija 10. Na slici 5.73. a) prikazana je simulacija operacije 10. Ukupno vrijeme operacije 10 iznosi 13 minuta i 38.42 sekundi (Slika 5.73. b)).

Slika 5.73. a) Simulacija operacije 10, b) Ukupno vrijeme operacije 10

5.3. Simulacija operacije 20 (izradak)

5.3.1. Definiranje koordinatnog sustava operacije 20

Za operaciju 20 potrebno je stvoriti novi koordinatni sustav. To se radi na isti način kao i kod izrade stezne čeljusti kod operacije 20. Slika 5.74 prikazuje novi koordinatni sustav.

Slika 5.74. Definiranje koordinatnog sustava operacije 20

5.3.2. Operacija 20 (izradak)

Zahvat 1: Čeono glodanje

Odabire se opcija **Face** za koju nije potrebno odabrati geometriju već samo potvrditi opciju kao i kod operacije 10. Zatim se odabire alat potreban za poravnavanje čela. Odabire se čeono glodalo Ø63 sa sljedećim režimima obrade:

Posmak po zubu (engl. *Feed per tooth*): 0,16 mm/zub Posmična brzina (engl. *Feed rate*): 800 mm/min Brzina vrtnje (engl. *Spindle speed*): 1000 okr/min Brzina rezanja (engl. *Cutting speed*): 197,92 m/min

Pod karticom **Cut parameters** (Slika 5.75. a)) odabire se metoda obrade, tip kompenzacije alata i drugo. Zatim slijedi definiranje **Depth Cuts** (Slika 5.75. b)) čime se određuje dubina rezanja za jedan prolaz.

Slika 5.75. a) Definiranje Cut parametars (zahvat 1), b) Definiranje Depth Cuts (zahvat 1)

Na kraju se još definira **Linkinig parameters**, kartica je prikazana na slici 5.76, a dubina rezanja je -5 mm. Ukupno vrijeme zahvata 1 je prikazano na slici 5.77.

Slika 5.76. Definiranje dubine rezanja (zahvat 1)

Slika 5.77. Vrijeme obrade (zahvat 1)

Zahvat 2: Izrada unutanje konture

Za ovaj zahvat odabire se opcija **Contour**. Geometrija koja je izabrana prikazana je na slici 5.78.

Slika 5.78. Definiranje geometrije (zahvat 2)

Alat koji je odabran za ovaj zahvat je glodalo Ø6. Odabir alata prikazan je na slici 5.80. a). Pod karticom **Cut Parameters** definirano je da se kontura obrađuje po rampi kao što je vidljivo na slici 5.80. b). Dubina po kojoj se spušta po rampi je -1 mm. Režimi obrade su sljedeći:

Posmak po zubu (engl. *Feed per tooth*): 0,0353 mm/zub Posmična brzina (engl. *Feed rate*): 165 mm/min Brzina vrtnje (engl. *Spindle speed*): 2340 okr/min Brzina rezanja (engl. *Cutting speed*): 44,1 m/min

Slika 5.79. a) Odabir alata (zahvat 2), b) Definiranje Cut parametars

Dubina rezanja iznosi -8 mm. Dubina rezanja definira se pod karticom **Linking parameters**, kartica je prikazana na slici 5.80. Ukupno vrijeme zahvata 2 prikazano je na sljedećoj slici.

Slika 5.80. Definiranje dubine rezanja (zahvat 2) Slika 5.81. Vrijeme obrade (zahvat 2)

Zahvat 3: Glodanje utora Ø10

Koristi se ista opcija i alati kao u prošlom zahvatu jedino se dubina rezanja mijenja na vrijednost od 5 mm. Dubina rezanja definira se pod karticom **Linking parameters** koja je prikazana na slici 5.82. Ukupno vrijeme zahvata 3 prikazano je na slici 5.83.

Slika 5.82. Definiranje dubine rezanja (zahvat 3) Slika 5.83. Vrijeme obrade (zahvat 3)

Zahvat 4: Izrada skošenja od 45°

Alat koji se koristi naziva se trkač. Odabir alata prikazan je na slici 5.84. a). Za izradu skošenja koristi se opcija **Contour**. U kartici **Cut parameters** vrsta konture namješta se na **2D chamfer** (Slika 5.84. b)).

Režimi obrade su sljedeći:

Posmak po zubu (engl. *Feed per tooth*): 0,02 mm/zub Posmična brzina (engl. *Feed rate*): 100 mm/min Brzina vrtnje (engl. *Spindle speed*): 1200 okr/min Brzina rezanja (engl. *Cutting speed*): 22,62 m/min

Slika 5.84. a) Odabir alata (zahavt 4), b) Definiranje Cut parametars

Definiranje **Linking parameters** prikazano je na sljedećoj slici. Ukupno vrijeme zahvata 4 je prikazano na slici 5.86. Dubina rezanja iznosi -1 mm.

- 🕞 🕹 • 🖳			
Toolpath Type Tool Holder	Arc fit maximum radius	0.0	_
Oppth Cuts Lead In/Out Streak Through	Output feed move	0.0	
Multi Passes Horizada Tabs Linking Parameters	Use clearance only at the	O Incremental O Associative (0) (0) (0) start and end of operation	
Arc Filter / Tolerance Planes Coolant	Retract 5.0	Associative	
Canned Text Msc Values Axis Control Axis Control Axis Control Detary Axis Control	Feed plane 2.0	Absolute Incremental Associative	
	Top of stock 13.0	Absolute Incremental Associative (0)	
ck View Settings sol TRKAC 6 obliameter 6 orner Radius 0	Depth 12.0	Absolute Incremental Associative (0)	
ed Rate 100 indle Speed 1200 solant On ol Length 30			
ngth Offset 10 ameter O 10 Mane / Tpl 2stezanje			
- adad			
			5

Slika 5.85	. Definir	anje dubine	rezanja
5111101 0100			

Details Information	
	Cycle Time
Feed	🕒 2m:24.38s
Rapid	🕒 0.11s
Total	🕒 2m:25.49s

Slika 5.86. Vrijeme obrade (zahvat 4)

Ovim zahvatom završena je operacija 20. Na slici 5.87. a) prikazana je simulacija operacije 20. Ukupno vrijeme operacije 20 iznosi 12 minuta i 55,78 sekundi (Slika 5.87. b)).

Slika 5.87. a) Simulacija operacije 20, b) Ukupno vrijeme operacije 20

6. OBRADE POMOĆU CNC STROJA

6.1. Provjera i stavljanje alata u revolversku glavu

Provjera alata prije stavljanja u revolversku glavu je od izuzetne važnosti. Ovaj postupak uključuje detaljan vizualni pregled alata kako bi se utvrdilo postoje li bilo kakva oštećenja ili znakovi habanja koji bi mogli utjecati na kvalitetu obrade. Alati moraju biti čisti i u savršenom stanju kako bi se osigurala njihova optimalna funkcionalnost. Provjera također uključuje potvrdu da su dimenzije i specifikacije alata usklađene s tehničkom dokumentacijom i zahtjevima za specifične operacije. Alati koji se koriste definirani su kod strukturiranja tehnološkog procesa. Na slici 6.1. prikazna je slika revolverske glave sa svim potrebnim alatima za izradu stezne čeljusti i proizvoda.

Slika 6.1. Revolverska glava

6.2. Umjeravanje alata i centriranje škripa

Nakon stavljanja alata u revolversku glavu potrebno je centrirati škrip. Škrip mora imati paralelnost za osima stroja da bi osigurali točnost. Paralelnost s osima osigurava se alatom koji se naziva papitus i prikazan je na slici 6.2.

Slika 6.2. Papitus

Centriranje škripa radi se na način da se stol pomiče po X osi i škrip se namješta tako da od jedne do druge strane škripa kazaljka papitusa ostane na nuli kao što je prikazano na sljedećim slikama.

Slika 6.3. a) Desna strana škripa, b) Lijeva strana škripa

Sljedeća radnja je centriranje sirovca stezne čeljusti preko papitusa. Nulta točka je na sredini sirovca i to se definira u Mastercam-u. Centriranje se radi tako da se papitusom takne sirovac prvo po X osi s bilo koje strane te se nakon dodirivanja sirovca na upravljačkoj jedinici definira da mjeri udaljenosti do druge strane. Zatim se ta udaljenost podijeli s dva kako bi se dobila sredina i taj se broj upisuje kao nulu za X os. Takav postupak ponavlja se za Y os, a za Z os umjerava se visina najdužeg alata kako bi se dobila nulta točka alata. Svi drugi alati se na osnovu tog najdužeg alata automatski umjeravaju. Postupak umjeravanja sirovca je prikazan na sljedećim slikama.

Slika 6.4. a) Umjeravanje po X osi, b) Umjeravanje po Y osi prednja strana, c) Umjeravanje po Y osi zadnja strana

Za umjeravanje alata koristi se etalon kako bi se izbjeglo oštećenje rezne pločice. Prvo se umjerava najduži alat na radni stol kao što je prikazano na slici 6.5. a). Nakon što se definiraju visine svih alata provodi se umjeravanje na nultu točku komada kako je zadano u Mastercam-u. To je prikazano na slici 6.5. b).

Slika 6.5. a) Umjeravanje alata, b) Umjeravanje nul točke komada za Z os

Na kraju se još provjerava točnost centriranja komada na način da se preko upravljačke jedinice zada pomak stroja u X0, Y0, Z25 kao što je prikazano na slici 6.6.

Slika 6.6. Pomicanje stroja u nultu točku

6.3. Glodanje steznih čeljusti

Nakon umjeravanja i centriranja sirovca stezne čeljusti, potrebno je učitati program iz Mastercam-a. Označe se svi zahvati za zadanu operaciju te se generira NC program kod kao što je prikazano na slici 6.7.

Slika 6.7. Generiranje NC programa stezne čeljusti operacija 10

Pritiskom na **G1** otvara se novi prozor koji je prikazan na sljedećoj slici. Prije slanja programa na stroj programu se daje naziv. Program je nazvan 0001 kao što je prikazano na slici 6.8.

6	
1	8
2	00001 (Operacija 10 (stezna naprava))
3	G00 G17 G21 G40 G80 G90
4	G91 G28 Z0.
5	T1 M06 (GLAVA 63)
6	G00 G17 G90 G54
7	X-110.4 Y23.898 S1000 M03
8	G43 H1 Z25.
9	G94
10	G05 P10000
11	Z5.
12	G01 Z-1. F800.
13	X97.8
14	¥7.966
15	x-97.8
16	¥-7.966
17	x97.8
18	Y-23.898
19	x-97.8
20	Z-2.
21	x97.8
22	¥-7.966
23	x-97.8
24	¥7.966
25	X97.8
26	¥23.898
	X 07 0

Slika 6.8. Generiran NC programa kod operacije 10 za steznu čeljsut

Nakon spremanja NC programa on se šalje na stroj. Veza između računala i upravljačke jedinice CNC stroja je serijski port RS232. Pritiskom na tipku **Send** G kod se šalje na CNC stroj (Slika 6.9.).

Slika 6.9. Tipka Send

Nakon toga slijedi pozivanje programa u upravljačkoj jedinici CNC stroja. Pozivanje programa provodi se pritiskom tipke **Search** na upravljačkoj jedinici CNC stroja nakon čega se upiše broj programa te pritisne tipka **Input** kao što je vidljivo na slici.

Slika 6.10. Pozivanje programa

Nakon pozivanja programa CNC stroj se stavlja na **Auto** te se program pokreće. Nakon što operacija 10 završi potrebno je ponoviti postupak za operaciju 20. Na sljedećim slikama vidljive su faze izrade stezne čeljusti.

a) b) Slika 6.11. a) Operacija 10, b) Operacija 20

6.4 Umjeravanje alata i centriranje sirovca izratka

Ponavlja se isti postupak kao kod izrade stezne čeljusti. Na sljedećim slikama prikazano je centriranje sirovca izratka.

Slika 6.12. Centiranje po Y osi

Slika 6.13. Centiranje po X osi

6.5. Izrada izratka (operacija 10)

Nakon centriranja izratka ponovno se umjerava nulta točka alata kao kod izrade stezne čeljusti. Zatim slijedi učitavanje programa operacije 10. U Mastercam-u je potrebno označiti sve zahvate operacije 10. Generiranje NC programa provodi se na isti način kao i kod izrade stezne čeljusti te se na stroj učitava program pod brojem 0003. Na slici 6.14. prikazana je operacija 10. Nakon izrade operacije 10, potrebno je provjeriti bitne mjere koje se provjeravaju pomičnim mjerilom kao što je prikazano na slici 6.15.

Slika 6.14. Operacija 10

Slika 6.15. Provjeravanje točnosti izrade operacije 10

6.6. Izrada izratka (operacija 20)

Nakon izrade operacije 10 potrebno je ponovno postaviti novu nultu točku izratka. Centriranje se vrši na isti način. Kod operacije 20 koristi se stezna čeljust za stezanje izratka koja je prethodno izrađena. Izradak se centrira na tolerirani provrt Ø10 H7 kao što je prikazano na slici 6.16. Nakon centriranja izratka ponovno se umjerava nulta točka alata u odnosu na izradak. Potebno je označiti sve zahvate operacije 20 te generitati ih u NC programa. Nakon generiranja potrebno je pozivanje programa kao i kod izrade stezne čeljusti. Na slici 6.17. prikazana je operacija 20 čime je izrada proizvoda završila.

Slika 6.16. Centriranje izratka (operacija 20)

7. ZAVRŠNA KONTROLA PROIZVODA

Završna kontrola proizvoda ključna je faza u procesu proizvodnje koja osigurava da gotov proizvod ispunjava sve zadane specifikacije i standarde kvalitete. Kontrola proizvoda obavljena je u tvrtki Elcon Geraetebau d.o.o. Alati koji su korišteni kod kontrole proizvoda su sljedeći: mjerni etaloni, pomično mjerilo, glatki trn, navojni trn, dubinomjer i optika.

7.1. Završna kontrola

Završna kontola kreće s pripremom nacrta što znači da se označe sve kote na nacrtu zbog lakšeg snalaženja kod mjerenja proizvoda. Prvo se pomičnim mjerilom mjere sve mjere koje se mogu izmjeriti, a zatim se mjernim etalonima provjerili utor. Mjerni etaloni su prikazani na sljedećoj slici.

Slika 7.1. Mjerni etaloni

Tolerirani provrt provjeri se tolerancijskim čepom Ø10 H7 koji je prikazan na sljedećoj slici.

Slika 7.2. Tolerirani čep

Sve druge mjere provjere se optikom i dubinomjerom. Na slici 7.2. a) prikazana je optika, a na 7.2. b) dubinomjer.

a)

b)

Slika 7. 3. a) Mjerna optika, b) Dubinomjer

Kontrola proizvoda je zadovoljavajuća. Mjerni protokol dan je u prilogu 8.

8. ZAKLJUČAK

Kroz detaljno istraživanje i praktičnu primjenu CNC tehnologije jasno je pokazano koliko je važna integracija naprednih proizvodnih sustava u suvremenu industriju. CNC strojevi kao što je Akira Seiki SV 1350 omogućuju visoku razinu automatizacije i preciznosti koja je ključna za zadovoljavanje sve zahtjevnijih tržišnih standarda. Ovaj rad nije samo demonstrirao tehničke aspekte CNC obrade, već je istaknuo i strateške prednosti korištenja softverskih alata poput Mastercama u fazama planiranja i simulacije obrade.

Jedan od ključnih doprinosa rada je analiza cijelog tehnološkog procesa, od inicijalne pripreme do finalne obrade i kontrole proizvoda. Umjeravanje alata, centriranje sirovca kao i sama obrada steznih čeljusti prikazani su kao kritični koraci koji osiguravaju točnost i kvalitetu konačnog proizvoda. Korištenjem Mastercama omogućeno je precizno modeliranje i simuliranje obradnih operacija čime je smanjen rizik od pogrešaka i optimizirano vrijeme proizvodnje.

Rad također naglašava važnost kontinuiranog razvoja i prilagodbe uvođenjem novih tehnologija. Ubrzane promjene u industriji zahtijevaju od inženjera da stalno nadograđuju svoja znanja i vještine, posebno u području CNC programiranja i softverske simulacije. Ovaj rad pokazuje kako se takva znanja mogu primijeniti u stvarnom proizvodnom okruženju kako bi se postigli rezultati koji zadovoljavaju visoke standarde kvalitete.

Zaključno, ovaj diplomski rad ne samo da prikazuje praktičnu primjenu CNC tehnologije u izradi specifičnog proizvoda već i demonstrira širinu mogućnosti koje ovakvi sustavi pružaju modernoj industriji. S povećanjem složenosti i zahtjeva u proizvodnji, primjena naprednih tehnologija kao što su CNC strojevi i softverski alati za simulaciju postaje neophodna. Budući izazovi u industriji neće se moći rješavati bez sveobuhvatnog pristupa koji uključuje tehničku stručnost, softversku podršku i strateško planiranje, a ovaj rad predstavlja korak u tom smjeru.

LITERATURA

[1] Farkeš, Valentin: "CNC strojevi", Završni rad; s interneta, <u>https://zir.nsk.hr/islandora/object/etfos:2067/preview</u>, 6.5.2024.

[2] "HASS VF-2TR"; s interneta, <u>https://www.haascnc.com/hr/machines/vertical-mills/vf-</u> series/models/small/vf-2tr.html, 7.5.2024.

[3] Cukor, G.: Podloge s vježbi kolegija nekovencionalni i aditivni proizvodni postupci", Tehnički fakultet u Rijeci, 2024.

[4] Jurković, Z.; Vukotić, H.: "Podloge s vježbi kolegija CNC/NC obradni strojevi", Tehnički fakultet u Rijeci, 2024.

[5] "Akira Seiki. SV 1350 Specifications"; s interneta, https://www.akiraseiki.com, 4.6.2024.

[6] "Mitsubishi CNC Control Systems" s interneta, https://www.mitsubishielectric.com/en/index.html, 4.6.2024.

POPIS TABLICA

Tablica 3.1. Proces izrade stezne čeljusti	
Tablica 3.2. Proces izrade izratka	11
Tablica 4.1. Alati za obradu stezne čeljusti	16
Tablica 4.2. Alati za obradu izratka	17

POPIS SLIKA

Slika 1.1. 3D model proizvoda	1
Slika 2.1. Prvi NC stroj [1]	3
Slika 2.2. Prikaz programiranja u Mastercam-u	3
Slika 2.3. CNC stroj s 5 osi [2]	4
Slika 2.4. Usporedba CNC-a i robota [3]	4
Slika 4.1. a) Izgled sirovca, b) X dimenzija sirovca1	3
Slika 4.2. a) Y dimenzija sirovca, b) Z dimenzija sirovca 1	3
Slika 4.3. 3D model stezne čeljusti	4
Slika 4.4. Akira Seiki SV 1350 1	5
Slika 5.1. a) Odabir opcije Dynamic, b) Odabir modela2	2
Slika 5.2. a) Traženje sredine izratka, b) Odabir pozicije koordinatnog sustava	2
Slika 5.3. Definirani koordinatni sustav	2
Slika 5.4. Definiranje postprocesora	3
Slika 5.5. Definirani postprocesor	3
Slika 5.6 Definiranje sirovca	4
Slika 5.7. Dimenzije sirovca	4
Slika 5.8. Opcija Face	4
Slika 5.9. Otvoreni izbornik naredbe Face 2.	5
Slika 5.10. Odabir alata (zahvat 1)	5

Slika 5.11. Definiranje cut parameters (zahvat 1)
Slika 5.12. Definiranje dubine prolaza (zahvat 1)
Slika 5.13. Definiranje dubine obrade (zahvat 2)
Slika 5.14. Vrijeme obrade (zahvat 1)
Slika 5.15. Odabir opcije Contour (zahvat 2)
Slika 5.16. Odabir konture (zahvat 2)
Slika 5.17. Odabir alata (zahvat 2)
Slika 5.18. Definiranje dubine prolaza (zahvat 2)
Slika 5.19. a) Definiranje Multi passes-a (zahvat 2), b) Definiranje dubine rezanja (zahvat 2) 29
Slika 5.20. Vrijeme obrade (zahvata 2) 30
Slika 5.21. Odabir opcije Dynamic mill (zahvat 3) 30
Slika 5.22. Odabir konture (zahvat 3) 30
Slika 5.23. Definiranje dubine prolaza (zahvat 3) 31
Slika 5.24. Definiranje dubine (zahvat 3) 31
Slika 5.25. Vrijeme obrade (zahvata 3) 32
Slika 5.26. Simulacija operacije 10 (stezna čeljust) 32
Slika 5.27. Definirani koordinatni sustav (operacija 20) 32
Slika 5.28. Definiranje dubine obrade 33
Slika 5.29. Vrijeme obrade (zahvat 1)
Slika 5.30. Simulacija operacije 20

Slika 5.31. Ukupno vrijeme izrade stezne čeljusti	
Slika 5.32. Definirani koordinatni sustav za izradak	
Slika 5.33. Definiranje dimenzija sirovca	35
Slika 5.34. Odabir opcije Face	35
Slika 5.35. a) Cut parameters, b) Depth Cuts	
Slika 5.36. Definiranje dubine rezanja (zahvat 1)	
Slika 5.37. Vrijeme obrade (zahvat 1)	
Slika 5.38. Odabir konture (zahvat 2)	
Slika 5.39. Odabir alata (zahvat 2)	
Slika 5.40. Definiranje Cut parametar (zahvat 2)	
Slika 5.41. Definiranje dubine rezanja (zahvat 2)	
Slika 5.42. Vrijeme obrade (zahvat 2)	
Slika 5.43. Odabir alata (zahvat 3)	
Slika 5.44. a) Cut parameters, b) Linking parameters	39
Slika 5.45. Vrijeme obrade (zahvat 3)	40
Slika 5.46. Odabir konture (zahvat 4)	40
Slika 5.47. Odabir alat (zahvat 4)	41
Slika 5.48. Definiranje Depth Cuts	41
Slika 5.49. a) Multi passes, b) Linking parameters	41

Slika 5.50. Vrijeme obrade (zahvata 4)	
Slika 5.51. Opcija Drill	42
Slika 5.52. Odabir provrta	
Slika 5.53. Odabir alata (zahvat 5)	
Slika 5.54. Vrsta bušenja	43
Slika 5.55. Definiranje dubine rezanja (zahvat 5)	44
Slika 5.56. Vrijeme obrade (zahvat 5)	44
Slika 5.57. Odabir alata (zahvat 6)	44
Slika 5.58. Opcija Peck Drill	45
Slika 5.59. Definiranje dubine rezanja (zahvat 6)	45
Slika 5.60. Vrijeme obrade (zahvat 6)	45
Slika 5.61. a) Odabir alata (zahvat 7), b) Definiranje Cut Parameters	46
Slika 5.62. Definiranje dubine rezanja (zahvat 7)	46
Slika 5.63. Vrijeme obrade (zahvat 7)	46
Slika 5.64. Odabir provrta (zahvat 8)	47
Slika 5.65. a) Odabir alata (zahvat 8), b) Definiranje dubine obrade (zahvat 8)	47
Slika 5.66. Vrijeme obrade (zahvat 8)	
Slika 5.67. Odabir provrta (zahvat 9)	
Slika 5.68. a) Odabir alata (zahvat 9), b) Definiranje dubine obrade (zahvat 9)	49

Slika 5.69. Vrijeme obrade (zahvat 9)	49
Slika 5.70. a) Odabir alata (zahvat 10), b) Cut Parameters	50
Slika 5.71. Definiranje dubine obrade (zahvat 10)	50
Slika 5.72. Vrijeme obrade (zahvat 10)	50
Slika 5.73. a) Simulacija operacije 10, b) Ukupno vrijeme operacije 10	51
Slika 5.74. Definiranje koordinatnog sustava operacije 20	51
Slika 5.75. a) Definiranje Cut parametars (zahvat 1), b) Definiranje Depth Cuts (zahvat 1)	52
Slika 5.76. Definiranje dubine rezanja (zahvat 1)	52
Slika 5.77. Vrijeme obrade (zahvat 1)	53
Slika 5.78. Definiranje geometrije (zahvat 2)	53
Slika 5.79. a) Odabir alata (zahvat 2), b) Definiranje Cut parametars	54
Slika 5.80. Definiranje dubine rezanja (zahvat 2)	54
Slika 5.81. Vrijeme obrade (zahvat 2)	54
Slika 5.82. Definiranje dubine rezanja (zahvat 3)	54
Slika 5.83. Vrijeme obrade (zahvat 3)	55
Slika 5.84. a) Odabir alata (zahavt 4), b) Definiranje Cut parametars	56
Slika 5.85. Definiranje dubine rezanja	56
Slika 5.86. Vrijeme obrade (zahvat 4)	56
Slika 5.87. a) Simulacija operacije 20, b) Ukupno vrijeme operacije 20	57

Slika 6.1. Revolverska glava	58
Slika 6.2. Papitus	59
Slika 6.3. a) Desna strana škripa, b) Lijeva strana škripa	59
Slika 6.4. a) Umjeravanje po X osi, b) Umjeravanje po Y osi prednja strana, c) Umjerava zadnja strana	nje po Y osi 60
Slika 6.5. a) Umjeravanje alata, b) Umjeravanje nul točke komada za Z os	60
Slika 6.6. Pomicanje stroja u nultu točku	61
Slika 6.7. Generiranje NC programa stezne čeljusti operacija 10	61
Slika 6.8. Generiran NC programa kod operacije 10 za steznu čeljsut	
Slika 6.9. Tipka Send	
Slika 6.10. Pozivanje programa	
Slika 6.11. a) Operacija 10, b) Operacija 20	
Slika 6.12. Centiranje po Y osi	
Slika 6.13. Centiranje po X osi	
Slika 6.14. Operacija 10	
Slika 6.15. Provjeravanje točnosti izrade operacije 10	
Slika 6.16. Centriranje izratka (operacija 20)	64
Slika 6.17. Konačan proizvod	65
Slika 7.1. Mjerni etaloni	66
Slika 7.2. Tolerirani čep	67

Slika 7. 3. a) Mjerna optika, b) Dubinomjer	. 67	7
---	------	---

SAŽETAK

Ovaj diplomski rad bavi se primjenom CNC tehnologije u proizvodnji s posebnim naglaskom na programiranje i simulaciju obradnih operacija pomoću Mastercam softvera. Rad je strukturiran tako da pruža cjeloviti prikaz tehnološkog procesa izrade steznih čeljusti i izratka na CNC stroju Akira Seiki SV 1350. U okviru rada detaljno su opisani koraci poput provjere i postavljanja alata, umjeravanja alata, centriranja sirovca, te samog procesa glodanja. Simulacije su izvedene u Mastercamu čime je omogućeno precizno planiranje obradnih operacija prije same proizvodnje. Završna kontrola izratka potvrđuje da je postignuta visoka razina kvalitete što svjedoči o uspjehu primijenjenih tehnologija i postupaka u ovom radu. Kroz analizu i praktičnu primjenu rad naglašava važnost integracije suvremenih tehnologija u industrijsku proizvodnju.

KLJUČNE RIJEČI

CNC tehnologija, Mastercam, stezna čeljust, Akira Seiki SV 1350, završna kontrola

SUMMARY

This Master's thesis focuses on the use of CNC technology in the manufacturing sector, specifically highlighting the programming and simulation of machining processes through Mastercam software. The document is organised to deliver an in-depth examination of the technological procedures involved in the fabrication of clamping jaws and targets on the Akira Seiki SV 1350 CNC machine. It encompasses a thorough explanation of various stages, including tool verification and setup, tool calibration, stock centring, and the milling operation itself. Simulations performed in Mastercam facilitated meticulous planning of machining tasks before the start of actual production. The final assessment of the workpiece demonstrates that a superior quality standard has been attained, underlining the effectiveness of the technologies and methodologies employed in this thesis. Through both analysis and practical implementation, this Master's thesis underscores the significance of incorporating modern technologies into industrial manufacturing processes.

KEYWORDS

CNC technology, Mastercam, clamping jaw, Akira Seiki SV 1350, final inspection

POPIS PRILOGA

Prilog 1. Nacrt proizvoda

- Prilog 2. Operacijski list stezne čeljusti
- Prilog 3. Operacijski list izratka
- Prilog 4. Popis alata za izradu stezne čeljusti
- Prilog 5. Popis alata za izradu izratka
- Prilog 6. Nacrt sirovca izratka
- Prilog 7. Nacrt stezne naprave
- Prilog 8. Mjerni protokol

Prilog 1: Nacrt izratka

	LISTA C	OPERACIJA STRANIC engine by: A-CAM d
Datum izrade programa: 02.09.20 Put do MCAM fajla: C:\USERS\DA\ Put do NC programa: C:\USERS\DAVOR\DESKTOP\S\ Stroj: NONE)24 VOR\DESKTOP\SVASTA\S VASTA\MELTING\ANLASSI	TOP_PREZID\3D_MODEL_CNC.MCX ERGEHAEUSE_EVO1_GEFRAEST_ST2-KUGLAD ONJIDIO.
#1	T1 S=1000 F=800 h	GLAVA 63 (IZP=21)
	KON. DUBINA: Z-	1 VRIJEME OBRADE: 00h 00min 41:
#2	T11 S=2200 F=1200 POC. DUBINA: 20	GLODALO 25 (IZP=70) hl: Voda DODATAK: XY = 0.2 Z xompenzacija: t Kompenzacija: t
#3	KON. DUBINA: Z- T2 S=1600 F=800 h	I4 VRIJEME OBRADE: 00h 06min 05: GLODALO 10 (IZP=70) I: Voda DODATAK: XY = -0.01 Z
#4	POC. DUBINA: ZO KON. DUBINA: Z-	Kompenzacija: I 14 VRIJEME OBRADE: 00h 00min 21: GLODALO 6 (IZP=60) GLODALO 6 (IZP=60)
	S=2340 F=165 h POC. DUBINA: ZO KON. DUBINA: Z-	I: Voda DODATAK: XY = 0 Z 0 Kompenzacija: E 6.4 VRIJEME OBRADE: 00h 03min 09;
#5	T4 S=1200 F=150 hl POC. DUBINA: Z0	ZABUSIVAC 4 (IZP=40) I: Voda Kompenzacija: Buše
#6	KON. DUBINA: Z-	2 VRIJEME OBRADE: 00h 00min 05 SVRDLO 8.5 (IZP=75)
	S=800 F=50 hl: \ POC. DUBINA: ZO KON. DUBINA: Z-	Voda Kompenzacija: Buše 23 VRIJEME OBRADE: 00h 01min 44 :
		STRANI
#7	T9 S=100 F=150 hl: POC_DUBINA: 71	UREZNIK M10 X 1.5 RH (IZP=100) Voda
#0	KON. DUBINA: Z-	14 VRIJEME OBRADE: 00h 00min 14:
#0	S=1000 F=50 hl: POC. DUBINA: ZO	Voda VOJSKE OD ADS. A COMPENSACIJA: BUŠE
#9	T7 S=600 F=50 hl: \	SVRDLO 9.8 (IZP=75)
	KON. DUBINA: Z-	23 VRIJEME OBRADE: 00h 00min 52
#10	T8 S=120 F=30 hl: V POC. DUBINA: Z0	RAZVRTAC 10 H7 (IZP=100) /oda
#11	KON. DUBINA: Z-	23 VRIJEME OBRADE: 00h 00min 50
#11	S=1000 F=800 hl POC. DUBINA: Z1	GLAVA 03 (12P=21) I: Voda DODATAK: XY = 0 Z .7 Kompenzacija: 1 .2 VRUSEK ORPODE: 00b 01mi 500
#12	T3 S=2340 F=165 h	GLODALO 6 (IZP=60)
	KON. DUBINA: ZI	5 VRIJEME OBRADE: 00h 07min 32
#13	T3 S=2340 F=165 hl	GLODALO 6 (IZP=60) I: Voda DODATAK: XY = 0 Z 4 Kompenzacija F
#14	KON. DUBINA: 28	3.2 VRIJEME OBRADE: 00h 00min 58:
<i>₩</i> + 7	S=1200 F=100 h POC. DUBINA: Z1	I: Voda DODATAK: XY = 0 Z 3 Kompenzacija: E
	KON. DUBINA: ZI	11.5 VRIJEME OBRADE: 00h 02min 25

KOMPLETNO VRIJEME OBRADE: 00h 29min 47sec

KOMPLETNO VRIJEME OBRADE: 00h 13min 09sec

Prilog 4. Popis alata za izradu stezne čeljusti

тоо	LLIST				4.9.2024.	21:49
TOO	LPATHS MANAGER				FILTERED:	NO
#	Tool Name	Dia.	Rad.	Assembly	Holder	
1	GLAVA 63	63.0	0.0	NA	NA	
2	GLODALO 10	10.0	0.0	NA	NA	

Prilog 5. Popis alata za izradu izratka

тоо	LLIST				4.9.2024.	21:51
TOO	LPATHS MANAGER				FILTERED:	NO
#	Tool Name	Dia.	Rad.	Assembly	Holder	
1	GLAVA 63	63.0	0.0	NA	NA	
11	GLODALO 25	25.0	0.0	NA	NA	
2	GLODALO 10	10.0	0.0	NA	NA	
3	GLODALO 6	6.0	0.0	NA	NA	
4	ZABUSIVAC 4	4.0	0.0	NA	NA	
5	SVRDLO 8.5	8.5	0.0	NA	NA	
9	UREZNIK M10 X 1.5 RH	10.0	0.0	NA	NA	
6	SVRDLO 6	6.0	0.0	NA	NA	
7	SVRDLO 9.8	9.8	0.0	NA	NA	
8	RAZVRTAC 10 H7	10.0	0.0	NA	NA	
10	TRKAC 6	6.0	0.0	NA	NA	

Prilog 6. Nacrt sirovca

Prilog 7. Nacrt stezne naprave

88

Pos. 1 2 3 4 5	Kunde/ Customer Bestellnumer/ P.O. Number Tell / Part Nominalwert / Nominal value M10 13.95	RITEH 1/1 Telerang / Tolerange	Artikel Nr./ Part No. Zeichnungs Nr./ Drawing No. Bennenung/ Part name		Teo Šimić	
Pos.	Kunde/ Customer Bestellnumer/ P.O. Number Tell / Part Nominalwert / Nominal value M10 13.95	PSTEH 1/1 Tolerance	Artikel Nr./ Part No. Zeichnungs Nr./ Drawing No. Bennenung/ Part name		Teo Śimić	
Pos. 1 2 3 4 5	Bestellnumer/ P.O. Number Tell / Part Nominalwert / Nominal value M10 13.95	1/1 Toleranz / Tolerance	Zeichnungs Nr./ Drawing No. Bennenung/ Part name			
Pos. 1 2 3 4 5	Tell / Part Nominalwert / Nominal value M10 13.95	1/1 Toleranz / Tolerance	Bennenung/ Part name			
Pos. 1 2 3 4 5	Nominalwert / Nominal value M10 13.95	Toleranz / Tolerance	lat-Wort /			
1 2 3 4 5	M10 13.95		Actual (Elcon)	(Kunde / Customer)	Measuring Equipment/Messe inviciturig	Bemerkung / Remark (Kunde / Customer)
2 3 4 5	13.95		OK		Navojni im	
3 4 5		+0.2-0.2	14.04		PM	
4	6.98	+0.2-0.2	7.01		OPTIKA	
5	3.03	+0.1-0.1	2.98		OPTIKA	
	18	+0.2-0.2	18.18		OPTIKA	
6	89	+0.3-0.3	69.01		OPTIKA	
7	31.5	+0.3-0.3	31.58		OPTIKA	-
8	23.05	+0.2-0.2	23.14		OPTIKA	
8	Ø10H7	+0.018	OK		GLATKI TRN	
10	R13.98	*-	14.053		OPTIKA	
\$\$	R12	*	11.82		OPTIKA	
12	8.47	+0.2-0.2	8.56		PM	
IS	15	*0.2-0.2	14.99		PM	
14	26	+0.1-0.1	6.10		PM.	1
5	8.08	+0.2-0.2	8.09		OPTIKA	
6	R3	*	3.002		OPTIKA	
7	R3	+-	2.96		OPTIKA	References de
8	13.98	+0.2-0.2	14.02	6	PM	
9	13	+0.2-0.2	12.95		PM	
0	6.4	+0.2-0.2	6.38		PM	
	Ø10	+0.2-0.2	9.95		PM	
	R4	+-	3.94		OPTIKA	
	R3	•.	3.07		OPTIKA.	
	11	+0.2-0.2	10.85		OPTIKA	
	R11	*	10.91		OPTIKA	
	3	+0.1-0.1	2.92		OPTIKA	
8	8	+0.2-0.2	8.01		ETALONI	
	24.03	+0.2-0.2	24.07		OPTIKA	
21	1.4/45*	+	1.32		OPTICA	

© ELCON GERAETEBAU d.o.o., Rijeka

	Kunde/	RITEH	Artikel Nr./		Teo Ŝimić	
	Customer Bestellnumer/	1/1	Zeichnungs Nr./			
	P.O. Number Teil / Part		Drawing No.			
			Part name			
Po6.	Nominalwert / Nominal value	Toleranz / Tolerance	Ist-Wert / Actual (Elicon)	Ist-Wert / Actual (Kunde / Customer)	Neasuring Equipment/Nesse inrichtung	Bemerkung / Remark (Kunde / Customer)
31	8	+0.2-0.2	7.95		PM	-
32	1.4/45*	+	1.32		OPTIKA	
33	Materijal: Čelik	*	ОК		certifikat materijala	The second
Datum / Date		21.06.2024	Unterschrift / Signature (Elcon)			
			Unterschrift / Signature (Kunde / Customer)			<u>Internation</u>