PROJEKT STRUKTURE TRUPA DVOSTRANOG TRAJEKTA DULJINE 80 m ZA JADRAN

Stanković, Maša

Master's thesis / Diplomski rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Rijeka, Faculty of Engineering / Sveučilište u Rijeci, Tehnički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:190:691861

Rights / Prava: Attribution 4.0 International/Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-04-02

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of Engineering

SVEUČILIŠTE U RIJECI TEHNIČKI FAKULTET

Diplomski sveučilišni studij brodogradnje

Diplomski rad

PROJEKT STRUKTURE TRUPA DVOSTRANOG TRAJEKTA DULJINE 80 m ZA JADRAN

Rijeka, studeni 2022.

Maša Stanković 0069074798

SVEUČILIŠTE U RIJECI TEHNIČKI FAKULTET

Diplomski sveučilišni studij brodogradnje

Diplomski rad

PROJEKT STRUKTURE TRUPA DVOSTRANOG TRAJEKTA DULJINE 80 m ZA JADRAN

Mentor: Prof. dr. sc. Albert Zamarin

Rijeka, studeni 2022.

Maša Stanković 0069074798

SVEUČILIŠTE U RIJECI TEHNIČKI FAKULTET POVJERENSTVO ZA DIPLOMSKE ISPITE

Rijeka, 19. ožujka 2022.

Zavod:Zavod za brodogradnju i inženjerstvo morske tehnologijePredmet:Čvrstoća brodaGrana:2.02.01 konstrukcija plovnih i pučinskih objekata

ZADATAK ZA DIPLOMSKI RAD

Pristupnik:Maša Stanković (0069074798)Studij:Diplomski sveučilišni studij brodogradnjeModul:Projektiranje i konstrukcija plovnih objekata

Zadatak: PROJEKT STRUKTURE TRUPA DVOSTRANOG TRAJEKTA DULJINE 80 m ZA JADRAN / HULL STRUCTURE DESIGN OF 80 m DOUBLE-ENDED FERRY FOR THE ADRIATIC

Opis zadatka:

U okviru procesa projektiranja strukture trupa trajekta s obostrano ukrcajno-iskrcajnim rampama duljine 80 metara za područje plovidbe Jadranskim morem, potrebno je izraditi:

- proračun dimenzija strukturnih elemenata na glavnom rebru i pripadni nacrt,

 proračun čvrstoće globalne i lokalne strukture prema pravilima i propisima klasifikacijskog društva HRB (Hrvatski registar brodova) primjenom MATHCAD-programskog paketa,

- proračun rešetkaste primarne strukture glavne palube primjenom DNV 3D-Beam programskog alata,

- proračun okvira boka garažnog prostora primjenom DNV 3D-Beam programskog alata,

- provjeru naprezanja strukture dna uslijed dokovanja primjenom DNV 3D-Beam programskog alata,

- proračun primarne strukture nadgrađa primjenom DNV 3D-Beam programskog paketa, te

 provjeru raspodjele globalnih uzdužnih naprezanja u paralelnom srednjaku primjenom modela konačnih elemenata pomoću DNV Genie programskog paketa.

Rad mora biti napisan prema Uputama za pisanje diplomskih / završnih radova koje su objavljene na mrežnim stranicama studija.

Masa Stankarić

Zadatak uručen pristupniku: 21. ožujka 2022.

Mentor:

Prof. dr. sc. Albert Zamarin

Predsjednik pøvjerenstva za diplomski ispit:

Kallenn

Prof. dr. sc. Albert Zamarin

SVEUČILIŠTE U RIJECI TEHNIČKI FAKULTET Diplomski sveučilišni studij brodogradnje

IZJAVA

Sukladno Pravilniku o diplomskom radu, diplomskom ispitu i završetku diplomskih sveučilišnih studija Tehničkog fakulteta u Rijeci, izjavljujem da sam samostalno izradila diplomski rad naslova "Projekt strukture trupa dvostranog trajekta duljine 80 m za Jadran" koristeći se znanjem stečenim tijekom studija, navedenom literaturom i uz konzultacije s mentorom te uz vodstvo i savijete komentora iz tvrtke Navis Consult.

Rijeka, rujan 2022.

Maša Stanković 0069074798

ZAHVALA

Zahvaljujem svom mentoru prof. dr. sc. Albertu Zamarinu na savjetima i pomoći.

Nadalje, od srca se želim zahvaliti djelatnicima tvrtke Navis Consult d.o.o. Lukši Radiću, Andreju Ugrinu i Dariu Puriću. Prvenstveno zahvaljujem na nesebično dijeljenom znanju, brojnim smjernicama te na strpljenju i vremenu koje su uložili. Također, hvala što su mi omogućili sve potrebne programske alate za izradu ovog rada.

Posebnu zahvalu želim iskazati mojoj obitelji i prijateljima.

SADRŽAJ

1.	UVOD	
2.	BROD	OVI ZA PRIJEVOZ AUTOMOBILA5
2.1.	Konstru	ıkcija trupa6
2.2.	Karakte	eristike broda7
3.	DIME	NZIONIRANJE STRUKTURNIH ELEMENATA PREMA PRAVILIMA
	KLAS	IFIKACIJSKOG DRUŠTVA10
3.1.	Materi	jal gradnje trupa11
3.2.	Optered	čenja brodske konstrukcije12
3.3.	Oplata.	
	3.3.1.	Opločenje dna unutar 0,4 L na sredini broda13
	3.3.2.	Plosna kobilica i dokobilični voj gredne kobilice14
	3.3.3.	Opločenje boka unutar 0,4 L na sredini broda14
	3.3.4.	Završni voj14
3.4.	Palube.	
	3.4.1.	Debljina lima paluba opterećenih vozilima14
	3.4.2.	Debljina lima u palubama s nastambama16
3.5.	Struktu	ra dna16
	3.5.1.	Debljina hrptenice16
	3.5.2.	Bočni nosači16
	3.5.3.	Pokrov dvodna16
	3.5.4.	Rebrenice
3.6.	Orebrei	nje17
3.7.	Potpalu	bna struktura
	3.7.1.	Sponje i uzdužnjaci palube19
	3.7.2.	Upore u nastambama19
3.8.	Nadgra	đe20
	3.8.1.	Bočno opločenje nadgrađa20
	3.8.2.	Opločenje palube nadgrađa
3.9.	Uzdužr	a čvrstoća21

	3.9.1.	Vertikalni uzdužni momenti savijanja i smične sile	21
	3.9.2.	Čvrstoća pri savijanju	23
	3.9.3.	Izvijanje	26
4.	PROR	AČUN I PROVJERA STRUKTURNIH ELEMENATA PRIMJE	NOM DNV
	3D-BE	AM PROGRAMSKOG ALATA	31
4.1.	Program	nski alat 3D-Beam	31
4.2.	Rešetka	asta primarna struktura glavne palube	32
	4.2.1.	Opterećenje računskog modela primarne strukture glavne palube	33
	4.2.2.	Rubni uvjeti	33
	4.2.3.	Dopuštene vrijednosti naprezanja	34
	4.2.4.	Rezultati	34
4.3.	Okvir ł	ooka garažnog prostora i nadgrađe	35
	4.3.1.	Rubni uvjeti	36
	4.3.2.	Opterećenje okvira boka garažnog prostora i nadgrađa	37
	4.3.3.	Dopuštene vrijednosti naprezanja	38
	4.3.4.	Rezultati	39
4.4.	Naprez	anje strukture dna uslijed dokovanja	40
	4.4.1.	Opterećenje strukture dna uslijed dokovanja	40
	4.4.2.	Rubni uvjeti	41
	4.4.3.	Dopuštene vrijednosti naprezanja i rezultati	42
5.	PROV	JERA STRUKTURE METODOM KONAČNIH ELEMENATA.	44
5.1.	Izrada	modela	45
5.2.	Rubni v	ıvjeti i opterećenje	46
5.3.	Rezulta	ti metode konačnih elemenata	49
	5.3.1.	Pregibno stanje	49
	5.3.2.	Progibno stanje	54
	5.3.3.	Provjera uključenosti brodske strukture u uzdužnu čvrstoću broda	60
5.4.	Zaključ	ak MKE analize	64

6.	ZAKLJUČAK	
LI'	TERATURA	
PO	OPIS SLIKA	67
PO	OPIS TABLICA	69
PO	OPIS OZNAKA	70
SA	ŽETAK	72
DC	DDATCI	73

1. UVOD

Čvrstoća broda je temelj dimenzioniranja strukturnih elemenata brodskog trupa. Tri osnovna koraka čvrstoće broda su određivanje opterećenja na brodsku konstrukciju, proračun odziva tj. naprezanja i deformacija u strukturnim elementima trupa te njihovo dimenzioniranje na osnovi postavljenih uvjeta za dopuštena naprezanja. [1]

Primarni zadatak osnivanja brodske konstrukcije, osim nedvojbene funkcionalnosti, je ostvarivanje cjelovite, ujednačene i učinkovite sigurnosti tijekom cijelog radnog vijeka broda što se postiže temeljitim poznavanjem načina oštećenja i postupaka za njihovo izbjegavanje. Stoga, klasifikacijska društva ulažu velike napore kako bi izradili propise za gradnju sigurnih brodova i plovnih objekata.

Tema ovog rada je izrada projekta strukture trupa dvostranog trajekta za područje plovidbe Jadranskim morem. Proračun dimenzija strukturnih elemenata na glavnom rebru te proračuni čvrstoće globalne i lokalne strukture bit će napravljeni prema pravilima i propisima Hrvatskog registra brodova, s ciljem projektiranja strukture koja je funkcionalna, sigurna te u skladu sa međunarodno priznatim tehničkim standardima.

Dobivene dimenzije će se zatim provjeriti pomoću programskog alata 3D-Beam klasifikacijskog društva Det Norske Veritas, a na kraju će se raspodjela globalnih uzdužnih naprezanja paralelnog srednjaka provjeriti metodom konačnih elemenata u FE analitičkom modulu GeniE, koji je dio Sesam programa razvijenim od strane DNV Software grupe.

2. BRODOVI ZA PRIJEVOZ AUTOMOBILA

RO-PAX trajekti su prvenstveno namijenjeni prijevozu tereta na kotačima, a tek zatim putnicima. Obično imaju barem jednu palubu za prijevoz vozila te barem jednu palubu za putnike. Razlika između RO-RO (eng. Roll-on/Roll-off) brodova i RO-PAX brodova je upravo u broju putnika. RO-RO brod može prevoziti do 12 putnika, no ako se prevozi 12 ili više putnika, riječ je o RO-RO putničkom brodu tj. RO-PAX brodu.

Slika 2.1 Primjeri RO-PAX brodova

Putnički trajekti (Slika 2.1) su specijalizirana vrsta brodova namijenjena prijevozu vozila i putnika preko vodenih površina te su pretežito linijski brodovi. Projektiraju se i grade za specifičnu relaciju te glavne dimenzije, forma trupa, kapacitet, brzina i pogon moraju odgovarati dužini i uvjetima plovidbene rute. Linijski brodovi isplovljavaju na zakazane datume, u unaprijed određeno vrijeme, bez obzira na to jesu li potpuno natovareni ili ne. Upravo radi toga, troškovi pružanja takve vrste usluge mogu biti vrlo visoki, stoga je potrebno odrediti cijene karata tj. vozarine na odgovarajući iznos kako bi se tijekom određenog vremenskog razdoblja osigurao zadovoljavajući profit.

Prema duljini plovidbene rute razlikujemo lokalne trajekte te trajekte za srednje i za velike udaljenosti. Prema obliku trupa trajekti mogu biti simetrične forme ili normalne forme brodskog trupa. Kod lokalnih trajekata gdje putovanje traje kraće od 45 minuta teži se simetričnoj formi trupa s porivnicima na oba kraja. To uvelike olakšava manevriranje pri dolasku i odlasku jer se trajekt ne mora okretati za 180° te se postiže protočni ulaz i silaz vozila koji je efikasniji. Zato što trajekti često prometuju u uskim područjima moraju imati odlična kormilarska svojstva.

Dimenzije trajekata uvelike su određene vrstom vozila koja se prevozi te prostornim rasporedom istih na palubi. Najveća te najteža vozila imati će najveći utjecaj na opterećenje brodske konstrukcije. Takva vozila obično se prevoze na mjestima ili u samoj centralnoj liniji broda ili što bliže njoj te zauzimaju dvije ili više parkirnih traka standardnih dimenzija. Stoga se prilikom projektiranja RO-RO brodova moraju unaprijed definirati zahtjevi o broju i vrsta vozila koja će se prevoziti (osobni automobili, autobusi ili teška teretna vozila). Također, kod projektiranja valja uzeti u obzir i moguću varijaciju prometa s obzirom na godišnja doba.

2.1. Konstrukcija trupa

RO-RO brodovi konstrukcijski se ističu zbog svojih potpuno otvorenih, prostranih i ravnih paluba za smještaj vozila s prilaznim rampama za ukrcaj i iskrcaj. Palube se protežu od pramca do krme, bez ikakvih poprečnih pregrada, radi omogućavanja nesmetanog pristupa automobilima te drugim vozilima. Uvijek su u potpunosti ravne, bez palubnog skoka i preluka.

Klasifikacijska društva propisima određuju dimenzioniranje glavnih elemenata trupa trajekata kao i kod normalnih trgovačkih brodova. No, radi zahtjevnih uvjeta rada nerijetko se dvodno i oplata predimenzioniraju.

Geometrija brodova namijenjenih prijevozu vozila nastoji se maksimalno prilagoditi službi, stoga se brojevi upora i pregrada pokušavaju reducirati radi efikasnijeg i jednostavnijeg ukrcaja te iskrcaja vozila.

Palube za smještaj vozila su izložene velikim lokalnim statičkim opterećenjima, a prilikom kretanja vozila dolazi i do dinamičkih opterećenja. S ciljem prevencije palubnih ulegnuća između rebara, postavljaju se uzdužni interkostalni nosači kao pojačanja. Uz to, trajekte karakteriziraju i pojačani poprečni okviri koji ukrućuju i ojačavaju konstrukciju brodskog trupa. Kako bi izbjegli trajne deformacije konstrukcije, izuzetno je važno ispravno dimenzionirati palube i bočne limove nadgrađa da svi elementi jednoliko preuzimaju opterećenja.

Glavne dimenzije trajekata određuju se prema potrebnoj površini za vozila. Širinu RO-RO brodova određuje se kao višestruka širina automobila tj. parkirnih mjesta plus pristupni prostor. Idealna situacija javlja se u slučaju kad se svijetla širina palube za vozila može odabrati na način da odgovara objema vrstama širina traka kod sustava traka s dvostrukom namjenom; i trakama za osobna vozila te trakama za teška vozila. Također, treba paziti da svijetla visina u garažama omogućuje najvišim vozilima neometani protočni prolaz kroz trajekt.

Rampe za ukrcaj i iskrcaj vozila su jedne od glavnih karakteristika RO-RO brodova te se upravo po njima značajno razlikuju od ostalih teretnih brodova jer ne zahtijevaju nikakvu posebnu opremu za ukrcaj i iskrcaj tereta, primjerice dizalice. Rampa je velika čelična konstrukcija, uzdužno i poprečno ojačana, a koristi se za prebacivanje tereta na kotačima s kopna u brodski trup te obratno. Nagib rampe koja povezuje palubu broda s kopnom uvelike ovisi o plimi i oseki. Prilikom prijevoza velikih kamiona i prikolica, nagib vanjskih i unutarnjih rampi održava se između 8 i 9 stupnjeva. Rampe mogu biti različitih izvedbi, kao što je prikazano na Slici 2.2, pa tako razlikujemo sklopivu krmenu rampu, bočne rampe, pramčane rampe te mobilne ili fiksne unutarnje rampe koje služe za prijevoz vozila na više ili niže palube. Rampe se obično pomiču hidrauličkim pogonom te kad su zatvorene moraju osiguravati nepropusnost. U slučajevima kad je rampa dio vanjske brodske oplate ona mora biti dimenzionirana u skladu s relevantnim opterećenjem mora.

a) Sklopiva krmena rampa

b) Bočna rampa

c) Pramčana rampa

d) Fiksna unutarnja rampa

Slika 2.2 Različite izvedbe brodskih rampi

U usporedbi s ostalim tipovima brodova, trajekti moraju imati veći početni stabilitet, kako bi se pri ukrcaju i iskrcaju vozila bočni nagib minimizirao. Budući da je teret smješten relativno visoko, također je visoko i sustavno težište. Teška vozila prilikom ukrcaja i iskrcaja izazivaju velika bočna opterećenja i bočne nagibne momente, dok primjerice za vrijeme plovidbe može doći do pomaka vozila i asimetričnog opterećenja. Kako palube za smještaj vozila nemaju pregrade može doći do potpunog naplavljivanja palube vodom te se tako stvori izuzetno velika slobodna površina. Prethodni čimbenici uvjetuju da trajekti moraju imati veliki stabilitet što se postiže velikom širinom broda.

2.2. Karakteristike broda

Brod koji je tema ovog rada projektiran je kao RO-RO putnički brod s obostrano ukrcajnoiskrcajnim rampama (eng. *double ended ferry*) sa simetrijom pramac-krma. Predviđen je za prijevoz putnika, automobila i teških vozila, a ukrcaj i iskrcaj vozila te putnika vrši se preko rampi koje se nalaze na pramcu i krmi. Kako je brod predviđen za potrebe održavanja trajektne linije Stinica - Mišnjak, koja je glavna poveznica otoka Raba s kopnom, prema pravilima Hrvatskog registra brodova spada u Područje plovidbe 5 tj. u područje nacionalne plovidbe.

Brod je projektiran za brzinu od 12 čvorova na srednjem gazu od 2,4 m. Trajekt ima šest paluba, a vozila su smještena na pokrovu dvodna (Paluba 1) i na glavnoj palubi (Paluba 2). Na trećoj i četvrtoj palubi su saloni za putnike te smještaj za posadu. Na petoj palubi nalazi se protuljuljni tank čiji je cilj povećati udobnost plovidbe te je iznad njega kormilarnica.

Slika 2.3 Trajekt Četiri zvonika

Glavne značajke broda dane su u Tablici 2.1, a kao pomoć pri izradi ovog diplomskog rada korišten je preliminarni opći plan zadanog broda (dio prikazan na Slici 2.4) te projektna dokumentacija već izgrađenog trajekta Četiri zvonika prikazanog na Slici 2.3.

Duljina preko svega	LOA	79,5	m
Širina	В	18	m
Visina do glavne palube	D	4,6	m
Gaz, srednje stanje krcanja	T ₁	2,4	m
Gaz, maks. stanje krcanja	Т	2,6	m
Gaz, najveći konstruktivni	T _{maks.}	2,7	m
Koeficijent punoće istisnine	C _B	0,68	

Tablica 2.1 Glavne značajke broda

Razmak između rebara je 600 mm, a svako četvrto rebro je okvirno.

Pri izračunu kapaciteta vozila na glavnoj palubi korištene su standardna veličina teških vozila dužine 16 m te širine 2,50 m kako bi se dobilo maksimalno palubno opterećenje tereta, a u zatvorenoj garaži prve palube, koja se nalazi na pokrovu dvodna, korištene su dimenzije standardne veličine vozila dužine 4,65 m te širine 2,20 m u koje je već uključen poprečni te uzdužni

razmak između vozila od 0,40 m. Kod teških vozila na glavnoj palubi poprečni i uzdužni razmak između vozila iznosi 0,60 m.

Prema tome, prostorno glavnu palubu moguće je opteretiti s 12 teških vozila i 10 osobnih automobila ili 96 osobnih automobila, dok na pokrov dvodna stane 41 osobni automobil.

Zanimljiva karakteristika ovog projekta je električni brodski pogon nove generacije tehnologije, bez emisije ispušnih plinova i onečišćenja zraka.

Slika 2.4 Preliminarni opći plan zadanog broda

3. DIMENZIONIRANJE STRUKTURNIH ELEMENATA PREMA PRAVILIMA KLASIFIKACIJSKOG DRUŠTVA

Dimenzioniranje strukturnih elemenata putničkog trajekta u ovom radu određeno je prema Pravilima za tehnički nadzor pomorskih brodova Hrvatskog registra brodova (u daljnjem tekstu: HRB ili Registar). Trajekt za kojeg je u ovom radu izveden proračun građen je mješovitim sustavom gradnje. Uzdužnim sustavom gradnje izvedeno je dvodno i palube, dok su bokovi i vanjska oplata iznad prve palube građeni poprečnim sustavom gradnje. Strukturna veza trupa i nadgrađa je ostvarena isključivo okvirima boka i opločenjem vanjske oplate, stoga je na nju obraćena posebna pažnja.

Slika 3.1 Hrvatski registar brodova

Glavni elementi uzdužne čvrstoće su opločenje te uzdužni strukturni elementi dna i gornjih paluba. Pod uzdužne strukturne elemente podrazumijeva se kobilica, hrptenica, podveze, bočni nosači u dvodnu te uzdužnjaci dvodna, glavne i gornjih paluba. Elementi poprečne čvrstoće su poprečna bočna rebra, rebrenice u dvodnu i transverze.

Prvi korak kod dimenzioniranja strukture je određivanje opterećenja brodske konstrukcije. Razlikujemo vanjsko opterećenje morem, opterećenja paluba teretom i nastambama, opterećenje strukture tanka i opterećenja uslijed ubrzanja. Nakon toga slijedi proračun uzdužne čvrstoće glavnog rebra s prethodno dimenzioniranim opločenjem, sekundarnom i primarnom strukturom temeljem izračuna prema pravilima Registra.

Sljedeća poglavlja ovog rada prikazati će formule i krajnje rezultate glavnih strukturnih elemenata obuhvaćenih proračunom, dok je sam proračun izveden pomoću programskog alata Mathcad te se detaljni postupci proračuna nalaze u Dodatku A, dok se u Dodatku B nalazi nacrt glavnog rebra putničkog trajekta za koji je proračun izveden. Navedeni brojevi poglavlja Hrvatskog registra brodova, naznačeni uz formule ujedno odgovaraju i brojevima poglavlja proračuna napravljenog u Mathcadu iz Dodatka A.

S ciljem lakšeg razumijevanja narednih poglavlja na Slici 3.2 nalazi se ilustracija strukturnog plana glavnog rebra.

Slika 3.2 Ilustracija glavnog rebra

3.1. Materijal gradnje trupa

Kao materijal za gradnju trupa trajekta koristit će se dvije vrste brodograđevnog čelika tj. koristit će se običan čelik te čelik povišene čvrstoće. U brodograđevnoj industriji čelik je naišao na široku primjenu prvenstveno radi dobrih mehaničkih svojstva te zbog dobre zavarljivosti.

Brodograđevni čelik povišene čvrstoće je skuplji u usporedbi s brodograđevnim čelikom normalne čvrstoće, no posjeduje bolja mehanička svojstva te je njegova specifična težina manja. Stoga primjenom brodograđevnog čelika povišene čvrstoće utječemo na smanjenje ukupne mase broda jer njegova mehanička svojstva omogućuju uporabu tanjih limova i elemenata manjeg poprečnog presjeka. Čelik povišene čvrstoće koji će se koristiti za gradnju druge i treće palube je čelik kategorije AH36. Za ostale dijelove trupa koristit će se brodograđevni čelik normalne čvrstoće kategorije B. Granica razvlačenja običnog brodograđevnog čelika iznosi 235 N/mm², dok je granica razvlačenja čelika povišenje čvrstoće 355 N/mm².

Sukladno pravilima Hrvatskog registra brodova, u daljnjim proračunima ovog rada koeficijent materijala k za područja i elemente građene od običnog brodograđevnog čelika usvajat će se k=1,0, dok se za čelik povišene čvrstoće usvaja k=0,72.

3.2. Opterećenja brodske konstrukcije

Tablica 3.1 Opterećenja brodske konstrukcije

HRB, Poglavlje 3.2 VANJSKO OPTEREĆENJE MOREM

HRB, Poglavlje 3.2.1

Opterećenje izloženih paluba

Paluba 4						
Oplata	$p_{Ds} =$	8,059	kN/m ²			
Ukrepe	p _{Df} =	6,045	kN/m ²			
Nosači	$p_{Dg}=$	4,836	kN/m ²			

Paluba 5					
Oplata	$p_{Ds} =$	6,985	kN/m ²		
Ukrepe	$p_{Df} =$	5,239	kN/m ²		
Nosači	$p_{Dg}=$	4,191	kN/m ²		

HRB, Poglavlje 3.2.1.2 Minimalno opterećenje palube čvrstoće

Paluba 3						
Oplata	$p_{Dmin_s} =$	16	kN/m ²			
Ukrepe	$p_{Dmin_f} =$	12	kN/m ²			
Nosači	$p_{Dmin_g} =$	9,6	kN/m ²			

HRB, Poglavlje 3.2.2.1 Opterećenja bokova broda

	z=1 m		35,24	kN/m ²
Outer	z=2,5 m	p _{s_s} =	27,634	kN/m ²
Oplata	z=5,2 m		21,296	kN/m ²
	z=8,4 m		16,955	kN/m ²

	z=1 m		30,68	kN/m ²
Lilerana	z=2,5 m	p _{s_f} =	21,226	kN/m ²
Okrepe	z=5,2 m		15,972	kN/m ²
	z=8,4 m		12,717	kN/m ²

HRB, Poglavlje 3.2.3

Opterećenje brodskog dna $p_B=$ 40,31 kN/m^2

HRB, Poglavlje 3.2.5

Opterećenja paluba nadgrađa

Paluba 6				
Oplata	$P_{DA_plating} =$	4	kN/m ²	
Ukrepe	$P_{DA_stiffeners} =$	4	kN/m ²	
Nosači	$P_{DA_girders} =$	4	kN/m ²	

HRB, Poglavlje 3.3 OPTEREĆENJA PALUBA TERETOM I OPTEREĆENJA PALUBA NASTAMBI

HRB, Poglavlje 3.3.1	Opterećenja paluba tereta	$p_L =$	17,087	kN/m ²
HRB, Poglavlje 3.3.2	Opterećenje pokrova dvodna	p _{DB} =	2,024	kN/m ²
HRB, Poglavlje 3.3.3	Opterećenje paluba nastambi	p=	4,03	kN/m ²
	Opterećenje paluba strojarnice	p=	9,211	kN/m ²

HRB, Poglavlje 3.4 OPTEREĆENJE STRUKTURE TANKA

Opterećenja punih tankova	p_1 slatka voda $=$	29,454	kN/m ²
	p_1 protuljini tank $=$	20,005	kN/m ²
	p2 slatka voda $=$	21,718	kN/m ²
	$p_{2 \; protuljlni \; tank} =$	11.908	kN/m ²
Opterećenje djelomično napunjenih tankova	$p_{dx} =$	13,581	kN/m ²
	Opterećenja punih tankova Opterećenje djelomično napunjenih tankova	$p_1 \text{ slatka voda}=$ Opterećenja punih tankova $p_1 \text{ protuljlni tank}=$ $p_2 \text{ slatka voda}=$ $p_2 \text{ protuljlni tank}=$ Opterećenje djelomično napunjenih tankova $p_{dx}=$	$p_{1 \text{ slatka voda}} =$ $29,454$ $p_{1 \text{ protuljlni tank}} =$ $20,005$ $p_{2 \text{ slatka voda}} =$ $21,718$ $p_{2 \text{ protuljlni tank}} =$ 11.908 Opterećenje djelomično napunjenih tankova $p_{dx} =$ $13,581$

Na presjeku glavnog rebra nalaze se dva tanka (Slika 3.2). U dvodnu se nalazi tank pitke vode koji se proteže u uzdužnom smislu od rebra -8 do rebra 8, te poprečno od L7 do L-7. Na petoj palubi se nalazi protuljuljni tank koji nije napunjen do vrha, već do polovice.

Prilikom proračuna opterećenja strukture tanka, konzervativno je visina dna tanka uzeta kao mjerodavna visina za referentni tlak.

3.3. Oplata

Vanjsku oplatu brodskog tupa čine oplata dna te oplate boka.

3.3.1. Opločenje dna unutar 0,4 L na sredini broda

$$t_1 = 1,9 \, n_1 \cdot s \cdot \sqrt{p_B \cdot k} + t_K, mm \,) \tag{3.1}$$

Gdje je:

 $n_1 = 1,0$ za poprečno orebrenje, $n_1 = 0,83$ za uzdužno orebrenje, p_B – opterećenje dna, u kN/m².

$$t_{1_{min}} = 7,507 mm$$

Radi zahtijeva minimalne debljine opločenja dna propisane u Poglavlju 5.2.6 HRB, koja iznosi 8,72 mm, konačna usvojena debljina opločenja dna iznosi;

$$t_{1_{usvojen}} = 9,0 mm.$$

3.3.2. Plosna kobilica i dokobilični voj gredne kobilice

HRB, Poglavlje 5.2.5

$$t_{KB} = t + 2,0 \ mm \tag{3.2}$$

Gdje je:

t = debljina opločenja dna, u mm.

$$t_{KB} = 8,2 mm$$

 $t_{KB_{usvojen}} = 10,5 mm$

3.3.3. Opločenje boka unutar 0,4 L na sredini broda

$$t_s = 1,21 \cdot s \cdot \sqrt{p_s \cdot k} + t_K, mm \tag{3.3}$$

Gdje je:

HRB, Poglavlje 5.3.1.2

 p_S – opterećenje boka, u kN/m².

$$t_{s_{min}} = 8,3 mm$$

 $t_{s_{usvojen}} = 8,5 mm$

HRB, Poglavlje 5.3.4

$$t = t_s, mm$$

 $t_{usvojen} = 8,5 mm$

3.4. Palube

Posebnost konstruiranja trajekata je točkasto opterećenje od djelovanja kotača vozila koje prevoze. Upravo se prema lokalnom opterećenju od kotača vozila čvrstoća palube i proračunava. Na palubu se opterećenje od kotača prenosi preko površine otiska gume. Projektno opterećenje paluba za smještaj tereta potrebno je odrediti za svaku palubu zasebno budući da se na prvoj palubi planiraju prevoziti samo osobni automobili, a na glavnoj palubi se uz automobile prevoze i teška vozila tj. kamioni.

3.4.1. Debljina lima paluba opterećenih vozilima

HRB, Poglavlje 6.2.2.1 $t = c \cdot \sqrt{P(1+a_v) \cdot k} + t_k, mm$ (3.4)

Gdje je:

P - opterećenje, u kN, od točka ili skupine kotača u polju lima,

 a_v - koeficijent ubrzanja,

c - koeficijent ovisan o omjeru dulje i kraće stranice polja lima otiska kotača, prema Slici 3.3.

Slika 3.3 Otisak kotača na polju lima

Na slici iznad, dulja stranica polja lima označena je slovom u, dok je kraća stranica polja lima označena slovom v. Umnoškom prethodno navedenih duljina polja lima $(u \cdot v)$ dobiva se površina polja lima, A. Površina otiska kotača a na slici iznad je naznačena šrafurom te je također potrebno poznavati njenu vrijednost pri određivanju koeficijenta c.

U slučajevima kad otisak kotača nije poznat, može se izračunati prema sljedećoj formuli (3.5):

HRB, Poglavlje 6.2.2.2
$$a = \frac{100 \cdot P}{n}, cm^2$$
(3.5)

Gdje je *p* tlak u kotačima, prema Tablici 3.2.

	Tlak u kotačima p [bar]			
Tip vozila	Pneumatski kotači	Kotači od pune gume		
osobna vozila	2	-		
kamioni	8	-		
trajleri	8	15		
viljuškari	6	15		

Tablica 3.2 Tlak u kotačima

Konačno, usvajamo sljedeće debljine limova paluba za smještaj tereta:

a) Debljina lima Palube 1 opterećene osobnim automobilima:

HRB, Poglavlje 6.2.2.1

$$t_{min} = 7,6 mm$$

$$t_{usvojen} = 8,0 mm$$

b) Debljina lima Palube 2 opterećene teškim vozilima

HRB, Poglavlje 6.2.2.1
$$t_{min} = 13,9 mm$$

$$t_{usvojen} = 14 mm$$

3.4.2. Debljina lima u palubama s nastambama

HRB, Poglavlje 6.2.3
$$t = 1, 1 \cdot s \cdot \sqrt{p \cdot k} + t_K, mm \qquad (3.6)$$
$$t_{min} = 6, 2 mm$$
$$t_{usvojen} = 7, 0 mm$$

3.5. Struktura dna

3.5.1. Debljina hrptenice

HRB, Poglavlje 7.2.2
$$t = \frac{h_{db}}{h_a} \cdot \left[\frac{h_{db}}{100} + 1,0\right] \cdot \sqrt{k}, mm$$
(3.7)

Gdje je:

 h_{db} - visina hrptenice, mm

 h_a - stvarna (ugrađena) visina hrptenice, mm

$$t_{min} = 6,64 mm$$

 $t_{usvojen} = 8,0 mm$

3.5.2. Bočni nosači

HRB, Poglavlje 7.2.3

$$t = \frac{h_{db}^{2}}{120 \cdot h_{a}} \sqrt{k}, mm$$

$$t_{min} = 4,32 mm$$

$$t_{usvojen} = 7,5 mm$$
(3.8)

3.5.3. Pokrov dvodna

HRB, Poglavlje 7.2.4
$$t = 1, 1 \cdot s \cdot \sqrt{p \cdot k} + t_K, mm \qquad (3.9)$$
$$t_{min} = 5,99 mm$$

 $t_{usvojen} = 8,0 mm$

3.5.4. Rebrenice

HRB, Poglavlje 7.2.6.2
$$t_p = t - 2,0\sqrt{k},mm$$
 (3.10)

Gdje je:

t - debljina hrptenice.

$$t_{p_{min}} = 3,7 mm$$

 $t_{p_{usvojen}} = 8 mm$

3.6. Orebrenje

Orebrenje ukrepljuje i podupire vanjsku oplatu, a sastoji se od nosača usmjerenih u uzdužnom i poprečnom smjeru. Razmak rebara *s* iznosi 600 mm, a kako je svako četvrto rebro okvirno, razmak između okvirnih rebara *S* je 2400 mm.

Moment otpora glavnih rebara ne smije biti manji od iznosa dobivenog po izrazu (3.11):

HRB, Poglavlje 8.1.2
$$W = n \cdot c \cdot s \cdot l^2 \cdot p_s \cdot f \cdot k, cm^3$$
(3.11)

Gdje je:

 $n = 0.9 - 0.0035 \cdot L$, za L<100 m; $c = 1.0 - (l_{k1} + 0.45 \cdot l_{k2});$ l_{k1}, l_{k2} - duljina spoja donjeg/gornjeg koljena, m; l - nepoduprti raspon, m; p_s - opterećenje boka broda, u kN/m2, f - koeficijent za zakrivljena rebra.

Vrijednosti dopuštenih naprezanja ne smiju biti veće od iznosa dobivenih po sljedećim izrazima:

HRB, Poglavlje 8.1.2
$$\sigma = \frac{150}{k}, N/mm^2$$
(3.12)

HRB, Poglavlje 8.1.2
$$\tau = \frac{150}{k}, N/mm^2$$
(3.13)

HRB, Poglavlje 8.1.2
$$\sigma_{ekv} = \frac{180}{k}, N/mm^2$$
(3.14)

Kao što je prethodno navedeno u Poglavlju 3.1. koeficijent materijala k, za obični brodograđevni čelik iznosi k = 1,0, dok se za čelik povišene čvrstoće ($R_{eH} = 355 N/mm^2$) prema pravilima Registra uzima k = 0,72. Vrijednosti dopuštenih naprezanja s obzirom na koeficijent materijala prikazane su u Tablici 3.3.

	σ, N/mm ²	$\sigma_{ekv}, \ N/mm^2$	τ, N/mm²
Obični brodograđevni čelik	150	180	100
Brodograđevni čelik povišene čvrstoće	208	250	139

Tablica 3.3 Vrijednosti dopuštenih naprezanja s obzirom na koeficijent materijala

Dimenzije okvirnih rebara prikazane su u Tablici 3.4.

	Struk		Fla	nža
	Visina, mm	Debljina, mm	Širina, mm	Debljina, mm
Bok Palube 1 - 2	280	10	120	10
Bok Palube 2 - 3	280	10	200	20
Bok Palube 3 - 4	125	10	150	15
Bok Palube 4 - 5	150	12	225	15

Tablica 3.4 Dimenzije okvirnih rebara

Dimenzije običnih rebara iskazane su u tablici niže.

Bok Palube 1 - 2	HP 160 x 8
Bok Palube 2 - 3	L 150 x 90 x 9
Bok Palube 3 - 4	L 150 x 90 x 9
Bok Palube 4 - 5	L 75 x 50 x 7
Bok Palube 5 - 6	HP 120 x 7

Tablica 3.5 Dimenzije običnih rebara

3.7. Potpalubna struktura

3.7.1. Sponje i uzdužnjaci palube

Moment otpora sponja i uzdužnjaka palube u području od 0,25 ·D do 0,75 ·D od osnovice iznose:

Tablica 3.6	Moment	otvora	sponia	i uzdužn	iaka	palube
10000000	11101110111	0.00.00	sponga		,	pannoe

		W_d , cm^3	A_d , cm^2
HRB, Poglavlje 9.2.1	Palube za smještaj tereta	188,179	4,228

Dimenzije okvirnih sponja prikazane su u Tablici 3.7.

	Struk		Fl		
	Visina, mm	Debljina, mm	Širina, mm	Debljina, mm	Materijal
Sponja ispod Palube 2	550	15	250	22	AH36
Sponja ispod Palube 3	190	10	200	10	AH36
Sponja ispod Palube 4	500	10	250	15	
Sponja ispod Palube 5	450	8	200	15	

Tablica 3.7 Dimenzije palubnih sponja

Pregled usvojenih dimenzija palubnih uzdužnjaka prikazan je u Tablici 3.8.

Tablica 3.8 Dimenzije palubnih uzdužnjaka

Uzdužnjaci Palube 1	HP 160 x 8	
Uzdužnjaci Palube 2	HP 200 x 9	AH36
Uzdužnjaci Palube 3	L 100 x 50 x 7	AH36
Uzdužnjaci Palube 4	L 75 x 50 x 7	
Uzdužnjaci Palube 5	L 75 x 50 x 7	
Uzdužnjaci Palube 6	L 75 x 50 x 7	

3.7.2. Upore u nastambama

Upore se nalaze samo u prostorima nastamba. Njihovo postavljanje u garažnim prostorima izbjeglo se jer smetaju protočnom ulazu i izlasku vozila te smanjuju broj vozila koji je moguće prevesti.

Upore podupiru susjedne palube te moraju biti dimenzionirane tako da mogu podnijeti relativne poprečne deformacije između paluba te moraju biti dovoljno savitljive kako bi se spriječile koncentracije naprezanja.

HRB, Poglavlje 9.3
$$t_u = 4,5 + 0,015 \cdot d_{uv}$$
 (3.15)

Gdje je:

 d_{uv} – vanjski promjer cijevne upore.

HRB, Poglavlje 9.3.2
$$A_u = 10 \cdot \frac{P_u}{\sigma_t}, cm^2$$
(3.16)

Gdje je:

 σ_t – dopušteno tlačno naprezanje,

 P_u – opterećenje koje se prenosi.

$$A_u = 27,05 \ cm^2$$

Usvojene dimenzije upora u nastambama: Ø139,7 x 8 mm

3.8. Nadgrađe

3.8.1. Bočno opločenje nadgrađa

HRB, Poglavlje 13.2.1
$$t = 0.8 \cdot t_{min}$$
 (3.17)

Gdje je:

 t_{min} — minimalna debljina opločenja dna, HRB, Poglavlje 5.2.6.

 $t_{usvojen} = 7 mm$

3.8.2. Opločenje palube nadgrađa

HRB, Poglavlje 13.2.2
$$t = 1,21 \cdot s \cdot \sqrt{p \cdot k} + t_K, mm \qquad (3.18)$$
$$t_{usvojen} = 7 mm$$

3.9. Uzdužna čvrstoća

3.9.1. Vertikalni uzdužni momenti savijanja i smične sile

Opterećenja koja djeluju na konstrukciju broda u cjelini, uzrokuju njegovo savijanje, odnosno pojavu poprečnih sila i momenata savijanja u pojedinim poprečnim presjecima brodskog nosača. U uzdužnim vezama brodske strukture momenti savijanja izazivaju normalna naprezanja, a poprečne sile smična naprezanja.

Slika 3.4 Momenti savijanja

Vrijednosti momenata savijanja na mirnoj vodi (M_w) definirane su iz raspodjele težine i uzgona duž broda tj. očitane su iz dijagrama momenta savijanja dobivenog u softweru NAPA (Slika 3.4). Sukladno tome, smična sila na mirnoj vodi dobivena je na isti način tj. očitana je s dijagrama prikazanog na Slici 3.5. Krivulja momenta savijanja je drugi integral krivulje opterećenja. Najveća vrijednost momenta savijanja javlja se na sredini broda, dok su najveće vrijednosti smičnih sila na oko 20% i 80% duljine broda od pramčane okomice.

Slika 3.5 Smična sila

Kako bi bili na strani sigurnosti, projektni moment savijanja kao i usvojene smične sile uzete su znatno veće od preliminarnih iz razloga ostvarivanja zalihe prema konačnim vrijednostima. Stoga, projektni momenti savijanja te smične sile na mirnoj vodi iznose:

T 11 20			· · · ·	• 1	1.
Tablica 3.9	9 Moment	i saviiania	i smicne	sile na	mirnoi vodi
10000000				5000 0000	

Pregibni moment savijanja na mirnoj vodi	M_{BH_SW}	29430	kNm	3000	TM
Progibni moment savijanja na mirnoj vodi	M_{BS_SW}	-29430	kNm	-3000	TM
Pozitivna smična sila na mirnoj vodi	F _{s_positive}	1569,6	kN	160	Т
Negativna smična sila na mirnoj vodi	Fs_negative	1569,6	kN	160	Т

Na mirnoj vodi brod je u svim slučajevima opterećenja u pregibu. Kad brod plovi na valovitom moru, situacija je drugačija jer opterećenje strukture tada, osim o rasporedu masa i uzgona, ovisi i o visini te dužini vala i dužini broda.

Moment savijanja uslijed valova proračunava se za svaki presjek uzduž broda prema izrazu:

 $M_{WH} = +190 \cdot M \cdot C_w \cdot L^2 \cdot B \cdot C_B \cdot 10^{-3}$, kNm, za pregibni moment savijanja;

 $M_{WS} = -110 \cdot M \cdot C_w \cdot L^2 \cdot B \cdot (C_B + 0.7) \cdot 10^{-3}$, kNm, za progibni moment savijanja.

Gdje je:

M – koeficijent razdiobe, prema Slici 3.6.

Slika 3.6 Koeficijent razdiobe M

Za brodove u ograničenoj plovidbi moment savijanja uslijed djelovanja valova mogu se umanjiti. Umanjenje za područje plovidbe 5 iznosi 25%.

Smična sila koja nastaje djelovanjem valova, *Fw*, na svakom poprečnom presjeku broda izračunava se po formuli:

$$F_{W \text{ positive}} = +30 \cdot F_1 \cdot C_w \cdot L \cdot B \cdot (C_B + 0.7) \cdot 10^{-2}$$
, kN, za pozitivnu smičnu silu;

 $F_{W negative} = -30 \cdot F_2 \cdot C_w \cdot L \cdot B \cdot (C_B + 0.7) \cdot 10^{-2}$, kN, za negativnu smičnu silu.

Gdje su:

 F_1, F_2 – koeficijenti raspodjele, prikazani na Slici 3.7.

Slika 3.7 Koeficijenti raspodjele F1 i F2

Konačne vrijednosti pregibnog momenta savijanja i smičnih sila na valovitom moru prikazani su u Tablici 3.10.

Tablica 3.10 Momenti savijanja i smične sile na valovitoj vodi

	Pregibni moment savijanja na valovitoj vodi	$M_{\rm WH}$	69560	kNm
HKD, Foguavije 4.2.2	Progibni moment savijanja na valovitoj vodi	M _{ws}	-81720	kNm
HRB, Poglavlje 4.2.3	Pozitivna smična sila na valovitoj vodi	$F_{w_positive}$	2399	kN
	Negativna smična sila na valovitoj vodi	$F_{w_negative}$	-2399	kN

3.9.2. Čvrstoća pri savijanju

Otporni moment glavnog rebra izračunat je pomoću programskog alata Nauticus Hull (Slika 3.8) u kojem je modelirano glavno rebro trajekta kao što je prikazano na Slici 3.9. Za potrebe izračuna modelirani su samo uzdužni elementi strukture.

Slika 3.8 NauticusHull

Moment otpora za dno te za palubu broda računaju se prema izrazima (3.19):

$$W_D = \frac{l_y}{e_D}, \ W_P = \frac{l_y}{e_P}$$
 (3.19)

Gdje su:

 W_D – moment otpora za dno, m³

 W_P – moment otpora za palubu, m³

 I_v – moment inercije površine glavnog rebra oko osi y, m⁴

 e_D – udaljenost neutralne linije do osnovice broda, m

 e_P – udaljenost neutralne linije do linije glavne palube, m.

Slika 3.9 Model u Nauticus Hull

Prema izvješću iz Nauticus Hull (Tablica 3.11), neutralna linija presjeka nalazi se na visini 4,465 m od osnovice te moment inercije površine glavnog rebra oko osi y iznosi 12,069 m⁴. Iz toga slijedi da je moment otpora za dno jednak 2,703 m³, a moment otpora za palubu 1,876 m³. Zbog manje vrijednosti, za dimenzioniranje je mjerodavan palubni moment otpora.

Površina presjeka uzdužnih elemenata	11225	cm ²
Horizontalna udaljenost od centralne linije do vertikalne neutralne linije, Y _n	0	m
Vertikalna udaljenost od osnovice do horizontalne neutralne linije, Z _n	4,465	m
Vertikalni moment inercije, I _y	12,069	m^4
Horizontalni moment inercije, Iz	39,625	m^4
Moment otpora dna, W _D	2,703	m ³
Moment otpora palube, W _P	1,876	m ³
Statički moment površine presjeka elemenata uzdužne čvrstoće oko neutralne osi	5,324	m ³
I/S	2,267	m

Tablica 3.11 Svojstva presjeka iz programskog paketa NauticusHull

Moment otpora poprečnog presjeka trupa u području 0,4 L u srednjem dijelu broda ne smije biti manji od veličine dobivene po formuli (3.20):

HRB, Poglavlje 4.3.2
$$W = \frac{M_S + M_W}{\sigma} \cdot 10^{-3}, \ cm^3$$
 (3.20)

Gdje σ označava dopušteno naprezanje pri savijanju, te se dobiva po sljedećem izrazu:

$$\sigma = \frac{18,5\sqrt{L}}{k}, \text{ za L} < 90\text{m}$$
$$\sigma = 161,279 \text{ } N/mm^2$$

Iz čega slijedi:

$$W_{H_{min}} = \frac{M_{BH\,SW} + M_{WH}}{\sigma} \cdot 10^{-3} = 6,138 \cdot 10^5 \, cm^3 = 0,6138 \, m^3$$
$$W_{S_{min}} = \frac{M_{BS\,SW} + M_{WS}}{\sigma} \cdot 10^{-3} = 6,892 \cdot 10^5 \, cm^3 = 0,6892 \, m^3$$

Kriterij momenta otpora poprečnog presjeka trupa, propisan u poglavlju 4.3.2 HRB-a je ispunjen te se vrši provjera najmanjeg momenta otpora poprečnog presjeka prema poglavlju 4.3.4 iako projekt ne spada u duljinsku kategoriju zahtjeva. Stoga, moment otpora poprečnog presjeka trupa u području 0,4 L u srednjem dijelu broda ne smije ni u kojem slučaju biti manji od vrijednosti W_{min} dobivene prema (3.21):

HRB, Poglavlje 4.3.4
$$W_{min} = C_w \cdot L^2 \cdot B \cdot (C_B + 0.7)k, \ cm^3$$
 (3.21)
 $W_{min} = 8.491 \cdot 10^5 \ cm^3 = 0.8491 \ m^3$

Također, vidljivo je da je zadovoljen i minimalni moment inercije površine glavnog rebra koji je propisan izrazom (3.22):

HRB, Poglavlje 4.3.3
$$I_{min} = 3 \cdot \frac{L}{k} \cdot W_{min}, m^4$$
(3.22)

Te iznosi:

$$I_{min} = 1,936 \ m^4$$

3.9.3. Izvijanje

Unutar ovog poglavlja provjerava se sposobnost brodske konstrukcije da se odupre izvijanju uslijed globalnih uzdužnih naprezanja. Provjera uključuje brodski trup do visine Palube 3 koja je ujedno i paluba čvrstoće. Naknadno, nakon izvršene provjere uključenosti brodske strukture u uzdužnu čvrstoću, dodatno će se na izvijanje provjeriti opločenja iznad Palube 3 na osnovi direktno očitanih uzdužnih naprezanja iz analize metodom konačnih elemenata u petom poglavlju ovog rada.

Normalno, odnosno tlačno, naprezanje u limovima (σ_E) pri izvijanju panela u elastičnom području računa se po formuli (3.23):

HRB, Poglavlje 4.6.2.1.
$$\sigma_E = 0.9mE\left(\frac{t_b}{1000 \cdot b}\right)^2, N/mm^2$$
(3.23)

Za panele s uzdužnim elementima, koeficijent izvijanja, m računa se prema izrazu (3.24):

HRB, Poglavlje 4.6.2.1.
$$m = \frac{8,4}{\psi + 1,1}$$
 (3.24)

Dok za panele s uzdužnim elementima koeficijent izvijanja, m računa se po formuli (3.25):

HRB, Poglavlje 4.6.2.1.
$$m = c \left[1 + \left(\frac{b}{a}\right)^2\right]^2 \cdot \frac{8.4}{\psi + 1.1}$$
 (3.25)

Vrijednosti normalnih (tlačnih) naprezanja (σ_a) pri korištenju broda dobivaju se po izrazu (3.26):

HRB, Poglavlje 4.6.4.1.
$$\sigma_a = \frac{M_S + M_W}{I_n} \cdot y \cdot 10^5, N/mm^2$$
 (3.26)

No ne smiju se uzeti vrijednosti manje od iznosa dobivenih po izrazu (3.27):

HRB, Poglavlje 4.6.4.1.
$$\sigma_a > \frac{30}{k}$$
(3.27)

Normalno kritično naprezanje (σ_c) jednako je normalnom tlačnom naprezanju u limovima (σ_E) ako je:

HRB, Poglavlje 4.6.3.1.
$$\sigma_E \leq \frac{\sigma_F}{2}$$

Gdje je:

 σ_F – granica razvlačenja, N/mm²;

 $\sigma_F = 235 \text{ N/mm}^2$ za običan brodograđevni čelik, te $\sigma_F = 355 \text{ N/mm}^2$ za brodograđevni čelik povišene čvrstoće. Ako je normalno tlačno naprezanje u limovima (σ_E) veće od polovice vrijednosti granice razvlačenja (σ_E), onda se normalno kritično naprezanje (σ_c) računa prema izrazu (3.28):

HRB, Poglavlje 4.6.3.1.
$$\sigma_c = \sigma_F \left(1 - \frac{\sigma_F}{4\sigma_E} \right)$$
(3.28)

Pregled konačnih rezultata te vrijednosti i imena oznaka koji su korišteni pri izračunu gore navedenih izraza dani su u Tablici 3.12 za izvijanje uzdužno ukrepljenih limova, te u Tablici 3.12 za izvijanje poprečno ukrepljenih limova.

HRB, Poglavlje 4.6.2.1.1	Paluba 1	Paluba 2	Paluba 3				
modul elastičnosti materijala	Е	N/mm ²	206000				
koeficijent izvijanja	m	-	7,636				
smanjena debljina opločenja	t _b	mm	7,50	13,50	8,00		
duljina kraće stranice panela	b	m	1,2 2,4 1		1,2		
normalno (tlačno) naprezanje	σ_E	N/mm ²	55,30	44,80	62,92		

Tablica 3.12 Izvijanje uzdužno ukrepljenih limova

HRB, Poglavlje 4.6.4.1

moment savijanja broda na mirnoj vodi	Ms	kNm		-29430,00			
moment savijanja broda na valu	$M_{\rm w}$	kNm	-81720,00				
moment inercije glavnog rebra	In	cm ⁴	1206900000,0				
duljina u vertikalnom smjeru od neutralne osi do promatrane točke		m	2,265	0,435	3,635		
koeficijent materijala		-	1,00	1,00	0,72		
normalno (tlačno) naprezanje		N/mm ²	20,86	4,01	33,48		
Ali normalna (tlačna) naprezanja ne uzima iznosa dobivenog po izrazu (3.29):	$\sigma_a > \frac{30}{k}$		(3.29)				
usvojeno normalno (tlačno) naprezanje		N/mm ²	30	30	41,6		

			Paluba 1	Paluba 2	Paluba 3
HRB, Poglavlje 4.6.3.1	σ_F	N/mm ²	235	235	355
	$\frac{\sigma_F}{2}$	N/mm ²	117,5	117,5	177,5

$$\sigma_c = \sigma_E$$
 ako je $\sigma_E \leq \frac{\sigma_F}{2}$

		$\sigma_E \leq \frac{\sigma_F}{2}$	DA	DA	DA
Projektno naprezanje, $\sigma_c = \sigma_E$	σ_c	N/mm ²	55,30	44,80	62,92

			Paluba 1	Paluba 2	Paluba 3
HRB, Poglavlje 4.6.5.1	β	-		1	
	$\beta\sigma_a$	N/mm ²	30	30	41,6
		$\sigma_{\mathcal{C}} \geq \beta \cdot \sigma_a$	DA	DA	DA

Tablica 3.13 Izvijanje poprečno ukrepljenih limova

HRB, Poglavlje 4.6.2.1.1	Paluba 1 - Uzdužna pregrada 6600 mm od CL	Paluba 2 – Bok (9000 mm od CL)	Paluba 3 - Unutarnja rebra salona (Uzdužna pregrada 5400 mm od CL)	Paluba 3 - Vanjska rebra salona (9000 mm od CL)			
modul elastičnosti materijala	Е	N/mm ²	206000				
koeficijent izvijanja	m	-	1,590	1,297	2,368	2,368	
smanjena debljina opločenja	t _b	mm	6,50	8,00	6,50	8,00	
duljina kraće stranice panela	b	m	0,6	0,6	0,6	0,6	
duljina dulje stranice panela	а	m	2,7	3,2	0,95	0,95	
koeficijent korekcije	с	-	1,1	1,21	1,21	1,21	
normalno (tlačno) naprezanje	σ_E	N/mm ²	34,59	42,74	51,52	78,04	

HRB, Poglavlje 4.6.4.1		Paluba 1 - Uzdužna pregrada 6600 mm od CL	Paluba 2 – Bok (9000 mm od CL)	Paluba 3 - Unutarnja rebra salona (Uzdužna pregrada 5400 mm od CL)	Paluba 3 - Vanjska rebra salona (9000 mm od CL)		
moment savijanja broda na mirnoj vodi M _s kNm			-29430,00				
moment savijanja broda na valu	$M_{\rm w}$	kNm	-81720,00				
moment inercije glavnog rebra	In	cm ⁴	1206900000,0				
duljina u vertikalnom smjeru od neutralne osi do promatrane točke	у	m	-1,750	-1,11	5,193	5,927	
koeficijent materijala	k	-	1,00				
normalno (tlačno) naprezanje	σa	N/mm ²	16,12 10,22 47,83			54,58	
Ali normalna (tlačna) naprezanj manje od iznosa dobivenog po i	a ne uz zrazu (zimaju se (3.30):	$\sigma_a > \frac{30}{k}$			(3.30)	
usvojeno normalno (tlačno) naprezanje	σ_a	N/mm ²	30,00	30,00	47,83	54,58	

σ_F	N/mm ²	235
$\frac{\sigma_F}{2}$	N/mm ²	117,5

 $\sigma_c = \sigma_E$ ako je $\sigma_E \leq \frac{\sigma_F}{2}$

HRB, Poglavlje 4.6.3.1

	$\sigma_E \leq \frac{\sigma_F}{2}$		DA	DA	DA	DA
Projektno naprezanje, $\sigma_c = \sigma_E$	σ_c	N/mm ²	34,59	42,74	51,52	78,04

HRR	Poglavlie 4651
m,	1 0 510 110 4.0.5.1

β	-	1						
$\beta \sigma_a$	N/mm ²	30,00	30,00	47,83	54,58			
$\sigma_C \geq$	$\beta \cdot \sigma_a$	DA	DA	DA	DA			

Inicijalno projektno naprezanje σ_c pri izvijanju limova unutarnjih i vanjskih rebara salona na trećoj palubi bez ukrepa nije bilo u skladu s izrazom $\sigma_c \ge \beta \cdot \sigma_a$, stoga ih je bilo potrebno još dodatno

učvrstiti protiv izvijanja. Zato su na unutarnjim rebrima salona postavljene dvije ukrepe protiv izvijanja FB 75 x 8 mm, dok su na vanjskim rebrima salona postavljena dva holland profila dimenzija HP 120 x 8 mm. Iz prethodne tablice je vidljivo da je uvjet zadovoljen.
4. PRORAČUN I PROVJERA STRUKTURNIH ELEMENATA PRIMJENOM DNV 3D-BEAM PROGRAMSKOG ALATA

4.1. Programski alat 3D-Beam

DNV 3D Beam (Slika 4.1) je aplikacija za linearnu statičku analizu 2D i 3D okvirnih struktura razvijena od strane DNV GL te se distribuira kao dio programa Nauticus.

Slika 4.1 Nauticus 3D Beam programski alat

Primarna struktura broda idealizira se u gredni model gdje je okvir konstrukcije idealiziran čvorovima, gredama i nosačima. Program se temelji na metodi matričnog pomaka. Elastične grede se analiziraju kao tzv. Timošenkove grede što podrazumijeva da je kut između linije grede i normale poprečnog presjeka proporcionalan posmičnoj sili. Timošenkova teorija savijanja greda upotrebljava se kod greda znatno većih debljina gdje utjecaj smika nije zanemariv. Premisa Timošenkove teorije savijanja grede je da poprečni presjeci ostaju ravni, no uslijed kutne deformacije koja je rezultat smičnog naprezanja dolazi do deplanacije te poprečni presjek nije više okomit na elastičnu liniju.

Kod proračuna čvrstoće, stvarnu brodsku konstrukciju nadomještamo matematičkim modelom. Dio konstrukcije koji se proračunava se izdvaja te se elementi koji nisu od velikog značaja zanemaruju, a utjecaj preostalog djela konstrukcije se nadomještava rubnim uvjetima. Što je matematički model vjerniji stvarnoj konstrukciji i njenoj geometriji te opterećenjima, to će rezultati izračuna biti točniji. [4]

Izrađena su tri zasebna modela u 3D-Beam programskom alatu: rešetkasti model primarne strukture glavne palube, model okvira boka garažnog prostora i nadgrađa te model rebrenice pomoću kojeg se ispitalo naprezanje strukture dna uslijed dokovanja.

Svi 3D Beam modeli izrađeni na temelju dimenzija proračunatih prethodnim poglavljem te prema nacrtu glavnog rebra iz Dodatka B.

4.2. Rešetkasta primarna struktura glavne palube

Paluba 2, na visini od 4900 mm od osnovice ujedno je i glavna paluba. Za potrebe proračuna modelirana je primarna struktura paralelnog srednjaka glavne palube od rebra -16 do rebra 16 (Slika 4.2). Rešetkastu primarnu strukturu glavne palube čini više ukrižanih greda istih karakteristika tj. riječ je o T profilima okvirnih sponja i palubnih proveza dimenzija struka 550 x 15 mm te flanže 250 x 22 mm. Detaljne informacije o samom modelu prikazane su u Dodatku C.

Radi visinskih ograničenja u području donje garaže korišten je brodograđevni čelik povišene čvrstoće s granicom razvlačenja $R_{eH} = 355 N/mm^2$, kako bi se maksimalno reducirala visina struka okvirnih sponja.

Slika 4.2 3D Beam model primarnih strukturnih elemenata glavne palube

Numeracija greda i čvorova modela prikazana je na slici niže. Svijetloplavi brojevi označavaju broj čvora, dok su brojevi greda označeni tamnoplavom bojom.

Slika 4.3 Numeracija čvorova i greda modela glavne palube

4.2.1. Opterećenje računskog modela primarne strukture glavne palube

Opterećenje je sačinjeno kao kombinacija tri osnovna opterećenja:

- LC1 Vlastita težina,
- LC2 Statičko maksimalno osovinsko opterećenje,
- LC3 Dinamičko opterećenje uslijed maksimalnih vertikalnih akceleracija.

Palubna struktura je potom u slučaju opterećenja LC2 transverzno opterećena silom od 44 N/mm (Slika 4.4) što simulira osovinsko opterećenje najtežeg predviđenog tipa tereta koje će trajekt prevoziti tj. predstavlja opterećenje kamiona. U slučaju opterećenja LC3 glavna paluba opterećena je dinamički.

Slika 4.4 Opterećenja na model

4.2.2. Rubni uvjeti

Slika 4.5 Rubni uvjeti

Rubni uvjeti modela glavne palube prikazani su na prethodnoj slici te u tablici niže. Na spoju okvirnih sponja sa jakim okvirima boka zaključane su svih 6 sloboda kretanja, dok su na uzdužne nosače primijenjeni rubni uvjeti koji sprječavaju uzdužnu translaciju i poprečnu rotaciju nosača iz razloga njihove kontinuiranosti izvan granica računskog modela.

		R0, R4, R8, R12, R16,	L0,
		R-4, R-8, R-12, R-16	L-8, L8
Tree - 1 1 1 - 1 - 1 - 1	Х	fiksni	fiksni
pomak	Y	fiksni	slobodan
	Z	fiksni	slobodan
D ("1"	Х	fiksni	slobodan
pomak	Y	fiksni	fiksni
	Z	fiksni	slobodan

Tablica 4.1 Rubni uvjeti modela rešetkaste primarne strukture glavne palube

4.2.3. Dopuštene vrijednosti naprezanja

Rezultati dobiveni analizom naprezanja u 3D-Beam programskom alatu moraju biti manja od maksimalno dopuštenih vrijednosti naprezanja prikazanih Tablicom 4.2 kako bi pravila Registra bila zadovoljena.

Tablica 4.2 Dopuštene vrijednosti naprezanja brodograđevnog čelika povišene čvrstoće

	σ, N/mm ²	σ_{ekv} , N/mm ²	τ , N/mm ²
Maksimalno dopuštene vrijednosti naprezanja	208	250	138

4.2.4. Rezultati

Dimenzije primarnih strukturnih elemenata glavne palube pomoću programskog alata 3D Beam provjerene su prema HRB pravilima. Iz tablica "Beam Stresses" i "Effective Stress" u Dodatku C vidimo da su sve vrijednosti naprezanja ispod maksimalno dopuštenih vrijednosti naprezanja brodograđevnog čelika povišene čvrstoće navedenih tablično u prethodnom poglavlju, stoga zaključujemo da roštiljna konstrukcija glavne palube zadovoljava uvjete čvrstoće te da je ispravno dimenzionirana.

Na slici niže prikazan je pomak konstrukcije glavne palube uslijed opterećenja. Kao što se moglo i očekivati, najveći pomak u iznosu od 13,807 mm je na sredini u negativnom smjeru osi z.

Slika 4.6 Pomak strukture glavne palube

4.3. Okvir boka garažnog prostora i nadgrađe

Za potrebe proračuna okvira boka garažnog prostora modeliran je paralelni srednjak trajekta od rebra -16 do rebra 16 te po visini od glavne palube na visini od 4900 mm sve do kormilarnice na visini od 18000 mm. Model je simetričan s obzirom na glavno rebro te je prikazan na Slici 4.7. Struktura kormilarnice i protuljuljnog tanka predstavljena je pojednostavljeno kako bi se uzelo u obzir maseno opterećenje na strukturu ispod. Proračun primarne strukture kormilarnice i protuljuljnog tanka bit će zasebno izveden u kasnijoj projektnoj fazi koja nije dio fokusa ovog rada.

Slika 4.7 Model okvira boka garažnog prostora

Slika 4.8 Prikaz modela okvira boka u xy i xz ravninama

4.3.1. Rubni uvjeti

Primjenom rubnih uvjeta sprečavaju se translacijski i rotacijski pomaci modela kao krutog tijela te su prikazani na Slici 4.9 te tablično u Tablici 4.3. Oslonci su postavljeni na jaku strukturu glavne palube radi preuzimanja mogućih sila reakcija.

		R0, R4, R8, R12, R16,	R2, R6, R10, R14	
		R-4, R-8, R-12, R-16	R-2, R-6, R-10, R-14	
T 1 ··· 1 ·	Х	fiksni	fiksni	
pomak	Y	fiksni	fiksni	
	Z	fiksni	fiksni	
D (11)	Х	fiksni	fiksni	
Rotacijski	Y	fiksni	slobodan	
poinak	Ζ	fiksni	slobodan	

Tablica 4.3 Rubni uvjeti modela okvira boka

Slika 4.9 Rubni uvjeti modela okvira boka

4.3.2. Opterećenje okvira boka garažnog prostora i nadgrađa

Na model okvira boka garažnog prostora aplicirana su sljedeća tri slučaja opterećenja:

- LC1 Poprečno akceleracijsko polje
- LC2 Palubna opterećenja i vlastita težina
- LC3 Opterećenje od vjetra

Poprečno akceleracijsko polje koje je primijenjeno na model izračunato je prema poglavlju 3.5 pravila Hrvatskog registra brodova, te bezdimenzijska komponenta poprečnog ubrzanja (okomito na bok) uslijed zanošenja, zaošijanja i valjanja iznosi:

$$a_v = 0,645$$

Bezdimenzijska komponenta poprečnog ubrzanja zatim se množi s gravitacijskim ubrzanjem:

$$a_{\nu} = 0,645 \cdot 9,81 = 6,327 \ m/s^2$$
.

Drugi slučaj opterećenja, LC2, uključuje palubno opterećenje te vlastitu težinu konstrukcije. Sve mase predstavljene su skaliranjem gustoće materijala kako bi odgovarale stvarnim masama na brodu. Faktor masa dobiven je kao kvocijent stvarne mase dobivene iz knjige centracija masa i početne mase modela u 3D Beamu, potom je gustoća materijala korigirana. Korigirana gustoća, u kg/m³, prikazana je na 31. stranici Dodatka D, u stupcu *Density* tablice *Materials*.

Kod palubnog opterećenja, prikazanih na Slici 4.10, na jedan poprečni okvir nanosi se opterećenje koje se nalazi na jednom okvirnom razmaku. Također, u obzir se mora uzeti i težina vode na izloženim palubama uslijed valova i nemirnog mora.

Slika 4.10 Palubna opterećenja

Nadalje, brod mora imati sposobnost da podnese djelovanje loših vremenskih uvjeta. Glavni primjer je jak bočni vjetar. Utjecaj vjetra na brod ovisi o lateralnoj površini tj. o površini iznad vodne linije te o brzini i smjeru vjetra. Stoga, brodovi s većim nadgrađima su izloženiji utjecaju vjetra. Za potrebe ovog rada, u trećem slučaju opterećenja LC3 (Slika 4.11), utjecaj vjetra određen je za tri različita područja u ovisnosti o sunosivoj površini pod utjecajem vjetra, a prema sljedećoj formuli (4.1):

$$F_{vj} = \frac{1}{2} \cdot \rho_{zr} \cdot v^2 \cdot A \tag{4.1}$$

		Paluba 2 - Paluba 4 Paluba 4 - Paluba 5		Kormilarnica		
Jedinična površina	A [m]	1,2	2,4	1,68		
Gustoća zraka	$\rho_{zr} [kg/m^3]$	1,22				
Brzina vjetra	v [m/s]	30				
Opterećenje od	F _{vj} [N/m]	658,8	1317,6	924,8		
vjetra	F _{vj} [N/mm]	0,6588	1,3176	0,9248		

Tablica 4.4 Proračun linearnih opterećenja vjetra

Slika 4.11 Opterećenje od vjetra

4.3.3. Dopuštene vrijednosti naprezanja

Kriteriji prihvatljivosti za brodograđevni čelik normalne čvrstoće su:

$$\sigma = 150 N/mm^2$$

 $\sigma_{ekv} = 180 N/mm^2$ $\tau = 100 N/mm^2$

Kriteriji prihvatljivosti za brodograđevni čelik povišene čvrstoće (čelik granice razvlačenja 355 N/mm²) su:

 $\sigma = 208 N/mm^{2}$ $\sigma_{ekv} = 250 N/mm^{2}$ $\tau = 138 N/mm^{2}$

4.3.4. Rezultati

U Dodatku D vidljivo je da svi elementi, osim greda broj 307 i 310, zadovoljavaju prethodno navedene kriterije. Grede 307 i 310 modelirane su kao čeone pregrade salona na četvrtoj palubi, no u stvarnosti su dio nosača koji predstavlja poprečnu pregradu velike krutosti. Samim time rezultirajuća naprezanja nisu realna te će biti provjerena metodom konačnih elemenata u sljedećoj projektnoj fazi koja nije dio fokusa ovog rada. Pomak strukture nakon primjene tri slučaja opterećenja prikazan je na slici niže.

Slika 4.12 Pomak strukture nakon aplikacije tri slučaja opterećenja

Poprečno klimanje broda (eng. racking) je kritično kod trajekata zato što je se veza nadgrađa s trupom ostvaruje samo preko strukture oplate boka. Ovaj problem je najizraženiji u slučajevima valjanja trupa broda u kombinaciji s visokim brzinama bočnog vjetra. Rješenje prethodno navedenog problema su jaki okvirni nosači boka.

4.4. Naprezanje strukture dna uslijed dokovanja

S obzirom na veliku visinu dvodna provjera strukture dna uslijed dokovanja će biti izvedena na razini jedne rebrenice. Očekivane razine naprezanja su vrlo niske, uz monotonu strukturu dna, te stoga nema potrebe za razvijanjem trodimenzionalnog modela. Za potrebe provjere načinjen je raniji plan dokovanja sa marginom na inicijalno izračunatu istisninu pri dokovanju od 25%. Spomenuta margina uključuje eventualnu nepreciznost pri ranom određivanju istisnine, kao i nejednakosti u intenzitetu sile pojedinog oslanjanja.

$$\Delta = 1500 \cdot 1,25 = 1875 t$$

4.4.1. Opterećenje strukture dna uslijed dokovanja

Cijelo opterećenje prilikom dokovanja je za potrebe ovog proračuna distribuirano u centralnoj liniji, gdje se nalazi 29 potklada dimenzija 1200 x 500 mm (Slika 4.13). Za bočnu stabilnost postavljaju se potklade izvan područja centralne linije, a u području poprečnih ili uzdužnih pregrada. Prilikom dokovanja, težinu broda preuzimaju potklade. Sila u potkladama prilikom dokovanja izračunata je prema sljedećem izrazu (4.2):

$$Pz_{dok} = \frac{\Delta}{n},\tag{4.2}$$

gdje je n broj potklada u centralnoj liniji tj. n = 29.

$$Pz_{dok} \approx 65 t = 637650 N$$

Slika 4.13 Plan potklada

Model rebrenice je stoga opterećen silom od 637,65 kN u centralnoj liniji kako bi se simulirala sila pri dokovanju (Slika 4.14). Kao i u prethodnom poglavlju, brojevi čvorova prikazani su svijetloplavim brojevima, a grede su numerirane tamnoplavim brojevima.

Slika 4.14 Rebrenica opterećenja silom dokovanja

Konzervativno je zanemaren doprinos primarne uzdužne strukture dna. Proračun je izveden za rebra gdje su rebrenice propusne jer je situacija u tom slučaju nepovoljnija nego u usporedbi s nepropusnim rebrenicama. Nepovoljnija situacija proizlazi iz smanjenog ekvivalentnog momenta inercije nosača te smanjene ekvivalentne debljine struka u slučaju nepropusne rebrenice koja tipično ima izreze u limu struka.

4.4.2. Rubni uvjeti

Postavljeni rubni uvjeti fiksni na sve rotacijske i translacijske pomake na 6600 mm od centralne linije (L11 i L-11), ova točka predstavlja oslonac rebrenice u vidu uzdužne pregrade trupa. Detalji rubnih uvjeta prikazani su u Tablici 4.5 te na Slici 4.15.

		L11, L-11
Tree - 1 1 1 - 1 - 1	Х	fiksni
pomak	Y	fiksni
	Z	fiksni
Rotacijski pomak	Х	fiksni
	Y	fiksni
	Z	fiksni

Tablica 4.5 Rubni uvjeti modela prilikom dokovanja

Slika 4.15 Rubni uvjeti modela rebrenice

4.4.3. Dopuštene vrijednosti naprezanja i rezultati

Iz Tablice "Beam Stresses" na šestoj stranici Dodatka E vidljivo je da su najveća naprezanja smična. Maksimalno smično naprezanje od 72 N/mm² u usporedbi s maksimalnim dopuštenim naprezanjima iz Tablice 4.6 potvrđuje prethodnu pretpostavku da su razine naprezanja zadovoljavajuće te da nema potrebe za razvijanjem trodimenzionalnog modela.

Tablica 4.6 Maksimalno dopuštene vrijednosti naprezanja

	σ , N/mm ²	σ_{ekv} , N/mm ²	τ , N/mm ²
Maksimalno dopuštene vrijednosti naprezanja	150	180	100

Dijagram smičnih sila kod dokovanja te pomak strukture dna uslijed dokovanja prikazani su na slikama niže.

Slika 4.16 Dijagram smičnih sila kod dokovanja

Očekivano, najveći pomak strukture (Slika 4.17) je na sredini tj. u centralnoj liniji broda gdje su potklade i postavljene te iznosi 6,273 mm.

Slika 4.17 Pomak strukture dna uslijed dokovanja

5. PROVJERA STRUKTURE METODOM KONAČNIH ELEMENATA

Danas u inženjerskim proračunima primjena metode konačnih elemenata (MKE) je neizbježna. Zbog mnoštva računskih operacija, analiziranje strukture metodom konačnih elemenata jedino ima smisla obradom u nekom računalnom programu. Shodno tome, postoje brojni računalni programi koji se temelje na ovoj metodi te omogućuju relativno brzu i jednostavnu analizu brodskih konstrukcija. Pri tome nije riječ samo o formiranju i rješavanju matematičkih operacija, već i o prezentaciji rezultata te generiranju podataka. [5]

Kako je metoda konačnih elemenata numerička metoda, dobiveni rezultati nisu egzaktni, već su približni. Drugim riječima, stvarnim vrijednostima moguće se samo približiti uporabom pravilnog proračunskog modela te uz ispravno odabrane tipove konačnih elemenata. Slijedom toga, uz dobro poznavanje teorijske osnove konačnih elemenata, izuzetno je važno i poznavanje fizikalnog ponašanja same konstrukcije koja je predmet analize.

Suvremena metoda provjere dimenzioniranja strukturnih elemenata je izrada modela cijelog ili pojedinih dijelova broda u programskom alatu koji se koristi metodom konačnih elemenata. Ako su parcijalni modeli modelirani ispravno, te ako su precizno oslonjeni i opterećeni, rezultati će biti vrlo blizu rezultatima dobivenim analizom globalnog trodimenzionalnog modela. No, za potrebe izrade detaljnih izvještaja koji se potom šalju na potvrdu klasifikacijskom društvu potrebno je napraviti cijeli model. Za potrebe ovog rada trajekt će biti modeliran djelomično tj. od rebra -36 do rebra 36, no analizirat će se samo raspodjela globalnih uzdužnih naprezanja u paralelnom srednjaku.

Diskretizacija kontinuuma je temelj numerike metode konačnih elemenata. Diskretni model međusobno povezanih elemenata s ograničenim stupnjevima slobode zamjenjuje razmatrani kontinuum s beskonačno stupnjeva slobode gibanja. Razmatrani kontinuum dijeljenjem na konačan broj potpodručja postaje mreža konačnih elemenata. Što je mreža gušća ili drugim riječima što je broj konačnih elemenata veći, rješenje je točnije. Karakteristične veličine prvo se izračunavaju lokalno tj. zasebno u svakom konačnom elementu te potom se odgovarajućim transformacijama mogu izračunati globalno za čitavu konstrukciju.

Rad programskih alata koji se temelje na metodi konačnih elemenata možemo podijeliti u tri radne faze, a to su prethodna obrada (eng. pre-processing), simulacija (eng. processing) te naknadna obrada (eng. post-processing). Kao alat za pre-processing korišten je program GeniE, alat za processing Sestra te kao alat za post-processing korišten program Xtract.

Programski modul Sestra (eng. Superelement Structural Analysis) koristi metodu konačnih elemenata za linearnu strukturnu analizu. Prethodno izrađeni model u GeniE-u upotrebljava kao ulazni podatak i generira matricu krutosti koju potom rješava.

Metoda konačnih elemenata zapravo služi kao alat za potvrdu pretpostavki. Cilj je provjeriti raspodjelu globalnih uzdužnih naprezanja paralelnog srednjaka uslijed uzdužnog opterećenja momenata primjenom metode konačnih elemenata. Nadalje, metodom konačnih elemenata potvrdit će se pretpostavka efektivnih strukturnih elemenata u uzdužnoj čvrstoći brodskog trupa te će se posljedično provjeriti čvrstoća djelomično uključenih strukturnih elemenata u uzdužnoj čvrstoći brodskog trupa

5.1. Izrada modela

Model trajekta izrađen u GeniE programskom paketu prikazan je na Slici 5.1, a modeliran je prema prethodno proračunatim strukturnim dimenzijama iz trećeg poglavlja ovog rada tj. prema nacrtu glavnog rebra iz Dodatka B.

Model je smješten u radni prostor programa prema standardnoj brodograđevnoj praksi. Ishodište koordinatnog sustava nalazi se u sjecištu osnovice s centralnom ravninom. Os x definirana je u uzdužnom smjeru, pozitivne orijentacije prema pramcu. Os y definirana je u poprečnom smjeru, pozitivnog usmjerenja prema lijevom boku. Globalna os z definirana je u vertikalnom smjeru s pozitivnim smjerom od osnovice prema nadgrađu broda. Na slici modela trajekta prikazan je koordinatni sustav koji u ovom slučaju nije postavljen u ishodištu, no može koristiti za bolje razumijevanje orijentacije istog.

Slika 5.1 Model trajekta izrađen u GeniE programskom paketu

Struktura uključena u model obuhvaća glavne konstruktivne elemente kao što su opločenja paluba, kobilica, hrptenica, podveze, bočni nosači, poprečna bočna rebra, rebrenice u dvodnu i transverze, te sekundarne strukturne elemente kao što su uzdužnjaci dvodna, glavne i gornjih paluba. Dvije korištene vrste materijala su obični brodograđevni čelik te brodograđevni čelik povišene čvrstoće (Tablica 5.1).

Brodograđevni čelik	Granica razvlačenja	Gustoća	Young-ov modul elastičnosti materijala	Poissonov koeficijent
	R _{eH} , MPa	t/mm ³	E, MPa	ν
Običan	235	7,85·10 ⁻⁹	210000	0,3
Povišene čvrstoće	355	7,85.10-9	210000	0,3

Tablica 5.1	Karakteristike	upotrieblienih	materiiala
1 000000 0.1	iiiii cherer istrice	uponjeotjenun	manerigana

5.2. Rubni uvjeti i opterećenje

Rubni uvjeti uzeti su prema ShipRight procedurama iz Lloyd Registra te su prikazani u Tablici 5.2 i na Slici 5.2. U svrhu minimiziranja utjecaja rubnih uvjeta na odziv konstrukcije, oslonci su postavljeni u sjecištima jakih strukturnih elemenata. Iz tog razloga su poprečna tj. transverzalna ograničenja postavljena na poprečne pregrade na rebrima +12 i -12 te na samim krajevima modela (Slika 5.3 i Slika 5.4).

Tablica 5.2 Rubni uvjeti za globalna naprezanja na savijanje [6]

	Translacija			Rotacija		
Pozicija	δ_{x}	δ_y	δ_z	θ_{x}	θ_y	θ_z
Ograničenja na krajevima modela						
Krmeni kraj	L	-	-	-	L	L
Pramčani kraj	L	-	-	-	L	L
Neovisna točka na krmenom kraju	•				Μ	•
Neovisna točka na pramčanom kraju	-				Μ	•
Poprečna (transverzalna) ograničenja	a					
Točke K,L	-	•	-	-	-	-
Vertikalna ograničenja						
Točke G, H, I, J	-	-	•	_	-	_

Simboli

- ograničeno (fiksno)
- ograničenje (fiksno) može biti potrebno za uklanjanje matematičkih singularnosti
- nema ograničenja (slobodno)
- L kruto povezano s neovisnom točkom na neutralnoj osi u središnjoj liniji
- M primijenjen moment savijanja na neovisnu točku

Slika 5.2 Rubni uvjeti MKE modela prema Lloyd Registru [6]

Slika 5.3 Rubni uvjeti MKE modela; pogled s pramca

Slika 5.4 Rubni uvjeti MKE modela; pogled s boka

Na model trajekta primijenjena su dva slučaja opterećenja:

- LC 1 brod u pregibu (eng. hogging)
- LC 2 brod u progibu (eng. sagging)

Za potrebe nanošenja slučajeva opterećenja za stanje pregiba i progiba potrebno je dobiti ukupni moment savijanja za svako stanje. Ukupan pregibni moment savijanja jednak je zbroju pregibnog momenta savijanja na mirnoj vodi (M_{BH SW}) i pregibnog momenta savijanja na valovitoj vodi (M_{WH}). Analogno tome, ukupan progibni moment savijanja jednak je zbroju progibnog momenta savijanja na mirnoj vodi (M_{BS SW}) i progibnog momenta savijanja na valovitoj vodi (M_{WS}). Stoga, konačni slučajevi opterećenja MKE modela za stanja pregiba i progiba prikazani su u Tablici 5.3.

		K	oordinate, m	m N/mm	
		Х	У	Z	111y, 1N/11111
LC1 brod u pregibu	21600	0	3374	9,899·10 ¹⁰	
	biou u pregibu	-21600	0	3374	-9,899·10 ¹⁰
LC2 has dry gas silvy		21600	0	3374	-1,1115·10 ¹¹
LC2	brod u progibu	-21600	0	3374	1,1115·10 ¹¹

Tablica 5.3 Slučajevi opterećenja MKE modela

Jedna od karakteristika protočnih trajekata je da su uvijek u stanju pregiba na mirnoj vodi, a uzrok tome je prilično ravnomjerna raspodjela vlastite težine po dužini broda te oblik. Odnosno imaju višak uzgona u sredini te višak težine na krajevima broda. Posljedica takve raspodjele statičkog opterećenja obično je opterećenost vrlo velikim momentom savijanja na mirnoj vodi. Upravo kombinacija najvećeg momenta savijanja na mirnoj vodi i najvećeg momenta savijanja na valovima daje najveća uzdužna naprezanja.

S druge strane, varijanta najmanjeg momenta savijanja na mirnoj vodi i najvećeg momenta savijanja na valovima rezultira pojavom tlačnih naprezanja u gornjim palubama što treba izbjegavati. Naime, kako je nadgrađe četvrte palube izrađeno od tankih ploča debljine 7 mm, njihovu strukturu treba provjeriti na izvijanje.

Mreža je generirana automatski. Kao preferenca pri izradi mreže izabrani su kvadratni elementi. Odabrana duljina elemenata mreže iznosi 300 mm radi matematičke pogodnosti s rebrenim razmacima koji su 600 mm te se pokazala kao prikladni izbor.

5.3. Rezultati metode konačnih elemenata

Nakon modeliranja, nanošenja dva slučaja opterećenja i definiranja rubnih uvjeta provedena je linearno statička analiza. Xtract je dio programskog paketa Sesam koji služi za vizualnu prezentaciju rezultata, animaciju te za izradu izvješća o rezultatima.

Iako je u programu GeniE trajekt modeliran od rebra -36 do rebra 36, u programu Xtract analizirat će se samo naprezanja u području paralelnog srednjaka tj. područje od rebra -18 do rebra 18 kako bi se izbjegla područja blizu utjecaja rubnih uvjeta, gdje bi rezultati bili nerealni.

Dijelove strukture moguće je složiti u skupine tj. setove te na taj način osim analize globalnog modela, moguće je provjeriti naprezanja samo u određenoj skupini elemenata, primjerice glavna paluba, nadgrađe, oplata i sl. Također, raspon ljestvice naprezanja moguće je podesiti prema željenom opsegu. U ovom slučaju podešeno je da tople boje (crvena, narančasta i žuta) prikazuju pozitivna naprezanja, dok hladne boje (različite nijanse plave) prikazuju negativna naprezanja. Kao atribut prikaza rezultata izabran je tzv. D-STRESS koji sadrži raščlanjena naprezanja. Točnije, analizirana su SIGMX (σ_{Mx}) naprezanja u smjeru lokalne x-osi.

5.3.1. Pregibno stanje

U pregibnom stanju broda vlačna naprezanja se pojavljuju na palubi, dok se u dnu pojavljuju tlačna naprezanja.

Slika 5.5 Naprezanja σ_x MKE modela u stanju pregiba

Slika 5.6 Naprezanja σ_x u paralelnom srednjaku Palube 1 u stanju pregiba

Slika 5.7 Naprezanja σ_x u paralelnom srednjaku glavne palube (Paluba 2) u stanju pregiba

Slika 5.8 Naprezanja σ_x u paralelnom srednjaku palube čvrstoće (Paluba 3) u stanju pregiba

Slika 5.9 Naprezanja σ_x u paralelnom srednjaku Palube 4 u stanju pregiba

Slika 5.10 Naprezanja σ_x u nadgrađu u stanju pregiba

Slika 5.11 Naprezanja σ_x oplate paralelnog srednjaka u stanju pregiba

Slika 5.12 Naprezanja σ_x uzdužne stijene salona na Palubi 3 u stanju pregiba

Slika 5.13 Naprezanja σ_x u paralelnom srednjaku u stanju pregiba - pogled odozgo

Slika 5.14 Naprezanja σ_x u paralelnom srednjaku u stanju pregiba - pogled odozdo

5.3.2. Progibno stanje

S druge strane, kod progibnog stanja broda na palubi se pojavljuju tlačna naprezanja, a u dnu vlačna naprezanja.

Slika 5.15 Naprezanja σ_x MKE modela u stanju progiba

Slika 5.16 Naprezanja σ_x u paralelnom srednjaku Palube 1 u stanju progiba

Slika 5.17 Naprezanja σ_x u paralelnom srednjaku glavne palube (Paluba 2) u stanju progiba

Slika 5.18 Naprezanja σ_x u paralelnom srednjaku palube čvrstoće (Paluba 3) u stanju progiba

Slika 5.19 Naprezanja σ_x u paralelnom srednjaku Palube 4 u stanju progiba

Slika 5.20 Naprezanja σ_x u nadgrađu u stanju progiba

Slika 5.21 Naprezanja σ_x oplate paralelnog srednjaka u stanju progiba

Slika 5.22 Naprezanja σ_x uzdužne stijene salona na Palubi 3 u stanju progiba

Slika 5.23 Naprezanja σ_x u paralelnom srednjaku u stanju progiba - pogled odozgo

Slika 5.24 Naprezanja σ_x u paralelnom srednjaku u stanju progiba - pogled odozdo

5.3.3. Provjera uključenosti brodske strukture u uzdužnu čvrstoću broda

MKE analiza brodskog trupa dokazuje djelomičnu uključenost brodske strukture i iznad Palube 3 koja je inicijalno proglašena palubom čvrstoće. Iz tog razloga potrebno je provjeriti strukturnu stabilnost iste uslijed maksimalnog uzdužnog momenta a kako bi se izbjegla pojava elastičnog izvijanja opločenja uslijed maksimalnih opterećenja. Slijedom toga, iterativnom metodom faktoriziranja uključenosti strukture iznad palube čvrstoće dolazimo do zaključka da je uzdužna pregrada salona te vanjske oplate iznad Palube 3 uključenosti određen je kalibracijom naprezanja proizašlih iz karakteristika poprečnog presjeka izračunatih kroz Nauticus Hull s rezultantnim naprezanjima proizašlih iz analize metodom konačnih elemenata.

Slika 5.25 Naprezanja Palube 4

Na slici 5.25 prikazana su naprezanja Palube 4. Ukoliko se pozornost obrati na vrijednosti označene sa SIGMX vidljivo je da je njihova srednja vrijednost 27,35 N/mm².

Vertikalni moment inercije, Iy (bruto, eng. gross)	Ι	12,89	m^4
Vertikalna udaljenost od osnovice do horizontalne neutralne linije	Zn	4,485	m
Moment savijanja	M_{h}	98,99	Nm
Naprezanje Palube 4 (10900 mm od osnovice); uključenost 55%	$\sigma_{10,9}$	27,1	N/mm ²
Naprezanje Palube 3 (8100 mm od osnovice)	$\sigma_{8,1}$	27,8	N/mm ²
Naprezanje dna	σ_{dno}	34,4	N/mm ²

Tablica 5.4 Uključenost Palube 4

Promatramo koliko gornja Paluba 4 sudjeluje u globalnom savijanju grede, stoga $\sigma_{10,9}$ određujemo prema izrazu (5.1):

$$\sigma = \frac{M_h(10,9-Z_n)}{I} \cdot 0,55 \tag{5.1}$$

Usporedbom naprezanja za različite postotke uključenosti četvrte palube s naprezanjima dobivenih MKE modelom (Slika 5.25) može se utvrditi da uključenost četvrte palube u uzdužnoj čvrstoći broda iznosi oko 55%. U tom slučaju naprezanje Palube 4 iznosi 27,1 N/mm² (Tablica 5.4) što odgovara srednjoj vrijednosti naprezanjima Palube 4 MKE modela.

Kako Paluba 4 ipak djelomično sudjeluje u uzdužnoj čvrstoći, potrebno ju je stabilizirati na izvijanje sukladno Poglavlju 4.6 Hrvatskog registra brodova tj. prema izrazima iz poglavlja 3.9.3. ovog rada. Vrijednosti korištene za proračun prikazane su u Tablici 5.5 i Tablici 5.6.

HRB, Poglavlje 4.6.2.1.1	Paluba 4 (Uključenost 55%)		
modul elastičnosti materijala	E	N/mm ²	206000
koeficijent izvijanja	m	-	7,636
smanjena debljina opločenja	t _b	mm	6,50
duljina kraće stranice panela	b	m	1,2
normalno (tlačno) naprezanje	σ_E	N/mm ²	41,54

HRB, Poglavlje 4.6.4.1			Paluba 4 (Uključenost 55%)
moment savijanja broda na mirnoj vodi	Ms	kNm	-29430,00
moment savijanja broda na valu	Mw	kNm	-81720,00
moment inercije glavnog rebra	In	cm ⁴	1206900000,0
duljina u vertikalnom smjeru od neutralne osi do promatrane točke	у	m	6,435
koeficijent materijala	k	-	1,00
normalno (tlačno) naprezanje	σ _a	N/mm ²	32,59
			30

ne uzimaju se manje od iznosa dobivenog po izrazu (5.2): $\sigma_a > \frac{30}{k}$ (5.2)

			Paluba 4 (Uključenost 55%)
usvojeno normalno (tlačno) naprezanje	σa	N/mm ²	32,59
očitana naprezanja iz MKE modela + 10% margine za sigurnost	σ_c	N/mm ²	31,06

Tablica 5.6 Izvijanje poprečno ukrepljenih limova

HRB, Poglavlje 4.6.2.1.1			Paluba 4 – Bok (7500 mm od CL)
modul elastičnosti materijala	E	N/mm ²	206000
koeficijent izvijanja	m	-	1,324
smanjena debljina opločenja	t _b	mm	6,50
duljina kraće stranice panela	b	m	0,6
duljina dulje stranice panela	а	m	2,8
koeficijent korekcije	с	-	1,21
normalno (tlačno) naprezanje	σ_E	N/mm ²	28,80
			Daluha 4
HRB, Poglavlje 4.6.4.1			Bok (7500
			\mathbf{mm} od \mathbf{CI})

HRB, Poglavlje 4.6.4.1			Bok (7500 mm od CL)
moment savijanja broda na mirnoj vodi	Ms	kNm	-29430,00
moment savijanja broda na valu	Mw	kNm	-81720,00
moment inercije glavnog rebra	In	cm ⁴	1206900000,0
duljina u vertikalnom smjeru od neutralne osi do promatrane točke	у	m	6,87
koeficijent materijala	k	-	1,00
normalno (tlačno) naprezanje	σ_a	N/mm ²	34,80

ne uzimaju se manje od iznosa dobivenog po izrazu (5.3): $\sigma_a > \frac{30}{k}$ (5.3.)

			Paluba 4 – Bok (7500 mm od CL)
usvojeno normalno (tlačno) naprezanje	σ_a	N/mm ²	34,80
očitana naprezanja iz MKE modela + 10% margine za sigurnost	σ_c	N/mm ²	33,42

Na prosjeke očitanih naprezanja iz MKE modela dodana je margina od 10% radi sigurnosti. Očitana naprezanja iz MKE modela za uzdužno ukrepljene limove prikazana su u Tablici 5.7.

očitana naprezanja iz MKE modela
+ 10% margine za sigurnost σ_{MKE} N/mm²Paluba 128,70Paluba 229,04Paluba 332,78Paluba 431,06

Tablica 5.7 Očitana naprezanja iz MKE modela uzdužno ukrepljenih limova

Očitana naprezanja iz MKE modela za poprečno ukrepljene limove prikazana su u Tablici 5.8.

	očitana naprezanja iz MKE modela + 10% margine za sigurnost
	σ_{MKE}
	N/mm ²
Paluba 1 - Uzdužna pregrada 6600 mm od CL	17,12
Paluba 2 – Bok (9000 mm od CL)	18,15
Paluba 3 - Unutarnja rebra salona (Uzdužna pregrada 5400 mm od CL)	31,86
Paluba 3 - Vanjska rebra salona (9000 mm od CL)	35,64
Paluba 4 – Bok (7500 mm od CL)	33,42

Tablica 5.8 Očitana naprezanja iz MKE modela poprečno ukrepljenih limova

Očitana naprezanja σ_{MKE} za uzdužno i poprečno ukrepljene limove svake palube, uključujući i četvrtu palubu, manja su od normalnih tlačnih naprezanja σ_a prethodno izračunatih prema Hrvatskom registru brodova te zaključujemo da su kriteriji za izvijanje zadovoljeni.

5.4. Zaključak MKE analize

Zadaća strukturne analize podobnosti je temeljem izračunatih odziva naprezanja i deformacija prepoznati strukturne elemente koji ne mogu izdržati nametnuta opterećenja. Kako su sva dobivena naprezanja manja od najvećih dozvoljenih, dolazi se do zaključka da su elementi zadovoljavajuće dimenzionirani te da je distribucija naprezanja u paralelnom srednjaku prihvatljiva. Dominantno naprezanje je globalno, a ne lokalno.

Povećana naprezanja su većinom na mjestima gdje se naglo mijenja presjek. Primjerice, vidljivo je povećano naprezanje uz rub prozorskih otvora salona. Zbog toga su rubovi prozora napravljeni sa zaobljenim kutovima kako bi se smanjila koncentracija naprezanja. Drugi primjer povećane koncentracije naprezanja je područje iznad otvora za ulaz u bočnoj stijenki nadgrađa na četvrtoj palubi.

U stanju pregiba, na prvoj palubi, koja se nalazi ispod neutralne linije, javljaju se negativna naprezanja, dok su na gornjim palubama tj. na palubama iznad neutralne linije naprezanja pozitivna. Kod progiba je situacija obrnuta, na prvoj palubi su naprezanja pozitivna, dok su naprezanja paluba iznad neutralne linije negativna.

Prijelazne zone izvan 0,3 L rješavaju se u sljedećoj projektnoj fazi pomoću dodatnih analiza tipičnih poprečnih presjeka. Za svaki tip presjeka potrebno je izraditi zaseban Nauticus Hull model zato što se struktura i moment opterećenja duž broda mijenja, stoga nije ispravno donositi zaključke samo na temelju glavnog rebra.

6. ZAKLJUČAK

Brodovi namijenjeni prijevozu vozila i putnika, od kojih je jedan tema ovog rada, predstavljaju specifičan način prijevoza robe tj. putnika. Čitava brodska konstrukcija podređena je teretu na kotačima. Shodno tome, palube su optimizirane za smještanje što većeg kapaciteta vozila, te se teži strukturnim rješenjima koja ne sputavaju protočnost vozila kroz trajekt.

Proces projektiranja strukture trupa dvostranog trajekta duljine 80 m namijenjenog plovidbi Jadranskim morem u ovom radu je podijeljen kroz tri faze. Prva faza je proračun dimenzija strukturnih elemenata te proračun čvrstoće prema pravilima i propisima Hrvatskog registra brodova. Kako dotičan trajekt ima dvije palube na kojima smješta različite vrste vozila koja točkasto opterećuju palubu, potrebno je dimenzionirati svaku palubnu zasebno na odgovarajuća osovinska opterećenja. Iz tog razloga je debljina paluba različita, za razliku od ostalih teretnih brodova kojima je debljina palubnih limova ujednačena. Osnovni zadatak ove faze bio je zadovoljiti uvjet da otporni moment palube i dna bude veći od minimalnog dopuštenog momenta propisanog Registrom, što je uspješno dokazano.

Potom slijedi proračun i provjera primarnih struktura glavne palube, okvira boka i nadgrađa, te provjera strukture dna uslijed dokovanja. Navedeni segmenti druge faze projektiranja izvedeni su u DNV 3D Beam programskom paketu u kojem se dimenzije automatski provjeravaju u skladu s DNV pravilima, te su također provjerene u skladu s pravilima HRB-a.

Trup broda je trodimenzionalno tijelo oblika tankostjenog kutijastog nosača. Uzdužna čvrstoća je od izrazitog značaja pošto je dimenzija duljine izrazito veća u usporedbi s visinom i širinom. Prilikom analiziranja uzdužne čvrstoće broda, brod se obično promatra kao greda. No, primjenom naprednih programskih paketa koji primjenjuju metodu konačnih elemenata moguće je odrediti uzdužnu čvrstoću vrlo složene strukture brodskog trupa. Stoga, je kao treća faza projektiranja primjenom metode konačnih elemenata u jednom od osnovnih alata za strukturnu analizu brodske konstrukcije SESAM (eng. Super Element Structural Analysis Modulus) napravljena provjera distribucije globalnih uzdužnih naprezanja u području paralelnog srednjaka te su dobiveni rezultati zadovoljavajući.

Sljedeća projektna faza bila bi određivanje prijelaznih zona izvan područja 0,3 L tj. dimenzioniranje pramčane i krmene strukture te proračun primarne strukture kormilarnice i protuljuljnog tanka.

LITERATURA

[1] Uršić, J.: "Čvrstoća broda I. dio", Sveučilišna naklada d.o.o., Zagreb, 1991.

[2] Watson, D.: "Practical ship design", Elsevier, Oxford, 1998.

[3] Hrvatski registar brodova: "PRAVILA ZA KLASIFIKACIJU BRODOVA - DIO 2. TRUP", s Interneta, <u>https://www.crs.hr/hr/pravila-i-aktivnosti-povezani-s-rh/pravila-i-smjernice/pravila-za-klasifikaciju-brodova</u>, 9. kolovoz 2022.

[4] Uršić, J.: "Čvrstoća broda II. dio", Sveučilišna naklada d.o.o., Zagreb, 1991.

[5] Senjanović, I.: "Metode konačnih elemenata u analizi brodskih konstrukcija", Sveučilišna naklada Liber, Zagreb, 1986.

[6] Lloyd's Register: "ShipRight Primary Structure", s Interneta, <u>https://www.lr.org/en/shipright-procedures/#accordion-structuraldesignassessment(sda)</u>, 2. rujan 2022.
POPIS SLIKA

Slika 2.1 Primjeri RO-PAX brodova	5
Slika 2.2 Različite izvedbe brodskih rampi	7
Slika 2.3 Trajekt Četiri zvonika	8
Slika 2.4 Preliminarni opći plan zadanog broda	9
Slika 3.1 Hrvatski registar brodova	10
Slika 3.2 Ilustracija glavnog rebra	11
Slika 3.3 Otisak kotača na polju lima	15
Slika 3.4 Momenti savijanja	21
Slika 3.5 Smična sila	21
Slika 3.6 Koeficijent razdiobe M	22
Slika 3.7 Koeficijenti raspodjele F1 i F2	23
Slika 3.8 NauticusHull	23
Slika 3.9 Model u Nauticus Hull	24
Slika 4.1 Nauticus 3D Beam programski alat	31
Slika 4.2 3D Beam model primarnih strukturnih elemenata glavne palube	32
Slika 4.3 Numeracija čvorova i greda modela glavne palube	32
Slika 4.4 Opterećenja na model	
Slika 4.5 Rubni uvjeti	
Slika 4.6 Pomak strukture glavne palube	35
Slika 4.7 Model okvira boka garažnog prostora	35
Slika 4.8 Prikaz modela okvira boka u xy i xz ravninama	
Slika 4.9 Rubni uvjeti modela okvira boka	36
Slika 4.10 Palubna opterećenja	
Slika 4.11 Opterećenje od vjetra	
Slika 4.12 Pomak strukture nakon aplikacije tri slučaja opterećenja	
Slika 4.13 Plan potklada	40
Slika 4.14 Rebrenica opterećenja silom dokovanja	41
Slika 4.15 Rubni uvjeti modela rebrenice	42
Slika 4.16 Dijagram smičnih sila kod dokovanja	42
Slika 4.17 Pomak strukture dna uslijed dokovanja	43
Slika 5.1 Model trajekta izrađen u GeniE programskom paketu	45
Slika 5.2 Rubni uvjeti MKE modela prema Lloyd Registru [6]	47
Slika 5.3 Rubni uvjeti MKE modela; pogled s pramca	47

Slika 5.4 Rubni uvjeti MKE modela; pogled s boka	47
Slika 5.5 Naprezanja MKE modela u stanju pregiba	49
Slika 5.6 Naprezanja u paralelnom srednjaku Palube 1 u stanju pregiba	50
Slika 5.7 Naprezanja u paralelnom srednjaku glavne palube (Paluba 2) u stanju pregiba	50
Slika 5.8 Naprezanja u paralelnom srednjaku palube čvrstoće (Paluba 3) u stanju pregiba	51
Slika 5.9 Naprezanja u paralelnom srednjaku Palube 4 u stanju pregiba	51
Slika 5.10 Naprezanja u nadgrađu u stanju pregiba	52
Slika 5.11 Naprezanja oplate paralelnog srednjaka u stanju pregiba	52
Slika 5.12 Naprezanja uzdužne stijene salona na Palubi 3 u stanju pregiba	53
Slika 5.13 Naprezanja u paralelnom srednjaku u stanju pregiba - pogled odozgo	53
Slika 5.14 Naprezanja u paralelnom srednjaku u stanju pregiba - pogled odozdo	54
Slika 5.15 Naprezanja MKE modela u stanju progiba	54
Slika 5.16 Naprezanja u paralelnom srednjaku Palube 1 u stanju progiba	55
Slika 5.17 Naprezanja u paralelnom srednjaku glavne palube (Paluba 2) u stanju progiba	55
Slika 5.18 Naprezanja u paralelnom srednjaku palube čvrstoće (Paluba 3) u stanju progiba	56
Slika 5.19 Naprezanja u paralelnom srednjaku Palube 4 u stanju progiba	56
Slika 5.20 Naprezanja u nadgrađu u stanju progiba	57
Slika 5.21 Naprezanja oplate paralelnog srednjaka u stanju progiba	57
Slika 5.22 Naprezanja uzdužne stijene salona na Palubi 3 u stanju progiba	58
Slika 5.23 Naprezanja u paralelnom srednjaku u stanju progiba - pogled odozgo	58
Slika 5.24 Naprezanja u paralelnom srednjaku u stanju progiba - pogled odozdo	59
Slika 5.25 Naprezanja Palube 4	60

POPIS TABLICA

Tablica 2.1 Glavne značajke broda	8
Tablica 3.1 Opterećenja brodske konstrukcije	12
Tablica 3.2 Tlak u kotačima	15
Tablica 3.3 Vrijednosti dopuštenih naprezanja s obzirom na koeficijent materijala	18
Tablica 3.4 Dimenzije okvirnih rebara	18
Tablica 3.5 Dimenzije običnih rebara	18
Tablica 3.6 Moment otpora sponja i uzdužnjaka palube	19
Tablica 3.7 Dimenzije palubnih sponja	19
Tablica 3.8 Dimenzije palubnih uzdužnjaka	19
Tablica 3.9 Momenti savijanja i smične sile na mirnoj vodi	22
Tablica 3.10 Momenti savijanja i smične sile na valovitoj vodi	23
Tablica 3.11 Svojstva presjeka iz programskog paketa NauticusHull	24
Tablica 3.12 Izvijanje uzdužno ukrepljenih limova	27
Tablica 3.13 Izvijanje poprečno ukrepljenih limova	28
Tablica 4.1 Rubni uvjeti modela rešetkaste primarne strukture glavne palube	34
Tablica 4.2 Dopuštene vrijednosti naprezanja brodograđevnog čelika povišene čvrstoće	34
Tablica 4.3 Rubni uvjeti modela okvira boka	36
Tablica 4.4 Proračun linearnih opterećenja vjetra	
Tablica 4.5 Rubni uvjeti modela prilikom dokovanja	41
Tablica 4.6 Maksimalno dopuštene vrijednosti naprezanja	42
Tablica 5.1 Karakteristike upotrjebljenih materijala	46
Tablica 5.2 Rubni uvjeti za globalna naprezanja na savijanje [6]	46
Tablica 5.3 Slučajevi opterećenja MKE modela	48
Tablica 5.4 Uključenost Palube 4	60
Tablica 5.5 Izvijanje uzdužno ukrepljenih limova	61
Tablica 5.6 Izvijanje poprečno ukrepljenih limova	62
Tablica 5.7 Očitana naprezanja iz MKE modela uzdužno ukrepljenih limova	62
Tablica 5.8 Očitana naprezanja iz MKE modela poprečno ukrepljenih limova	62

POPIS OZNAKA

A_u - površina poprečnog presjeka upore, cm²

av - koeficijent ubrzanja,

B – širina broda, m

C_B - koeficijent istisnine

Cw - koeficijent ovisan o duljini broda

D – visina broad, m

e_D - udaljenost neutralne linije do osnovice broda, m

e_P - udaljenost neutralne linije do linije glavne palube, m

f - koeficijent za zakrivljena rebra

Fs_negative - negativna smična sila na mirnoj vodi, kN

Fs_positive - pozitivna smična sila na mirnoj vodi, kN

Fw_negative - negativna smična sila na valovitoj vodi, kN

Fw_positive - pozitivna smična sila na valovitoj vodi, kN

ha - stvarna (ugrađena) visina hrptenice, mm

 h_{db} - visina hrptenice, mm

 I_y - moment inercije površine glavnog rebra oko osi y, m⁴

k - koeficijent materijala,

1 - nepoduprti raspon, m

L - duljina broda u metrima, na ljetnoj teretnoj liniji

lk1,lk2 - duljina spoja donjeg/gornjeg koljena, m

MBH_SW - pregibni moment savijanja na mirnoj vodi, kNm

M_{BS_SW} - progibni moment savijanja na mirnoj vodi, kNm

M_{WH} - pregibni moment savijanja na valovitoj vodi, kNm

Mws - progibni moment savijanja na valovitoj vodi, kNm

p - opterećenja paluba nastambi, kN/m²

P - opterećenje, u kN, od točka ili skupine kotača u polju lima,

p₁. p₂ - opterećenja punih tankova, kN/m²

p_B - opterećenje brodskog dna, kN/m²

p_D - opterećenje izloženih paluba. kN/m²

p_{DA} - opterećenja paluba nadgrađa, kN/m²

p_{DB} - opterećenje pokrova dvodna, kN/m²

p_{Dmin} - minimalno opterećenje palube čvrstoće, kN/m²

pdx - opterećenje djelomično napunjenih tankova, kN/m²

- p_L opterećenja paluba tereta, kN/m^2
- p_s opterećenja bokova broda, kN/m^2
- S razmak između okvirnih rebara, m
- s razmak rebara, m
- t debljina lima/opločenja, mm
- t1 debljina opločenja dna, mm
- t_{1min} najmanja dopuštena debljina opločenja dna, mm
- t_K dodatak za koroziju
- t_{KB} debljina plosne kobilice, mm
- t_p debljina punih rebrenica, mm
- t_s debljina opločenja boka, mm
- tu debljina stijenki cijevnih upora, mm
- W_{D} moment otpora za dno, m^3
- W_P moment otpora za palubu, m³

SAŽETAK

U ovom radu napravljen je projekt strukture trupa dvostranog trajekta duljine 80 m namijenjen plovidbi po Jadranu. Pomoću Mathcad programskog paketa dimenzionirani su strukturni elementi prema pravilima Hrvatskog registra brodova te je napravljen pripadni nacrt glavnog rebra u softveru AutoCAD. Potom slijedi proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata. Dobiveni rezultati modela rešetkaste primarne strukture glavne palube te modela okvira boka garažnog prostora i nadgrađa zadovoljavaju kriterije čvrstoće. Provjereno je i naprezanje strukture dna uslijed dokovanja, koje također zadovoljava. Nadalje, primjenom metode konačnih elemenata pomoću DNV GeniE programskog paketa provjerena je raspodjela globalnih uzdužnih naprezanja u paralelnom srednjaku.

Ključne riječi: putnički trajekt, čvrstoća broda

SUMMARY

The main topic of this paper is a hull structure design of an 80 m double-ended ferry, intended for navigation in the Adriatic Sea. The structural ship elements were dimensioned according to the rules of the Croatian Ship Register using the Mathcad software. The drawing of the main midship frame was made in AutoCAD. Then follows the verification of previously calculated structural elements using DNV 3D-Beam software. The obtained results of main deck model and the racking model meet the strength criteria. Docking stress of the bottom structure was also checked and meets the strength criteria. Furthermore, the distribution of global longitudinal stresses in midship section is verified using the finite element method in DNV GeniE software.

Key words: passenger ferry, ship strength

DODATCI

- DODATAK A Proračun u Mathcad programskom paketu
- DODATAK B Nacrt glavnog rebra
- DODATAK C Rešetkasta primarna struktura glavne palube (DNV 3D-Beam)
- DODATAK D Okvir boka garažnog prostora i nadgrađe (DNV 3D-Beam)
- DODATAK E Naprezanje strukture dna uslijed dokovanja (DNV 3D-Beam)

3 DESIGN LOADS

3.1 General

3.1.2 Definitions

3.1.2.1 Load centre:

a) For plates:

- vertical stiffening system:
 0,5 x stiffener spacing above the lower support of plate field, or lower edge of plate when the thickness changes within the plate field;
 horizontal stiffening system:
- midpoint of plate field.

b) For stiffeners and girders: - centre of span *l*.

3.1.2.2 Definition of symbols

v = ship's speed according to Section 1.2.6

 ρ_c = density of cargo as stowed, [t/m³]

 ρ = density of liquids, [t/m³]

 $\rho = 1.025 \text{ t/m}^3$ for fresh and sea water

z = vertical distance of the structure's loade centre above base line, [m]

x = distance from aft end of lenght L, in [m]

 C_b = block coefficient according to 1.2.6 (not to be taken less then 0.6)

 $p_0 = 2.1 (C_b + 0.7) \times C_w \times C_L \times f, [kN/m^2]$

 $C_w = L/25 + 4.1$

 $C_L = (L/90)^{1/2}$

f = 1 for shell plating and weather decks

f = 0.75 for frames and deck beams

 $f\,{=}\,0.60$ for web frames, stringers and grillage systems

<u>NOTE</u>: for restricted service areas these values p_0 may be decrease, as follows

- 10 % for service range 2 ($C_s = 0.9$)
- 25 % for service range 3 ($C_{s,r} = 0.75$)
- 30% for service range 4, 5 (Cs r=0.70)
- 40 % for service range 6,7,8 ($\overline{C_s}_r = 0.6$)

$$C_{S_r} := 0.7$$
v := 12 kn
 $\rho := 1.025$ $\forall m^3$
L := 76 m
d := 2.7 m
C_b := 0.68
D := 4.9 m
B := 18 m

$$C_W := \frac{L}{25} + 4.1 = 7.14$$

$$C_L := \left(\frac{L}{90}\right)^2 = 0.919$$

Shell (plating of deck) DECK 4 - 10900 ABL x := 40 m z := 10.9m $p_{Ds}(x, z, C_a) \coloneqq p_{0s} \cdot \frac{20 \cdot d}{(10 + z - d) \cdot D} \cdot C_a(x)$ $p_{Ds}(x, z, C_a) = 8.059 \text{ kN/m}^2$ DECK 5 - 13700 ABL <mark>x∷= 40</mark> m <mark>z∷= 13.7</mark>m $p_{Ds}(x, z, C_a) = 6.985 \text{ kN/m}^2$ Frames (deck beams) DECK 4 - 10900 ABL x.:= 40 m z.:= 10.9m $\mathsf{p}_{\mathrm{Df}}\big(\mathsf{x},\mathsf{z},\mathsf{C}_{\mathsf{a}}\big) \coloneqq \mathsf{p}_{\mathrm{0f}} \cdot \frac{20 \cdot \mathsf{d}}{(10+\mathsf{z}-\mathsf{d}) \cdot \mathsf{D}} \cdot \mathsf{C}_{\mathsf{a}}(\mathsf{x})$ $p_{Df}(x, z, C_a) = 6.045 \text{ kN/m}^2$ DECK 5 - 13700 ABL <mark>x.≔ 40</mark> m z := 13.7m $p_{Df}(x, z, C_a) = 5.239 \text{ kN/m}^2$ Girders DECK 4 - 10900 ABL <mark>x∷= 40</mark> m Z := 10.9 m $p_{Dg}(x, z, C_a) \coloneqq p_{0g} \cdot \frac{20 \cdot d}{(10 + z - d) \cdot D} \cdot C_a(x)$ $p_{Dg}(x, z, C_a) = 4.836 \text{ kN/m}^2$ DECK 5 - 13700 ABL <u>х:= 40</u> m <mark>z∷= 13.7</mark>m

 $p_{Dg}(x, z, C_a) = 4.191 \text{ kN/m}^2$

3.2.1.2 Strenght deck which are also weather decks and forcastle decks

Shell (deck palting)

 $p_{Dmin_s} := max(16 \cdot f_s, 0.7 \cdot p_{0s})$

 $p_{\text{Dmin}_s} = 16$ kN/m²

Frames (deck beams)

 $p_{Dmin_f} := max \left(16 \cdot f_f, 0.7 \cdot p_{0f} \right)$ $p_{Dmin_f} = 12 \quad kN/m^2$

Girders

$$p_{\text{Dmin}_g} := \max(16 \cdot f_g, 0.7 \cdot p_{0g})$$
$$p_{\text{Dmin}_g} = 9.6 \quad \text{kN/m}^2$$

3.2.2 Load on ship's side

3.2.2.1 Load on ship's sides

$$C_{F}(x) := \begin{bmatrix} 1 + \frac{5}{C_{b}} \cdot \left(0.2 - \max\left(\frac{x}{L}, 0.1\right)\right) \end{bmatrix} & \text{if } 0 \le \frac{x}{L} \le 0.2 \\ 1 & \text{if } 0.2 \le \frac{x}{L} \le 0.7 \\ 1 + \frac{20}{C_{b}} \cdot \left(\min\left(\frac{x}{L}, 0.93\right) - 0.7\right)^{2} & \text{if } 0.7 \le \frac{x}{L} \le 1 \end{bmatrix}$$

,x.:= 0.. L

Shell Elements below load waterline: x := 40 m <mark>z:= 1</mark> m $p_{\underline{s}s}(x,z) := \begin{bmatrix} 10 \cdot (d-z) + p_{0s} \cdot C_F(x) \cdot \left(1 + \frac{z}{d}\right) \end{bmatrix} \text{ if } z \le d$ $\begin{bmatrix} p_{0s} \cdot C_F(x) \cdot \frac{20}{(10+z-d)} \end{bmatrix} \text{ if } z > d \end{cases}$ $p_{s s}(x,z) = 35.24$ kN/m² Opločenje boka (Paluba 1 - Paluba 2) <mark>x:= 40</mark> m <mark>∠:= 2.5</mark> m $p_{s_s}(x,z) = 27.634$ kN/m² Ukrepe boka (Paluba 1 - Paluba 2) <mark>x:= 40</mark> m <mark>∠:= 3.55</mark> m $p_{s-s}(x,z) = 24.535$ kN/m² Opločenje boka (Paluba 2 - Paluba 3) <mark>x:= 40</mark> m <mark>∠ := 5.2</mark> m $p_{s-s}(x,z) = 21.296$ kN/m² Ukrepe boka (Paluba 2 - Paluba 3) <mark>_x:= 40</mark> m <mark>∠ := 6.5</mark> m $p_{s_s}(x,z) = 19.29$ kN/m² Opločenje boka (Paluba 3 - Paluba 4) <mark>x:= 40</mark> m <mark>∠:= 8.4</mark> m $p_{s_s}(x,z) = 16.955$ kN/m²

Ukrepe boka (Paluba 3 - Paluba 4) x:= 40 m <mark>∠.:= 9.5</mark> m $p_{s-s}(x,z) = 15.845$ kN/m² BOTTOM LONGITUDINALS <mark>x∷= 40</mark> m <mark>z:= 0</mark> m $p_{s_f}(x,z) := \begin{bmatrix} 10 \cdot (d-z) + p_{0f} \cdot C_F(x) \cdot \left(1 + \frac{z}{d}\right) \end{bmatrix} \text{ if } z \le d$ $\begin{bmatrix} p_{0f} \cdot C_F(x) \cdot \frac{20}{(10+z-d)} \end{bmatrix} \text{ if } z > d$ $p_{s-f}(x,z) = 36.983$ kN/m² <mark>x∷= 40</mark> m <mark>∠ := 2.5</mark> m $p_{s_f}(x,z) = 21.226$ kN/m² Elements above load waterline: <mark>x∷= 40</mark> m <mark>∠ := 5.2</mark> m $p_{s f}(x,z) = 15.972$ kN/m² <mark>x∷= 40</mark> m <mark>∠∷= 8.4</mark> m $p_{s f}(x,z) = 12.717 \text{ kN/m}^2$ <mark>x∷= 40</mark> m <mark>z:= 11</mark> m $p_{s_f}(x,z) = 10.91$ kN/m²

```
3.2.3 Load on ship's bottom
         <mark>x:= 40</mark> m
                        p_{\mathbf{B}}(\mathbf{x}) \coloneqq 10 \cdot \mathbf{d} + p_{\mathbf{0}\mathbf{s}} \cdot \mathbf{C}_{\mathbf{F}}(\mathbf{x})
                        p_{B}(x) = 40.31
                                                                                                         kN/m<sup>2</sup>
        3.2.5 Load on decks of superstructures and deckhouses
         3.2.5.1 Load on exposed decks and parts of superstructure and deckhouse decks which are not treated as
         strenght deck
         1.If deckhouse deck is calculated then -> deck house=1, forcastle deck=0,
         exposed wheel house top=0, other decks=0
        2.If forcastle deck is calculated then -> deck house=0, forcastle deck=1,
        exposed wheel house top=0, other decks=0
         3.If exposed wheel house top is calculated then -> deck house=0, forcastle deck=0,
         exposed wheel house top=1, other decks=0
        4.If other decks are caluculated then ->deck house=0, forcastle deck=0,
         exposed wheel house top=0, other decks=1
          deck house := 0
          forecastle deck := 0
          exposed wheel house top := 0
         other decks := 1
        For deck house deck calculation:
        b' = breadth of deckhouse;
         B' = largest breadth of ship at the position considered.
         b" := 15 m
         B" := 15 m
         Plating
         <mark>x.≔ 40</mark> m
        <mark>∠.:= 14.9</mark> m
•
    p<sub>DA plating</sub>(x,z,deck_house,forecastle_deck,exposed_wheel_house_top,other_decks,C<sub>a</sub>,p<sub>Ds</sub>)
    := \max \left[ p_{DS}(x, z, C_a) \cdot \max \left[ 1 - \left( \frac{z - D}{10} \right), 0.5 \right], 4 \right] \text{ if other_decks} = 1 \land \text{ deck_house} = 0 \land \text{ forecastle_deck} = 0 \land \text{ exposed_wheel_house_top} = 0 \land \text{ forecastle_deck} = 0 \land \text{ exposed_wheel_house_top} = 0 \land \text{ forecastle_deck} = 0 \land \text{ forecastle_
            \max \left[ p_{Ds}(x, z, C_a) \cdot \max \left[ 1 - \left( \frac{z - D}{10} \right), 0.5 \right], 2.5 \right] if exposed_wheel_house_top = 1 \land other_decks = 0 \land deck_house = 0 \land forecastle_deck = 0 \max(p_{Ds}(x, z, C_a) \cdot 1, p_{Dmin\_s}) if forecastle_deck = 1 \land other_decks = 0 \land exposed_wheel_house_top = 0 \land deck_house = 0
               \max\left[p_{Ds}(x, z, C_{a}) \cdot \max\left[1 - \left(\frac{z - D}{10}\right), 0.5\right] \cdot \left(0.7 \cdot \frac{b^{*}}{B^{*}} + 0.3\right), 4\right] \text{ if } deck\_house = 1 \land \text{ other\_decks} = 0 \land exposed\_wheel\_house\_top = 0 \land forecastle\_deck = 0
    p_{DA\_plating}(x, z, deck\_house, forecastle\_deck, exposed\_wheel\_house\_top, other\_decks, C_a, p_{Ds}) = 4
                                                                                                                                                                                                                                                                                                                                                                       kN/m<sup>2</sup>
```

```
Stiffeners
                   x:= 40 m
                   <mark>z:= 10</mark> m
Þ
       p_{DA stiffeners}(x, z, deck_house, forecastle_deck, exposed_wheel_house_top, other_decks, C_a, p_{Ds})
        = \max \left[ p_{Df}(x, z, C_a) \cdot \max \left[ 1 - \left( \frac{z - D}{10} \right), 0.5 \right], 4 \right] \text{ if other_decks} = 1 \land \text{ deck_house} = 0 \land \text{ forecastle_deck} = 0 \land \text{ exposed_wheel_house_top} = 0 \right] \\ \max \left[ p_{Df}(x, z, C_a) \cdot \max \left[ 1 - \left( \frac{z - D}{10} \right), 0.5 \right], 2.5 \right] \text{ if exposed_wheel_house_top} = 1 \land \text{ other_decks} = 0 \land \text{ deck_house} = 0 \land \text{ forecastle_deck} = 0 \right] \\ \max \left( p_{Df}(x, z, C_a) \cdot 1, p_{Dmin_f} \right) \text{ if forecastle_deck} = 1 \land \text{ other_decks} = 0 \land \text{ exposed_wheel_house} = 0 \land \text{ deck_house} = 0 \right] 
                     \max \left[ p_{Df}(x, z, C_a) \cdot \max \left[ 1 - \left( \frac{z - D}{10} \right), 0.5 \right] \cdot \left( 0.7 \cdot \frac{b^*}{B^*} + 0.3 \right), 4 \right] \text{ if } deck\_house=1 \land other\_decks=0 \land exposed\_wheel\_house\_top=0 \land forecastle\_deck=0 \land exposed\_wheel\_house\_top=0 \land forecastle\_dcck=0 \land expose\_top=0 \land forecastle\_dcck=0 \land
       p_{DA stiffeners}(x, z, deck_house, forecastle_deck, exposed_wheel_house_top, other_decks, C_a, p_{Ds}) = 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  kN/m<sup>2</sup>
             Girders
            <mark>x∷= 40</mark> m
             <mark>∠ := 10</mark> m
۲
       p_{DA\_girders}(x, z, deck\_house, forecastle\_deck, exposed\_wheel\_house\_top, other\_decks, C_a, p_{Ds})
      := \left[ \max \left[ p_{Dg}(x, z, C_a) \cdot \max \left[ 1 - \left( \frac{z - D}{10} \right), 0.5 \right], 4 \right] \text{ if other_decks} = 1 \land \text{ deck_house} = 0 \land \text{ forecastle_deck} = 0 \land \text{ exposed_wheel_house_top} = 0 \right] \right]
              \max \left[ p_{Dg}(x, z, C_a) \cdot \max \left[ 1 - \left( \frac{z - D}{10} \right), 0.5 \right], 2.5 \right]  if exposed_wheel_house_top = 1 \land other_decks = 0 \land deck_house = 0 \land forecastle_deck = 0 \max \left( p_{Dg}(x, z, C_a) \cdot 1, p_{Dmin_g} \right)  if forecastle_deck = 1 \land other_decks = 0 \land exposed_wheel_house_top = 0 \land deck_house = 0 \max \left[ p_{Dg}(x, z, C_a) \cdot \max \left[ 1 - \left( \frac{z - D}{10} \right), 0.5 \right] \cdot \left( 0.7 \cdot \frac{b^2}{B^2} + 0.3 \right), 4 \right]  if deck_house = 1 \land other_decks = 0 \land exposed_wheel_house_top = 0 \land forecastle_deck = 0 \max \left[ p_{Dg}(x, z, C_a) \cdot \max \left[ 1 - \left( \frac{z - D}{10} \right), 0.5 \right] \cdot \left( 0.7 \cdot \frac{b^2}{B^2} + 0.3 \right), 4 \right]  if deck_house = 1 \land other_decks = 0 \land exposed_wheel_house_top = 0 \land forecastle_deck = 0
       p_{DA \text{ girders}}(x, z, \text{deck}_{house}, \text{forecastle}_{deck}, \text{exposed}_{wheel}_{house}_{top}, \text{other}_{deck}, C_a, p_{Ds}) = 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  kN/m<sup>2</sup>
       3.3 Cargo loads, load on accomodation decks
      3.3.1 Load on cargo decks
      3.3.1.1 Load on cargo deck is determinated as follows
                   p_c = static cargo load, in [kN/m<sup>2</sup>] (if cargo load is unknown the left 0 as value)
                     p_c := 0 kN/m^2
                   h = \text{mean 'tween deck height, in [m]}
                    h := 2.12 m
                    p_{cl}(p_{c}, h) := \begin{vmatrix} p_{c} & \text{if } p_{c} \neq 0 \\ (7 \cdot h) & \text{if } p_{c} = 0 \end{vmatrix}
```


completely filled

<u>h</u>:= 2.12 m

x = 40 m For calculating a_v the distance between the centre of gravity of the hold and the aft end of the length L is to be taken.

$$p_{\text{DB}}(\mathbf{x}, \mathbf{G}, \mathbf{V}, \mathbf{h}, \mathbf{a}_{\mathbf{V}}) \coloneqq 9.81 \cdot \frac{\mathbf{G}}{\mathbf{V}} \cdot \mathbf{h} \cdot \left(1 + \mathbf{a}_{\mathbf{V}}(\mathbf{x})\right)$$

$$p_{DB}(x, G, V, h, a_v) = 2.024$$
 kN/m²

3.3.3 Loads on accomodation and machinery decks 3.3.3.1 Deck load in accomodation and service spaces

x := 40 m $p(x) := 3.5 \cdot (1 + a_V(x))$ $p(x) = 4.03 \text{ kN/m}^2$

3.3.3.2 Deck load on machinery decks

$$m = 40$$

$$\mathbf{p}(\mathbf{x}) \coloneqq 8 \cdot \left(1 + \mathbf{a}_{\mathbf{V}}(\mathbf{x})\right)$$

$$p(x) = 9.211$$

3.4 Load on tank structures

3.4.1 Design pressure for filled tanks

3.4.1.1 Design presure for service condition is the greater value obtained by next procedure

 h_1 = distance of load centre from tank top, in [m];

 a_v = acceleration factor, see 3.3.1.1;

 ϕ = design heeling angle, [°], for tanks;

= $\arctan(f_{bk} x D/B)$, in general;

 $f_{bk} = 0.5$ for ships with bilge keel

= 0,6 for ships without bilge keel

 $\phi\!\geq\!20^\circ$ for hatch covers of holds carrying liquids

b = upper breadth of tank, [m];

y = distance of load centre from the vertical longitudinal central plane of tank, [m];

 p_v = set pressure of pressure relief valve, [bar], (if a pressure relief valve is fitted);

 $p_{vmin} = 0.1$ bar (1.0 mSV), during ballast water exchange for both, the sequential method as well as the flow-through method;

 $p_{vmin} = 0.2$ [bar] (2,0 mSV) for cargo tanks of tankers; mSV = metre of head water.

h₁ := 2.2 m

If ship have bilge keel then -> bilge_keel=1 If ship doesn't have bilge keel ->bilge_keel=0 bilge_keel := 0

 $f_{bk} := \begin{bmatrix} 0.5 & \text{if bilge_keel} = 1 \\ 0.6 & \text{if bilge_keel} = 0 \end{bmatrix}$

If calculating hatch covers of holds carrying liquids-> hatch_liquid=1 if not-> hatch_liquid=0

 p_{vl} = pressure of pressure relief valve $p_{v1} := 0$ bar $p_{v12}(p_{v1}, \rho) := max(p_{v1}, 0.25 \cdot \rho)$ h_{of} = height of top of the overflow above tanktop [m] • $p_2 \Big(h_2, h_p, h_{of}, p_{v1}, p_{v12}, \rho \Big) \coloneqq \left[\begin{pmatrix} 9.81 \cdot h_2 \end{pmatrix} \text{ if } h_2 > h_2 - \max(2.5, h_{of}) + h_p \Big(p_{v12}, p_{v1}, \rho \Big) \\ \left[\begin{bmatrix} 9.81 \cdot \big(h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \big) \end{bmatrix} \right] \text{ if } h_2 \leq h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \\ \left[\begin{bmatrix} 9.81 \cdot \big(h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \big) \end{bmatrix} \right] \text{ if } h_2 \leq h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \\ \left[\begin{bmatrix} 9.81 \cdot \big(h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \big) \end{bmatrix} \right] \text{ if } h_2 \leq h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \\ \left[\begin{bmatrix} 9.81 \cdot h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \right] \right] \text{ if } h_2 \leq h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \\ \left[\begin{bmatrix} 9.81 \cdot h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \right] \right] \text{ if } h_2 \leq h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \\ \left[\begin{bmatrix} 9.81 \cdot h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \right] \right] \text{ if } h_2 \leq h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \\ \left[\begin{bmatrix} 9.81 \cdot h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \right] \right] \text{ if } h_2 \leq h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \\ \left[\begin{bmatrix} 9.81 \cdot h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \right] \right] \text{ if } h_2 \leq h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \\ \left[\begin{bmatrix} 9.81 \cdot h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \right] \right] \text{ if } h_2 \leq h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \\ \left[\begin{bmatrix} 9.81 \cdot h_2 - \max(2.5, h_{of}) + h_p \big(p_{v12}, p_{v1}, \rho \big) \right] \right] \text{ if } h_2 \leq h_2 + h_2$ WATER TANK IN DOUBLE BOTTOM m h2:= 2.2 $h_{of} := 2.2$ m $p_2(h_2, h_p, h_{of}, p_{v1}, p_{v12}, \rho) = 21.718$ kN/m² ROLL REDUCTION TANK AT DECK 5 m $h_2 := 1.2$ <u>h</u>, = 1.2 ^m $p_2(h_2, h_p, h_{of}, p_{v1}, p_{v12}, \rho) = 11.908$ kN/m² 3.4.2 Design pressure for partially filled tanks 3.4.2.1 For tanks which are partialy filled between 20% and 90% of their volume design loads are obtained with next sequence. a) For structures within 1/4 from the bulkheads limmiting the free surface in longitudinal ship direction p_v = set pressure of pressure relief valve, [bar], (if a pressure relief valve is fitted) $p_{v2} := 0.1$ bar l_t = distance, in [m], between transverse bulkheads or effective transverse wash bulkheads at the height where the structure is located; $l_t := 5$ x_1 = distance of structural element from the tank's ends in the ship's longitudinal direction, in [m] $x_1 := 1$ $\mathbf{n}_{\mathbf{X}}(\mathbf{x}_1) \coloneqq 1 - \frac{4}{\mathbf{l}_t} \cdot \mathbf{x}_1$ $n_{\rm x}({\rm x}_1) = 0.2$

$$p_{dx}(l_t, n_x, p_{v2}, \rho, x_1) := \left(4 - \frac{L}{150}\right) \cdot l_t \cdot \rho \cdot n_x(x_1) + 100 \cdot p_{v2}$$

 $p_{dx}(l_t, n_x, p_{v2}, \rho, x_1) = 13.581 \qquad \text{kN/m}^2$

b) For structures within b_t/4 from the bulkheads limmiting the free surface in transversal ship direction

 b_t = distance in, [m], between tank sides or effective longitudinal wash bulkhead at the height where the structure is located;

y1 = distance of structural element from the tank's ends in the ship's transverse direction, in [m]

$$n_{y}(y_{1}) \coloneqq 1 - \frac{4}{b_{t}} \cdot y_{1}$$
$$n_{y}(y_{1}) = 0.333$$

$$\begin{split} \mathbf{p}_{dy} & \left(\mathbf{b}_t, \boldsymbol{\rho}, \mathbf{n}_y, \mathbf{p}_{v2}, \mathbf{y}_1 \right) \coloneqq \left(4 - \frac{\mathbf{B}}{20} \right) \cdot \mathbf{b}_t \cdot \boldsymbol{\rho} \cdot \mathbf{n}_y \left(\mathbf{y}_1 \right) + 100 \cdot \mathbf{p}_{v2} \\ & \mathbf{p}_{dy} \left(\mathbf{b}_t, \boldsymbol{\rho}, \mathbf{n}_y, \mathbf{p}_{v2}, \mathbf{y}_1 \right) = 13.178 \qquad \text{kN/m}^2 \end{split}$$

3.5 Design values of acceleration components 3.5.1 Acceleration components

$$A(z) := \left[0.7 - \left(\frac{\max(L, 100)}{1200}\right) + 5 \cdot \left[\frac{(z-d)}{\max(L, 100)}\right]\right] \cdot \frac{0.6}{C_b}$$

f = factor depending on probability level Q as outlined in Table

f :=			
-		0	1
	0	"Q"	"f"
	1	"10^-8"	1
	2	"10^-7"	0.875
	3	"10^-6"	0.75
	4	"10^-5"	0.625
	5	"10^-4"	0.5

$$f := 1$$

$$a_{\text{OV}} := \left[0.2 \cdot \left(\frac{v}{\sqrt{\max(L, 100)}} \right) + \frac{\left(3 \cdot C_{\text{W}} \cdot C_{\text{L}} \right)}{\max(L, 100)} \right] \cdot f$$

ININCITAL DATA .	
Length in m,	L:= 76
Breadth moulded in m,	B := 18
Depth moulded in m,	D := 4.9
Draught moulded in m,	d := 2.7
Block coefficient,	$C_b := 0.68$
Vessel design velocity in kn	v := 12
Density of sea water t/m ³	ρ := 1.025

4 LONGITUDINAL STRENGTH

4.1 General

DDINCIDAL DATA .

4.1.2 Definitons

 M_B = still water bending moment, in [kNm];

- M_w = vertical wave bending moment, in [kNm];
- C_w = wave coefficient depending on length;
- F_s = still water shear force, in [kN];

 F_w = vertical wave shear force, in [kN];

 I_v = moment of inertia of the transversal sec-tion, in [cm⁴], around the horizontal axis;

W = section modulus of transversal section around the horizontal axis, in [cm³];

S = first moment of the sectional area of the longitudinal members, in [cm³], related to the neutral axis;

 $C_b =$ block coefficient;

v = maximum speed of ship, in [kn], at defined shaft revolution and engine power.

k = material factor according to 1.4.2.2

x = distance, in [m], between aft end of length L and the position considered

 H_{sg}, H_{sd} = vertical extent of HS steel used in deck or bottom, [m]

4.1.3 Explanations

- Longitudinal members - parts of hull structure which participate in longitudinal strength and which extend continuously over 0,4·L amidship.

- Strength deck - is the deck forming the upper flange of the hull girder. That may be deck of a midship superstructure if it is at 0,4 *L* amidship and extend in length greater than: $L = 3 \times (B/2 + h)$, [m] where:

h = height from uppermost continuous deck to the deck considered, in [m].

 Longitudinal bulkhead - longitudinal bulkhead which extend from bottom to deck and which is effectively connected with shell plating by transversal bulkheads at both ends.

- Effective shear area of shell or inner shell - area of entire height.

- Effective shear area of longitudinal bulkhead - area of entire height of bulkhead. Where bulkhead is

corrugated area of cross section is to be deducted

for relation between projected and developed length of corrugation

$$\begin{split} F_1(\mathbf{x}) &\coloneqq \begin{bmatrix} 5 \cdot \mathbf{m} \cdot \left(\frac{\mathbf{x}}{\mathbf{L}}\right) \end{bmatrix} \text{ if } 0 \leq \left(\frac{\mathbf{x}}{\mathbf{L}}\right) < 0.2 \\ \mathbf{m} \quad \text{if } 0.2 \leq \left(\frac{\mathbf{x}}{\mathbf{L}}\right) < 0.3 \\ \begin{bmatrix} 4 \cdot \mathbf{m} - 2.1 + (7 - 10 \cdot \mathbf{m}) \cdot \left(\frac{\mathbf{x}}{\mathbf{L}}\right) \end{bmatrix} \text{ if } 0.3 \leq \left(\frac{\mathbf{x}}{\mathbf{L}}\right) < 0.4 \\ 0.7 \quad \text{if } 0.4 \leq \left(\frac{\mathbf{x}}{\mathbf{L}}\right) < 0.6 \\ \begin{bmatrix} 3 \cdot \left(\frac{\mathbf{x}}{\mathbf{L}}\right) - 1.1 \end{bmatrix} \text{ if } 0.6 \leq \left(\frac{\mathbf{x}}{\mathbf{L}}\right) < 0.7 \\ 1 \quad \text{if } 0.7 \leq \left(\frac{\mathbf{x}}{\mathbf{L}}\right) < 0.85 \\ \begin{bmatrix} \left(\frac{100}{15}\right) \begin{bmatrix} 1 - \left(\frac{\mathbf{x}}{\mathbf{L}}\right) \end{bmatrix} \end{bmatrix} \text{ if } 0.85 \leq \left(\frac{\mathbf{x}}{\mathbf{L}}\right) \leq 1 \end{split}$$

,x.:= 0.. L

 $\mathbf{m}_{1} := \left[\frac{190 \cdot \mathbf{C}_{b}}{110 \cdot \left(\max(\mathbf{C}_{b}, 0.6) + 0.7\right)}\right]$

$$\begin{split} F_{2}(x) &:= \left[\left[4.6 \left(\frac{x}{L} \right) \right] & \text{if } 0 \le \left(\frac{x}{L} \right) < 0.2 \\ 0.92 & \text{if } 0.2 \le \left(\frac{x}{L} \right) < 0.3 \\ \left[1.58 - 2.2 \cdot \left(\frac{x}{L} \right) \right] & \text{if } 0.3 \le \left(\frac{x}{L} \right) < 0.4 \\ 0.7 & \text{if } 0.4 \le \left(\frac{x}{L} \right) < 0.6 \\ \left[4.9 - 6 \cdot m_{1} + (10 \cdot m_{1} - 7) \cdot \left(\frac{x}{L} \right) \right] & \text{if } 0.6 \le \left(\frac{x}{L} \right) < 0.7 \\ m_{1} & \text{if } 0.7 \le \left(\frac{x}{L} \right) < 0.85 \\ \left[m_{1} \cdot \left(\frac{100}{15} \right) \left[1 - \left(\frac{x}{L} \right) \right] & \text{if } 0.85 \le \left(\frac{x}{L} \right) \le 1 \end{split} \right]$$

$$\begin{split} F_{2}(x) = \frac{1}{9} \int_{0.2}^{9} \int_{0.2}^{9} \int_{0.4}^{9} \int_{0.4}^{9} \int_{0.4}^{9} \int_{0.6}^{9} \int_{0.4}^{9} \int_{0.6}^{9} \int_{0.8}^{9} \int_{0.6}^{9} \int_{0.6}^{9} \int_{0.8}^{9} \int_{0.6}^{9} \int_{0.6}^{9} \int_{0.8}^{9} \int_{0.6}^{9} \int_{0.8}^{9} \int_{0.6}^{9} \int_{0.6}^{9} \int_{0.8}^{9} \int_{0.8}^{9} \int_{0.6}^{9} \int_{0.8}^{9} \int_{0.6}^{9} \int_{0.8}^{9} \int_{0.8}^{9} \int_{0.6}^{9} \int_{0.6}^{9} \int_{0.8}^{9} \int_$$

4.3 Bending strenght

4.3.2 Section modulus strenght criteria

k = material factor

k = 0,78, for steel with ReH = 315 N/mm²,

k = 0,72, for steel with ReH = 355 N/mm²,

k = 0.66, for steel with $ReH = 390 \text{ N/mm}^2$ provided that a fatigue assessment of the structure is performed to verify compliance with the requirements of the *Register*,

k = 0,68, for steel with ReH = 390 N/mm² in other cases.

x:= 40

$$\sigma(\mathbf{x}) := \left[\begin{bmatrix} 0.5 + \left(\frac{5}{3}\right) \cdot \left(\frac{\mathbf{x}}{L}\right) \cdot \left(\frac{18.5 \cdot \sqrt{L}}{k}\right) \end{bmatrix} & \text{if } \left(\frac{\mathbf{x}}{L}\right) < 0.3 \\ \left(\frac{18.5 \cdot \sqrt{L}}{k}\right) & \text{if } 0.3 \le \left(\frac{\mathbf{x}}{L}\right) \le 0.7 \\ \left[\left(\frac{5}{3}\right) \cdot \left[1.3 - \left(\frac{\mathbf{x}}{L}\right) \right] \cdot \left(\frac{18.5 \cdot \sqrt{L}}{k}\right) \right] & \text{if } \left(\frac{\mathbf{x}}{L}\right) > 0.7 \end{cases} \right]$$

 $\sigma(x) = 161.279$ N/mm²

$$W_{\text{H}_{\text{min}}}(x) := \left(\frac{\left|M_{\text{BH}_{\text{SW}}} + M_{\text{WH}}(x)\right|}{\sigma(x)}\right) \cdot 10^{3}$$

$$W_{H_min}(x) = 6.138 \times 10^5 \quad \text{cm}^3$$

$$W_{S_{min}}(x) := \left(\frac{\left|M_{BS_{SW}} + M_{WS}(x)\right|}{\sigma(x)}\right) \cdot 10^{3}$$

$$W_{S_{min}}(x) = 6.892 \times 10^5 \text{ cm}^3$$

4.3.4 Minimum midship section modulus

net i i i i i i i i i i i i i i i i i i i	ulus	
Minimum midship section modulus for ships in		
limited service conditions may be reduced as follows:		
-0% for naviagation area 1	$C_{NAW} = 1.00$	
- 5% for navigation area 2	$C_{NAW}=0.95$	
- 15% for navigation area 3	$C_{NAW}=0.85$	
- 20% for navigation area 4,5 $C_{NAW}=0.00$.80	

- 25% for navigation area 6,7,8 C_{NAW}=0.75

 $C_{NAW} := 0.8$

$$W_{\min} \coloneqq C_{W} \cdot L^{2} \cdot B \cdot (\max(C_{b}, 0.6) + 0.7) \cdot k \cdot C_{NAW}$$
$$W_{\min} = 8.491 \times 10^{5}$$
$$cm^{3}$$
$$W_{\min} \coloneqq \max(W_{H_{\min}}(x), W_{S_{\min}}(x), W_{\min})$$
$$W_{\min} = 8.491 \times 10^{5}$$
$$cm^{3}$$

4.3.3 Moment of inertia

$$I_{\min} := 3 \cdot \left(\frac{L}{k}\right) \cdot W_{\min}$$
$$I_{\min} = 1.936 \times 10^{8} \text{ cm}^{4}$$

$$\begin{split} W_d &= actual \ modulsu \ of \ ship \ crossection \ at \ strength \ deck \\ W_b &= actual \ modulus \ of \ ship \ crossection \ at \ bottom \\ S_d &= utiliyzation \ factor \ of \ deck \ > 1 \\ S_b &= utiliyzation \ factor \ of \ bottom \ > 1 \end{split}$$

$$W_{d} := 2703023.516 \text{ cm}^{3}$$
$$W_{b} := 1875524.476 \text{ cm}^{3}$$
$$S_{d} := \left(\frac{W_{d}}{W_{\min}}\right) = 3.183$$

$$S_b := \left(\frac{W_b}{W_{min}}\right) = 2.209$$

4.4 Shearing strenght

4.4.2 Calculation of shear stresses

 $I_{v}, F_{s}, F_{w} =$ according to 4.1.2

S = first moment, in [cm³], about the neutral axis, of the area of the effective longitudinal members between the vertical level at which the shear stress is being determined and the vertical extremity of effective longitudinal members, taken at the section under consideration;

t = thickness of side shell or longitudinal bulkhead plating, in [mm], at the section considered;

 $\Phi = 0$ for ships without longitudinal bulkhead Where two longitudinal bulkhead are fitted:

If ship have 2 longitudinal bulkheads then -> long_blk=2 otherwise -> long_blk=0

 $long_blk := 2$

S := 5324000 cm³

$$\tau_{lb_negative} := \left[\frac{\left[\left[\left(F_{s_negative} + F_{w_negative}(x) \right) \cdot S \right] \right]}{|y|^{t}} \right] (0.5 - \Phi_{lb}) \cdot 10^{2} \text{ if } \log_{s} \text{blk} = 2$$

$$\tau_{lb_negative} = -10.171 \qquad \text{Num}^{2}$$

$$\tau_{permissible} := \left(\frac{110}{k} \right) = 110 \text{ Num}^{2}$$

<u>5 Shell plating</u>

5.1 General

5.1.1 The application of the design formulae given in 5.2.1.2 to ships of less than 90 m in length may be accepted by the *Register* when a proof of longitudinal strength has been carried out

If proof of longitudinal strength is carried out then -> long_strength=1 otherwise -> long_strength=0

 $long_strength := 1$

5.1.2 Definitions

k = material factor according to 1.4.2.2;

 $p_B =$ load on bottom, in [kN/m2], according to 3.2.3;

 $p_s =$ load on sides, in [kN/m2], according to 3.2.2.1;

 p_e = design pressure for the bow area, in [kN/m2], according to 3.2.2.2;

 p_{SL} = design slamming pressure, in [kN/m2], according to 3.2.4;

 $n_1 = 1,0$, for transverse framing;

 $n_1 = 0.83$, for longitudinal framing;

W_d= actual section modulus at strength deck [cm³]

W_b= actual section modulus at bottom [cm³]

 σ_L = maximum hull girder bending stress in [N/mm2] for calculating stress and for fatigue analysis at the considered station is given by the following formula:

M _{BH_SW} := 29430	kNm
M _{BS_SW} := -29430	kNm
$M_{WH} \coloneqq 6.956 \times 10^4$	kNm
$M_{WS} := -8.172 \times 10^4$	kNm

 $\begin{array}{ll} M_{SL} \coloneqq 0 & \text{kNm} & M_{SL} \equiv 0 \text{ if } M_{B} \text{ have } 10\% \text{ addition on original } M_{B} \text{ curve from weight and} \\ & & \text{buoyancy} \\ W_{d} \coloneqq 1.8755 \cdot 10^{6} & \text{cm}^{3} \\ \hline & & \text{w}_{b} \coloneqq 2.703 \cdot 10^{6} & \text{cm}^{3} \end{array}$

$$\sigma_{L_b} \coloneqq \left[\frac{\left(\max\left(\left| M_{BH_SW} \right|, \left| M_{BS_SW} \right| \right) + 0.75 \cdot \max\left(\left| M_{WH} \right|, \left| M_{WS} \right| \right) + \left| M_{SL} \right| \right)}{W_b} \right] \cdot 10^3$$

$$\sigma_{L_b} = 33.563$$
 N/mm²

$$\sigma_{L_d} := \left[\frac{\left(\max\left(\left|\mathsf{M}_{BH_SW}\right|, \left|\mathsf{M}_{BS_SW}\right|\right) + 0.75 \cdot \max\left(\left|\mathsf{M}_{WH}\right|, \left|\mathsf{M}_{WS}\right|\right) + \left|\mathsf{M}_{SL}\right|\right)\right]}{\mathsf{W}_d} \cdot 10^3$$

 $\sigma_{L_d} = 48.371 \qquad \text{N/mm}^2$

 τ_L = maximum design shear stress due to longitudinal hull girder bending, in [N/mm²], where the wave shear force may be taken as 0,75 Fw; σ_{dop} = permissible design stress in [N/mm²]; t_k = corrosion addition according to Section 2.9.1.; 1,5 mm, for t \leq 10 mm $\tau_{ss} := 31$ N/mm² k = material factor k = 0.78, for steel with ReH = 315 N/mm2, k = 0.72, for steel with ReH = 355 N/mm2, k=0.66, for steel with ReH = 390 N/mm2 provided that a fatigue assessment of the structure is performed to verify compliance with the requirements of the Register, k=0,68, for steel with ReH = 390 N/mm2 in other cases. k := 1 $\sigma_{dop} \coloneqq \left[\left(0.8 + \frac{L}{450} \right) \cdot \left(\frac{230}{k} \right) \right] \text{ if } L < 90$ $\left(\left(\frac{230}{k} \right) \right) \text{ if } L \ge 90$ $\sigma_{dop} = 222.844 \qquad \text{N/mm}^2$ 5.2 Bottom plating 5.2.1 Plating within 0.4 L amidship 5.2.1.1 The thickness of the bottom plating of ships up to 90 m in length is not to be less than: $t_k := 1.5$ mm $n_1 := 0.83$ $n_l = 1,0$, for transverse framing; $n_1 = 0,83$, for longitudinal framing; p_B := 40.31 kN/m² <mark>s;= 0.6</mark> m
$$\begin{split} t_{1_u90} & \left(n_1, s, p_B, t_k \right) \coloneqq \quad \left| \begin{pmatrix} 1.9 \cdot n_1 \cdot s \cdot \sqrt{p_B \cdot k} + t_k \end{pmatrix} \ \text{ if } \ L \leq 90 \\ 0 \ \text{ if } \ L > 90 \end{split} \right. \end{split}$$
 $\mathsf{t_{1_u90}}\!\left(\mathsf{n_{1}},\mathsf{s},\mathsf{p_{B}},\mathsf{t_{k}}\right) = 7.507$ **CHOSEN THICKNESS: 9 mm** mm 5.2.1.2 The thickness of the bottom plating for ships of 90 m in length and more is not to be less than the following two values (The application of the design formulae given in 5.2.1.2 to ships of less than 90 m in length may be accepted by the Register when a proof of longitudinal strength has been carried out): $\sigma_{a} := \sqrt{\sigma_{dop}^{2} - 3 \cdot \left(\left| \begin{array}{c} \tau_{ss} \text{ if long_strength = 1} \\ 0 \text{ if long_strength = 0} \end{array} \right)^{2} - 0.89 \cdot \left[\begin{array}{c} \sigma_{L_b} \text{ if long_strength = 1} \\ \left(\left(12.6 \cdot \frac{\sqrt{L}}{k} \right) \right) \text{ if long_strength = 0 \land L < 90} \\ \left(\left(\frac{120}{k} \right) \right) \text{ if long_strength = 0 \land L \ge 90} \end{array} \right]$

 $\sigma_{a} = 186.408 \qquad \text{N/mm}^{2}$ $t_{1} := \begin{bmatrix} 0 & \text{if long_strength} = 0 \land L < 90 \\ \left(18.3 \cdot n_{1} \cdot s \cdot \sqrt{\frac{P_{B}}{\sigma_{a}}} + t_{k} \right) & \text{if long_strength} = 1 \lor \text{long_strength} = 0 \land L \ge 90 \\ t_{1} = 5.738 \qquad \text{mm}$ $t_{2} := \begin{bmatrix} 0 & \text{if long_strength} = 0 \land L < 90 \\ \left(1.21 \cdot s \cdot \sqrt{p_{B} \cdot k} + t_{k} \right) & \text{if long_strength} = 1 \lor \text{long_strength} = 0 \land L \ge 90 \\ t_{2} = 6.109 \qquad \text{mm}$ $t_{b}(t_{1}, t_{2}) := \max(t_{1}, t_{2})$ $t_{b}(t_{1}, t_{2}) = 6.109 \quad \text{mm}$ **5.2.2 Critical plate thickness 5.2.1 For ships. for which proof of longitudinal strength is carried out the filled strength is carried strength is carried strength is carried out the filled strength is carried strength is carrie**

5.2.2.1 For ships, for which proof of longitudinal strength is carried out, the thickness is not to be less than thickness according to the following formula:

If is the bottom builted in longitudinal system then -> long_framing=1 If is the bottom builted in transverse system then -> long_framing=0

 $long_framing := 1$

c = according to 4.6.2.1.1;

- c = correction factor;
- c = 1,0 for stiffeners sniped at both ends;

c = 1,3 when plating stiffened by floors or deep girders;

c = 1,21 when stiffeners are angles or T-sections;

c = 1,10 when stiffeners are bulb bars;

c = 1,05 when stiffeners are flat bars;

1.1 =: 🔍

 α = aspect ratio of plate panel considered s = stiffener's spacing, [m] l = larger side of panel, [m]

<mark>s;= 0.6</mark> m

<u>1:= 2.4</u> m

 $\alpha := \frac{s}{1} = 0.25$

 $c_1(\alpha, \text{long}_{framing}) := \begin{bmatrix} 0.5 & \text{if long}_{framing} = 1 \end{bmatrix}$

$$\left\| \frac{1}{\left(1 + \alpha^2\right) \cdot \sqrt{c}} \right\| \text{ if } \log_{\text{framing}} = 0$$

 $t_{crit} := \begin{cases} \left(c_1(\alpha, \text{long_framing}) \cdot 2.32 \cdot s \cdot \sqrt{\sigma_{L_b}} + t_k\right) & \text{if long_strength} = 1\\ 0 & \text{if long_strength} = 0 \end{cases}$

$$t_{unit} = 5.5.2 \quad \text{mm}$$

$$h_{n, \min_{n}, \text{shrinkley}} = \min_{n} \min_{n} \text{lottom plating thickness}$$

$$t_{n, \min_{n}, \text{shrinkley}} = \min_{n} \min_{n} \text{lottom plating thickness}$$

$$t_{n, \min_{n}, \text{shrinkley}} = \left\{ \max_{1 \le j \le l_{n}, j \le l_{n},$$

$t_2(s, p_B, k, t_k) = 6$	109	mm	
tmin_bilge_strake(n1,	$(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_3, \mathbf{r}_3, \mathbf{r}_3) := \begin{bmatrix} \mathbf{r}_{1_u = 90}(\mathbf{n}_1, \mathbf{r}_3, \mathbf{r}_3) \\ \max(\mathbf{r}_1(\mathbf{n}_1, \mathbf{r}_3, \mathbf{r}_3)) \end{bmatrix}$	$\begin{split} & (\mathbf{p}_{\mathbf{B}}, \mathbf{t}_{k}) \text{ if } \log_{\mathbf{s}} \text{strength} = 0 \land \mathbf{L} \\ & (\mathbf{p}_{\mathbf{B}}, \sigma_{\mathbf{a}}, \mathbf{t}_{k}), \mathbf{t}_{2}(\mathbf{s}, \mathbf{p}_{\mathbf{B}}, \mathbf{k}, \mathbf{t}_{k})) \text{ if } (\end{split}$	< 90 long_strength = $1 \land L < 90$ \lor (long_strength = $0 \land L \ge 90$)
^t min_bilge_strake(r	$1, \mathbf{s}, \mathbf{p}_{B}, \mathbf{t}_{k}, \boldsymbol{\sigma}_{a}, \mathbf{k} \Big) = 6.109$	mm CHOSEN TI	HICKNESS: 9 mm
5.2.5 Flat plate l	eel and garboard strake		
5.2.5.1 The width	of the flat plate keel is not	to be less than:	
^b flat_plate_keel := :	$\min(500 + 5 \cdot L, 1800) = 88$) mm	
The thickness of	he flat plate keel within 0,7	L amidships is not to be less	s than:
^t KB ^{:= t} b min adn	$d_{dship} + 2 = 8.109$ mm	CHOSEN TH	HICKNESS: 10,5 mm
5.2.5.2 Where a b	par keel is arranged, the adja	cent garboard strake is to hav	ve the scantling of a flat plate keel.
<u>5.2.6 Minimum</u>	<u>thickness</u>		
At no point the th	ickness of the bottom shell	plating is to be less than:	
$t_{\min} := \min \left[\begin{pmatrix} 1 \\ \min(\sqrt{1}) \end{pmatrix} \right]$	$5 - 0.01 \cdot L$) $\cdot \sqrt{L \cdot k}$, 16] if L $\overline{\cdot k}$, 16) if L ≥ 50	< 50	
t _{min} = 8.718	mm	CHOSEN TI	HICKNESS: 9 mm
<u>5.3 SIDE SHEL</u>	L PLATING		
5.3.1 Side shell p	lating within 0,4 L amids	hips	
	/m ²		
<mark>.s.≔ 0.6</mark> m			
<mark>ر الماني</mark> ة 1.5 mi	1		
$n_{I} = 0.83 \qquad n_{I}$	= 1,0, for transverse frami = 0,83, for longitudinal fra	ng; ming;	
$\sigma_{LS}\!\left(\sigma_{L_b},\sigma_{L_d}\right)$	$= 0.76 \cdot \max \left(\sigma_{L_b}, \sigma_{L_d} \right)$		
$\tau_L(\tau_{ss}) \coloneqq \tau_{ss}$			
$\tau_L \! \left(\tau_{ss} \right) = 31$			
$\sigma_{dop}, \tau_L, \sigma_{LS}$	$:= \sqrt{\sigma_{dop}^2 - 3 \cdot \tau_L (\tau_{ss})^2} - 0$	$0.89 \cdot \sigma_{LS}(\sigma_{L_b}, \sigma_{L_d})$	
$\sigma_{a}(\sigma_{dop},\tau_{L},\sigma_{LS})$	= 183.561		
$$t_{s}(n_{1}, s, p_{s_s}, k, t_{k}, \sigma_{a}) := \begin{bmatrix} (1.9 \cdot n_{1} \cdot s \cdot \sqrt{p_{s_s}} \cdot k + t_{k}) & \text{if } L < 90 \\ max \begin{bmatrix} 18.3 \cdot n_{1} \cdot s \cdot \sqrt{\left(\frac{p_{s_s}}{\sigma_{a}(\sigma_{dop}, \tau_{L}, \sigma_{LS})}\right)} + t_{k}, 1.21 \cdot s \cdot \sqrt{p_{s_s}} \cdot k + t_{k} \end{bmatrix} & \text{if } L \ge 90 \\ t_{s}(n_{1}, s, p_{s_s}, k, t_{k}, \sigma_{a}) = 7.117 & mm & \text{CHOSEN THICKNESS: 8,5 mm} \\ \text{Side shell plating for transverse framing;} \\ \hline p_{\text{SUSSA}} := 27.634 & \text{kN/m}^{2} & \text{sigma} = 0.6 & m & \text{two if } 1.5 & mm & n_{10.1}1 \\ t_{s}(n_{1}, s, p_{s_s}, k, t_{k}, \sigma_{a}) = 7.493 & mm & \text{CHOSEN THICKNESS: 8,5 mm} \\ \end{bmatrix}$$

5.3.3 Minimum thickness

For the minimum thickness of the side shell plating 5.2.6 applies accordingly.

$$t_{min_s} := \begin{bmatrix} \min\left[(1.5 - 0.01 \cdot L) \cdot \sqrt{L \cdot k}, 16 \right] & \mathrm{if} \ L < 50 \\ \min\left(\sqrt{L \cdot k}, 16 \right) & \mathrm{if} \ L \ge 50 \end{bmatrix}$$

$$t_{min_s} = 8.718$$
 mm CHOSEN THICKNESS: 8,5 mm

Above a level d + Cw/2 above base line smaller thicknesses than tmin may be accepted if the stress level permits such reduction.

 C_w = according to 4.2.2

$$C_{w} \coloneqq 7.397$$
$$d + \left(\frac{C_{w}}{2}\right) = 6.399 \qquad m$$

5.3.4 Sheerstrake

5.3.4.1 The width of the sheerstrake is not to be less than:

 $b_{sheerstrake} := \min(800 + 5 \cdot L, 1800)$

$$b_{\text{sheerstrake}} = 1.18 \times 10^3$$
 mm

CHOSEN WIDTH: 1200 mm

5.3.4.2 The thickness of the sheer strake within 0,4 *L* amidships $t_s =$ thickness in [mm] of sides shell $t_d =$ thickness in [mm] of adjenced deck

t_= 8.5

 $t_{sheerstrake} \coloneqq max \left[t_s, 0.5 \cdot \left(t_s + t_d \right) \right]$

mm

 $t_{sheerstrake} = 8.5$ mm

CHOSEN THICKNESS: 8,5 mm

6 DECKS

6.1 STRENGTH DECK

Minimum deck thickness (L need not to be grater than 200m)

 $tmin(k) := (4.5 + 0.05 \cdot L) \cdot \sqrt{k}$

For AH36 Steel Decks (Decks 2 and 3):

k := 0.72

tmin(k) = 7.043 mm

For Mild Steel Decks (All Decks except Deck 2 and Deck 3):

<u>k</u>:= 1

tmin(k) = 8.3 mm

6.2 LOWER DECKS

6.2.2 Thickness of decks for wheel loading

A - area of plate panel u $\cdot v$ according to Fig. 6.2.2.1

$$A(\mathbf{u},\mathbf{v}) := \min\left(\mathbf{u}\cdot\mathbf{v}, 2.5\cdot\mathbf{v}^2\right)$$

P-load, in [kN], of one wheel or group of wheels on a plate panel

 $P(Q,n) := \frac{Q}{n}$ Q - axle load in [kN] n - number of wheels (or group of wheels) per axle.

 a_{unkn} [m²] - Where the wheel print area is not known, it may approximately be determined as follows:

$$a_{unkn}(Q,n,p) := 100 \cdot \frac{P(Q,n)}{p \cdot 10^4}$$

$$p = \text{specific wheel pressure according to Table 6.2.2.2}$$
Table 6.2.2.2

	Specific wheel p	ressure p [bar]
Type of vehicle	Pnumatic tyres	Solid rubber tyres
private cars	2	-
trucks	8	-
trailer	8	15
fork lift trucks	6	15

 $a\,[m^2]$ - Calculation will take into account lesser than two:

 \boldsymbol{c}_{wheel} - factor according to the following formulae:

$$\begin{split} c_{11}(u, v, Q, n, p, a_{kn}) &\coloneqq 1.87 - \sqrt{\left[3.4 - \left(4.4 \cdot \frac{a(Q, n, p, a_{kn})}{A(u, v)}\right)\right]} \\ c_{12}(u, v, Q, n, p, a_{kn}) &\coloneqq 1.2 - \left(0.4 \cdot \frac{a(Q, n, p, a_{kn})}{A(u, v)}\right) \\ c_{21}(u, v, Q, n, p, a_{kn}) &\coloneqq 2.00 - \sqrt{\frac{a(Q, n, p, a_{kn})}{A(u, v)}} \cdot \left[5.4 - \left(7.2 \cdot \frac{a(Q, n, p, a_{kn})}{A(u, v)}\right)\right] \\ c_{22}(u, v, Q, n, p, a_{kn}) &\coloneqq 1.2 - \left(0.517 \cdot \frac{a(Q, n, p, a_{kn})}{A(u, v)}\right) \end{split}$$

$$\begin{split} (u,v,Q,n,p,a_{kn}) &\coloneqq & \left| \begin{array}{c} c_{11} \big(u,v,Q,n,p,a_{kn} \big) & \text{if } \frac{a \big(Q,n,p,a_{kn} \big)}{A(u,v)} < 0.3 \land \frac{u}{v} = 1 \\ c_{12} \big(u,v,Q,n,p,a_{kn} \big) & \text{if } \frac{a \big(Q,n,p,a_{kn} \big)}{A(u,v)} \ge 0.3 \land \frac{u}{v} = 1 \\ c_{21} \big(u,v,Q,n,p,a_{kn} \big) & \text{if } \frac{a \big(Q,n,p,a_{kn} \big)}{A(u,v)} < 0.3 \land \frac{u}{v} \ge 2.5 \\ c_{22} \big(u,v,Q,n,p,a_{kn} \big) & \text{if } \frac{a \big(Q,n,p,a_{kn} \big)}{A(u,v)} \ge 0.3 \land \frac{u}{v} \ge 2.5 \\ \left[\big(c_{21} \big(u,v,Q,n,p,a_{kn} \big) - c_{11} \big(u,v,Q,n,p,a_{kn} \big) \big) \cdot \left[\frac{\big(\frac{u}{v} - 1 \big)}{1.5} \right] \right] + c_{11} \big(u,v,Q,n,p,a_{kn} \big) & \text{if } \frac{a \big(Q,n,p,a_{kn} \big)}{A(u,v)} < 0.3 \land 1 < \frac{u}{v} < 2.5 \\ \left[\big(c_{22} \big(u,v,Q,n,p,a_{kn} \big) - c_{12} \big(u,v,Q,n,p,a_{kn} \big) \right) \cdot \left[\frac{\big(\frac{u}{v} - 1 \big)}{1.5} \right] \right] + c_{11} \big(u,v,Q,n,p,a_{kn} \big) & \text{if } \frac{a \big(Q,n,p,a_{kn} \big)}{A(u,v)} \ge 0.3 \land 1 < \frac{u}{v} < 2.5 \\ \end{array} \end{split}$$

 $t_{wheel} \, [mm]\mbox{--}$ the thickness of deck plating for wheel loading

$$\mathsf{t}_{\text{wheel}}(\mathsf{Q},\mathsf{n},\mathsf{a}_{\mathsf{V}},\mathsf{t}_{\mathsf{k}},\mathsf{u},\mathsf{v},\mathsf{p},\mathsf{a}_{\mathsf{kn}}) \coloneqq \mathsf{c}_{\text{wheel}}(\mathsf{u},\mathsf{v},\mathsf{Q},\mathsf{n},\mathsf{p},\mathsf{a}_{\mathsf{kn}}) \cdot \sqrt{\mathsf{P}(\mathsf{Q},\mathsf{n}) \cdot (1+\mathsf{a}_{\mathsf{V}}) \cdot \mathsf{k}} + \mathsf{t}_{\mathsf{k}}$$

DECK 2

DODATAK A - Proračun u Mathcad programskom paketu

Thickness of decks in accomodation decks							
DECK 6, DECK 5, DECK 4							
$t_{MandA}(s, p, t_k) := max(1.1 \cdot s \cdot \sqrt{p \cdot k} + t_k, 5)$							
$s := 0.6$ $p := 4.03$ $t_{ka} := 1.5$							
$t_{MandA}(s, p, t_k) = 5$ mm	CHOSEN THICKNESS: 7 mm						
Thickness of decks in machinery decks							
$s := 0.6$ $p := 9.211$ $t_{ka} := 1.5$							
$t_{MandA}(s, p, t_k) = 5$ mm	CHOSEN THICKNESS: 7 mm						

7 BOTTOM STRUCTURES

7.2 DOUBLE BOTTOM

7.2.1 General

7.2.1.9 Double bottoms in passenger ships and cargo ships other than tankers

7.2.1.9.2 Where a double bottom is required to be fitted the inner bottom shall be continued out to the ship's sides in such a manner as to protect the bottom to the turn of the bilge.

Such protection will be deemed satisfactory if the inner bottom is not lower at any part than a plane parallel with the keel line and which is located not less than a vertical distance h measured from the keel line, as calculated by the formula:

$$h_{db_min} := \min\left[\max\left[\left(\frac{B}{20}\right) \cdot 1000, 760\right], 2000\right] = 900 \text{ mm}$$

7.2.2 Centre girder

7.2.2.2 Scantlings

a) The depth of the centre girder is not to be less than:

If is longitudinal wing bulkhead fitted than -> long_wing=1 If not than -> long_wing=0

 $long_wing := 0$

 $B_{between_long_wing} = distance between longitudinal wing bulkheads [m]$

B_{between_long_wing} := 12

 $B_{hdb}(B_{between_long_wing}, long_wing) \coloneqq \begin{bmatrix} max(B_{between_long_wing}, 0.8B) & \text{if long_wing} = 1 \\ B & \text{if long_wing} = 0 \end{bmatrix}$

 $h_{db}(B_{hdb}, B_{between_long_wing}, long_wing) \coloneqq max(350 + 45 \cdot B_{hdb}(B_{between_long_wing}, long_wing), 600)$

 $h_{db}(B_{hdb}, B_{between_long_wing}, long_wing) = 1.16 \times 10^3 \text{ mm}$

b) The thickness of the centre girder is not be less than:

h_a = height of center girder as built

h_a := 2200 mm

k := 1

DODATAK A - Proračun u Mathcad programskom paketu

DODATAK A - Proračun u Mathcad programskom paketu

$p_{in p} := 46.2 \text{ kN/m}^2$
s := 0.6 m
$t_{\rm L} := 1.5$ mm
K
$t_{ib}(s, p_{in_p}, t_k, k) \coloneqq 1.1 \cdot s \cdot \sqrt{p_{in_p} \cdot k} + t_k \qquad mm$
$p_{ix_{M}} = 46.2 \text{ kN/m}^2$ $s = 0.6 \text{ m}$ $t_{ix} = 1.5 \text{ mm}$ $k := 1$
CHOSEN THICKNESS: 8 mm
$t_{ib}(s, p_{in_k}, t_k, k) = 5.986$ mm encoder three (LSS) o mm
7242 If no ceiling is fitted on the inner bottom, the thickness determined in accordance with 7241 for p1 or p2
is to be increased by 2 mm. This increase is not required for container ships.
7.2.6 Double bottom, transverse framing system
7.2.6.1 Plate floors
7.2.6.2 Scantlings
7.2.6.2.1 The thickness of plate floors is not to be less than:
$t_{pf}(t_{cg_db},h_{db},B_{hdb},B_{between_long_wing},long_wing,h_a,k) := min(t_{cg_db}(h_{db},B_{hdb},B_{between_long_wing},long_wing,h_a,k) - 2,16)$
7.2.6.2.2 The sectional area of the plate floors is not to be less than:
l = B, if longitudinal bulkheads are not fitted;
b_1 = distance between supporting point of the plate floor (ship's side, longitudinal bulkhead) and the section considered in [m]. The distance by is not to be taken greater than $0.4 \times l^2$.
$f_1 = 0.5$ for spaces which may be empty at full draught, e.g. machinery spaces, storerooms, etc.;
$f_1 = 0.3$ elsewhere;
s – spacing of plate hoors, in [11],
If longitudinal bulkhead is fitted than -> long_blk=1 othervise -> long_blk=0
long_blk := 0
$l_1 := 10$ m
$f_{1} := 0.5$
$b_1 := 0$ m
k = 1
<u>χ;</u> = 1 m

 p_1 - pressure in [kN/m²], according to 3.4.1

 $W_2\!\left(s, l, p_2, k\right) \coloneqq 0.44 \!\cdot\! s \!\cdot\! l^2 \!\cdot\! p_2 \!\cdot\! k \qquad \text{ acc to } 11.2.3.1 \!\!:$

p2-max static design pressure, according to 3.4.1.2

Main frame section modulus

 $W_{mf}(l_{k1}, l_{k2}, p_s, e_c, l, p_1, k) := max(W_{mf_min}(l_{k1}, l_{k2}, p_s, e_c, l, k), W_1(l_{k1}, l_{k2}, p_s, e_c, l, p_1, k), W_1(l_{k1}, l_{k2}, p_s, e_c, l, p_1, k))$

8.1.2.1.4 Where the scantlings of the main frames are determined by strength calculations, the following permissible stresses are to be observed:

- bending stress: $\sigma(\mathbf{k}) \coloneqq \frac{150}{\mathbf{k}}$ for k=1 k := 1 $\sigma(k) = 150$ N/mm² for k=0.72 k = $0.72 \sigma(k) = 208.333$ N/mm² - shear stress: $\tau(\mathbf{k}) \coloneqq \frac{100}{\mathbf{k}}$ for k=1 k := 1 $\tau(k) = 100$ N/mm² <u>k</u>:= 0.72 $\tau(k) = 138.889$ for k=0.72 N/mm² $\sigma_{ekv}(k) \coloneqq \frac{180}{\nu}$ - equivalent stress: $k = 1 \qquad \sigma_{ekv}(k) = 180 \qquad N/mm^2$ for k=1 for k=0.72 k = 0.72 $\sigma_{ekv}(k) = 250$ N/mm² MAIN FRAMES (Deck 1 - Deck 2) s := 0.6 l := 2.7 $p_1 := 0$ $p_2 := 0$ $e_c := 0$ $p_s := 24.535$ $l_{k1} := 250$ $l_{k2} := 250$ k := 1 $W_{mf}(l_{k1}, l_{k2}, p_s, e_c, l, p_1, k) = 73.708 s$ CHOSEN SIZE: HP160 x 8

8.1.3 Tween deck and Superstructure frames

Min. section modulus

$$p_{\min}(p_L, b, l) := 0.4 \cdot p_L \cdot \left(\frac{b}{l}\right)^2$$

 p_L - tween deck load, in [kN/m²], acc. to 3.3.1

b - unsupported span of the deck beam below the respective 'tween deck frame, in [m].

$$p_{td}(p_s, p_L, b, l) := max(p_{min}(p_L, b, l), p_s)$$

ps - load on ship's sides, in [kN/m²], according to 3.2.2

$$W_{td_min}(s,l,p_s,p_L,e_c,b) \coloneqq 0.55 \cdot s \cdot l^2 \cdot p_{td}(p_s,p_L,b,l) \cdot f(e_c,l) \cdot k$$

For "tween" deck frames connected at their lower ends to the deck transverses, p_{min} is to be multiplied by the factor:

$$f_1(s,S) := 0.75 + \left[0.25\left(\frac{S}{s}\right)\right]$$

DECK 1 $s_{\rm c} = 0.6$ 1 = 3 $p_{\rm L} = 17.087$ $s_{\rm c} = 0$ $p_{\rm c} = 30.68$ $s_{\rm c} = 2.4$ b = 1.2 $W_{td min}(s, 1, p_s, p_L, e_c, b) = 91.12$ CHOSEN SIZE: HP160 x 8 DECK 2 $s_{\text{N}} = 0.6$ 1 = 3 $p_{\text{M}} = 17.087$ $s_{\text{N}} = 0$ $p_{\text{N}} = 21.226$ $s_{\text{N}} = 2.4$ $b_{\text{N}} = 1.2$ $W_{td min}(s, 1, p_s, p_L, e_c, b) = 63.041$ CHOSEN SIZE: L 150 x 90 x 9 DECK 3 $s_{\rm s} = 0.6$ 1 = 3 $p_{\rm Lo} = 17.087$ $s_{\rm so} = 0$ $p_{\rm so} = 12.717$ $s_{\rm s} = 2.4$ $b_{\rm s} = 1.2$ $W_{td_min}(s, l, p_s, p_L, e_c, b) = 37.769$ CHOSEN SIZE: L 150 x 90 x 9 DECK 4 $s_{\rm sc} = 0.6$ $l_{\rm sc} = 3$ $p_{\rm sc} = 4.03$ $s_{\rm sc} = 0$ $p_{\rm sc} = 10.91$ $s_{\rm sc} = 2.4$ $b_{\rm sc} = 1.2$ $W_{td min}(s, 1, p_s, p_L, e_c, b) = 32.403$ CHOSEN SIZE: L 75 x 50 x 7

8.2 BOTTOM, SIDE AND DECK LONGITUDINALS, SIDE TRANSVERSES

p - load, in [kN/m²];

 $= p_B$ according to 3.2.3 for bottom longitudinals.

= p_s according to 3.2.2 for side longitudinals

= p₁ according to 3.4.1, for longitudinals at decks and at ship's sides,, at longitudinal bulkheads and inner bottom in way of tanks.

For bottom longitudinals in way of tanks p is not to be taken less than [kN/m²]:

$$\mathbf{p}_{bott_min}(\mathbf{p}_1, \mathbf{p}_0, \mathbf{d}_{min}, \mathbf{C}_F) \coloneqq \mathbf{p}_1 - \left[\left(10 \cdot \mathbf{d}_{min} \right) - \left(\mathbf{p}_0 \cdot \mathbf{C}_F \right) \right]$$

For side longitudinals below d_{min} p need not to be taken larger than [kN/m²]:

$$\mathbf{p}_{side_subd1}(\mathbf{p}_1, \mathbf{p}_0, \mathbf{d}_{min}, z, \mathbf{C}_F) \coloneqq \mathbf{p}_1 - \left[10 \cdot \left(\mathbf{d}_{min} - z\right) - \mathbf{p}_0 \cdot \mathbf{C}_F \cdot \left(1 + \frac{z}{\mathbf{d}_{min}}\right)\right]$$

=p_d according to 3.4.2 for side and deck longitudinals as well as for horizontal stiffeners of longitudinal bulkheads in tanks which may be partially filled;

=p_D according to 3.2.1 for deck longitudinals of the strength deck;

 $=p_{DB}$ according to 3.3.2 for inner bottom longitudinals, however, not less than the load corresponding to the distance between inner bottom and deepest load waterline;

=p_L according to 3.3.1 for longitudinals of cargo decks and for inner bottom

longitudinals;

8.2.3 Scantlings

8.2.3.1 Section modulus and shear area of longitudinals and longitudinal beams of the Strength deck

Figure 8.2.2

Allowable stress:

$$\sigma_{dop}(\sigma_{B}, \sigma_{D}, z, h_{n}) := \left| \min \left[\sigma_{t} + \sigma_{B} - \left[z \cdot \frac{\left(\sigma_{B} + \sigma_{D}\right)}{D} \right], \frac{150}{k} \right] \text{ if } z > h_{n} \right. \\ \left. \min \left[\sigma_{t} - \sigma_{B} + \left[z \cdot \frac{\left(\sigma_{B} + \sigma_{D}\right)}{D} \right], \frac{150}{k} \right] \text{ if } z \le h_{n} \right] \right|$$

 \boldsymbol{h}_n - Position of the neutral axis above the vessel base line [cm²]:

Section modulus [cm³]:

$$W_{11}(\sigma_{B}, \sigma_{D}, z, l, s, l_{k}, \alpha_{k}, p, h_{n}) := \frac{83.3}{\sigma_{dop}(\sigma_{B}, \sigma_{D}, z, h_{n})} \cdot m(l, s, l_{k}, \alpha_{k}) \cdot s \cdot l^{2} \cdot p$$

$$W_{12}(1,s,p_2) := 0.44 \cdot s \cdot l^2 \cdot p_2 \cdot k$$

$$W_l\!\left(\sigma_B, \sigma_D, z, l, s, l_k, \alpha_k, p, p_2, h_n\right) \coloneqq max\!\left(W_{l1}\!\left(\sigma_B, \sigma_D, z, l, s, l_k, \alpha_k, p, h_n\right), W_{l2}\!\left(l, s, p_2\right)\right)$$

Shear area [cm²]:

$$A_{l}(1,s,p) := \left[1 - \left(0.817 \cdot m_{2}(1,s)\right)\right] \cdot 0.05 \cdot s \cdot l \cdot p \cdot k$$

Final is bigger out of two:

$$W_{t_side}(S,l,p) \coloneqq max(W1_{t_side}(S,l,p),W2_{t_side}(S,l,p))$$

$$A_{t_side}(S, l, p) := \max(A1_{t_side}(S, l, p), A2_{t_side}(S, l, p))$$

$$1 := 3$$
 $p := 21.634$ $S := 2.4$

 $W_{t_side}(S, l, p) = 257.012$

 $A_{t_side}(S, l, p) = 85.671$ CHOSEN SIZE: HP160x8

<u>9 SUPPORTING DECK STRUCTURES</u>

9.2 DECK BEAMS LONGITUDINALS AND GIRDERS

p - deck load p_D , p_{DA} or p_L , in [kN/m²] (according to 3.2.1, 3.2.5 and 3.3.1.);

9.2.1 Transverse deck beams and deck longitudinals

Section modulus [cm³]:

$$W_{d}(f, s, p, l) := f \cdot s \cdot p \cdot l^{2} \cdot k \qquad f = 0,55;$$

$$f = 0,75 \text{ for beams, girder and transverses}$$
which are simply supported on one or both ends;

$$\mathbf{m}_{2}(1,s) \coloneqq 0.204 \cdot \frac{s}{l} \cdot \left[4 - \left(\frac{s}{l}\right)^{2} \right]$$

Shear area [cm²]:

$$\mathbf{A}_{\mathbf{d}}(\mathbf{l},\mathbf{s},\mathbf{p}) \coloneqq \left(1 - 0.817 \cdot \mathbf{m}_{2}(\mathbf{l},\mathbf{s})\right) \cdot 0.05 \cdot \mathbf{s} \cdot \mathbf{l} \cdot \mathbf{p} \cdot \mathbf{k}$$

Accommodation Decks:

f := 0.55

$$M_d(f, s, p, l) = 36.306$$

 $M_d(1, s, p) = 0.816$ cm²
Cargo Decks:

Cargo Decks:

$$f_{\text{M}} = 0.55$$
 $s_{\text{M}} = 0.6$ $p_{\text{M}} = 44$ $l_{\text{M}} = 3.6$

$$W_{d}(f,s,p,l) = 188.179$$

$$A_d(1,s,p) = 4.228$$
 cm²

9.2.4 Girders and transverses

Section modulus [cm³]:

$$W(f,b,p,l) := f \cdot b \cdot p \cdot l^2 \cdot k$$

Shear area [cm²]:

$$A_{W}(1,b,p) := 0.05 \cdot p \cdot b \cdot l \cdot k$$

Accommodation Decks:

$$f_{w} = 0.55 \quad b := 2.4 \qquad p_{w} := 8.489 \quad f_{w} = 3.6$$

$$W(f, b, p, 1) = 145.223$$

$$A_{w}(1, b, p) = 3.667 \quad cm^{2}$$
Cargo Decks:

$$f_{w} := 0.55 \quad b_{w} := 2.4 \qquad p_{w} := 44 \qquad f_{w} := 3.6$$

$$W(f, b, p, 1) = 752.717$$

$$A_{w}(1, b, p) = 19.008 \quad cm^{2}$$

9.3 PILLARS

9.3.2 Scantlings

$$P_u(p, P_i, A) := p \cdot A + P_i$$

A -load area for one pillar, in [m₂];*P_i*-load from pillars located above the pillar considered, in [kN];

 i_u = radius of gyration of the pillar.

$$i_u(A_u, I_u) \coloneqq \sqrt{\frac{I_u}{A_u}}$$

 $\lambda_u =$ degree of slenderness of the pillar;

$$\lambda_{\mathbf{u}}(\mathbf{l}_{\mathbf{u}},\mathbf{I}_{\mathbf{u}},\mathbf{A}_{\mathbf{u}}) \coloneqq \frac{\mathbf{l}_{\mathbf{u}}}{\mathbf{i}_{\mathbf{u}}(\mathbf{A}_{\mathbf{u}},\mathbf{I}_{\mathbf{u}})}$$

 I_{u} moment of inertia of the pillar, in [cm⁴];

 A_{u} cross section area of selected pillar, in [cm²];

 $I_{u^{-}}$ pillar length, in [cm];

For tubular pillars:

$$i_{ut}(d_{uv}, d_{uu}) \coloneqq 0.25 \cdot \sqrt{d_{uv}^2 + d_{uu}^2}$$

Where σ_t permissible compressive stress according to Table 9.3.2, in [N/mm_2].

.

$$\begin{split} \sigma_t \! \left(l_u, \mathrm{loc}, A_u, I_u \right) &\coloneqq & 140 - 0.0067 \cdot \lambda_u \! \left(l_u, I_u, A_u \right)^2 & \mathrm{if} \ \lambda_u \! \left(l_u, I_u, A_u \right) \leq 100 \ \wedge \ \mathrm{loc} = 1 \\ & 117 - 0.0056 \cdot \lambda_u \! \left(l_u, I_u, A_u \right)^2 & \mathrm{if} \ \lambda_u \! \left(l_u, I_u, A_u \right) \leq 100 \ \wedge \ \mathrm{loc} \neq 1 \\ & 7.3 \cdot \! \left(\frac{10^5}{\lambda_u \! \left(l_u, I_u, A_u \right)^2} \right) & \mathrm{if} \ \lambda_u \! \left(l_u, I_u, A_u \right) > 100 \ \wedge \ \mathrm{loc} = 1 \\ & 6.1 \cdot \! \left(\frac{10^5}{\lambda_u \! \left(l_u, I_u, A_u \right)^2} \right) & \mathrm{if} \ \lambda_u \! \left(l_u, I_u, A_u \right) > 100 \ \wedge \ \mathrm{loc} \neq 1 \end{split}$$

loc=1 for accommodation loc=/1 for elswhere

Sectional area of pillars is not to be less than [cm²]:

$$A_{u_min}(p, P_i, l_u, loc, A, A_u, I_u) \coloneqq 10 \cdot \frac{P_u(p, P_i, A)}{\sigma_t(l_u, loc, A_u, I_u)}$$

$$P_i := 20$$
 $p_i := 20$ $l_u := 300$ $i_{u} := 3.8$ $A_u := 26.6$ $I_u := 376$ loc := 1 $A_i := 10$

,

 $A_{u_{min}}(p, P_i, l_u, loc, A, A_u, I_u) = 22.601$

CHOSEN: Ø139,7x8

<u>11 TANK STRUCTURES</u>

11.1.7 Minimum thickness

 $t_{min} := 5.5 + 0.02 \cdot L = 7.02 \text{ mm}$

11.2 SCANTLINGS

11.2.2 Plating

 $p = \text{load } p_1 \text{ or } p_d$, in [kN/m₂], according to Section 3.4 (the greater load to be taken);

$$t_1(p, t_k, s) := 1.1 \cdot s \cdot \sqrt{p \cdot k} + t_k$$

 $p_2 = \text{load}$, in [kN/m₂], according to 3.4;

$$\mathbf{t}_2(\mathbf{p}_2, \mathbf{t}_k, \mathbf{s}) \coloneqq 0.9 \cdot \mathbf{s} \cdot \sqrt{\mathbf{p}_2 \cdot \mathbf{k}} + \mathbf{t}_k$$

$$\sigma_{a}(\tau_{L},\sigma_{L}) := \sqrt{\left(\frac{235}{k}\right)^{2} - 3 \cdot \tau_{L}^{2} - 0.89 \cdot \sigma_{L}}$$

 σ_L , τ_L = design hull girder bending or shear stress respectively, in [N/mm²], within the plate field considered as defined in Section 4.5.3;

$$t_{tank}(p, C, \tau_L, \sigma_L, t_k, s) := 16.8 \cdot C \cdot s \cdot \sqrt{\frac{p}{\sigma_a(\tau_L, \sigma_L)} + t_k}$$

C = 1,0, for transverse stiffening; C = 0,83, for longitudinal stiffening.

Longitudinally non effective:

$$t(p_2, p, C, \tau_L, \sigma_L, t_k, \text{Effectivness}, s) \coloneqq \\ \max(t_1(p, t_k, s), t_2(p_2, t_k, s), t_{tank}(p, C, \tau_L, \sigma_L, t_k, s), t_{min}) \text{ if Effectivn} \\ \max(t_1(p, t_k, s), t_2(p_2, t_k, s), t_{min}) \text{ if Effectivness} = 0$$

FRESH WATER TANK

13 SUPERSTRUCTURES AND DECKHOUSES

12115 ...

13.1.1 Explanation
L_s = lenght of superstructure or deckhouse B_s = breadth of superstructure or deckhouse l_{start} = position of superstructure or deck house aft end from x/L=0
$y_{center} = midbreadth position from C.L.$
L _s := 19.4 m
B _s := 15 m
l _{start} := 28.7 m
y _{center} := 0 m
b
$type_of_structure := \begin{bmatrix} "long deck house" & if \left(\frac{l_{start}}{L}\right) \ge 0.3 \land (L_s \ge 0.2 \cdot L \lor L_s \ge 12) \land \frac{B}{2} - \left[\left(\frac{B_s}{2}\right) - y_{center}\right] > 0.04 \cdot B \\ \begin{pmatrix} l_{start} \end{pmatrix} & \begin{pmatrix} l_{start} + L_s \end{pmatrix} & \begin{pmatrix} l_{start} + L_s \end{pmatrix} & \begin{bmatrix} (l_{start} + L_s) \end{bmatrix} & B \end{bmatrix} \begin{bmatrix} (B_s) \end{bmatrix}$
"effective superstructure" if $\left(\frac{1}{L}\right) \ge 0.3 \lor \left(\frac{1}{L}\right) \ge 0.3 \lor \left(\frac{1}{L}\right) \ge 0.3 \lor \left(\frac{1}{L}\right) \ge 0.7 \lor \left(\frac{1}{L}\right) \ge 0.7 \lor L_s \ge 0.15 \lor L \land \frac{1}{2} - \left\lfloor\left(\frac{1}{2}\right) - y_{center}\right\rfloor < 0.04 \lor B$ "non-effective superstructure" if $\left(\frac{1}{start}\right) \le 0.3 \lor \left[\frac{(1_{start} + L_s)}{T}\right] \le 0.3 \lor \left(\frac{1_{start}}{T}\right) \ge 0.7 \lor L_s \le 0.15 \lor L \land L_s \le 12 \land \frac{B}{2} - \left\lfloor\left(\frac{B}{2}\right) - y_{center}\right\rceil < 0.04 \lor B$

type_of_structure = "effective superstructure"

13.1.2 Definitions

Throughout this Section the following definitions apply:

k = material factor according to 1.4.2.2.

 $p_D =$ load according to 3.2.1.1.

 $p_s = \text{load}$ according to 3.2.2.1.

 $p_e =$ load according to 3.2.2.2.

 p_{DA} = load according to 3.2.5.

 $p_L =$ load according to 3.3.1.1.

 t_k = corrosion addition according to 2.9.1.

13.1.3 Strengthenings at the ends of superstructures

13.1.3.1 At the ends of superstructures one or both end bulkheads of which are located within 0,4 L amidships, the thickness of the shear strake, the strength deck in a breadth of 0,1 B from the shell, as well as the thickness of the superstructure side plating are to be strengthened as specified in Table 13.1.3.1. The strengthenings are to be extend over a region from 4 frame spacings abaft the end bulkhead to 4 frame spacings forward of the end bulkheads.

Type of	Strengthening, in [%]							
superstructure	Strength deck and shear strake	Side plating of superstructure						
Effective, according to 13.1.1.3	30	20						
Non-effective	20	10						

13.2.3.1 The scantling of the deck beams and the supporting deck structure are to be determined in accordance with Section 9.2.

DODATAK A - Proračun u Mathcad programskom paketu

13.2.3.2 The scantlings of superstructure frames are given in Section 8.1.3.

13.3 SUPERSTRUCTURE END BULKHEADS AND DECKHOUSE WALLS

13.3.1 General

The following requirements apply to bulkheads forming the only protection for openings as per *Regulation* 18 of LLC 1966 and for accommodations. These requirements define minimum scantlings based upon local lateral loads and it may be required that they be increased in individual cases. These requirements do not apply to CSR Bulk Carriers.

13.3.2 Definitions

If calculating lowest tier of unprotected fronts -> structure	= 1
If calculating 2-nd tier unprotected fronts ->	structure $= 2$
If calculating 3-rd tier of sides and protected fronts ->	structure $= 3$
If calculating aft ends abaft of admidship ->	structure $= 4$
If calculating aft ends foward of admidship ->	structure $= 5$

structure := 1

x = distance, in [m], between the bulkhead considered and aft end of the length L. When determining sides of a deckhouse, the deckhouse is to be subdivided into parts of approximately equal length, not exceeding 0,15 L each, and x is to be taken as the distance between aft end of the length L and the centre of each part considered.

z = vertical distance, in [m], from the summer load line to the midpoint of stiffener span, or to the middle of the plate field.

b' = breadth of deckhouse at the position considered, in [m]; B' = actual maximum breadth of ship on the exposed weather deck at the position considered, in [m].

b' := 10 m
B' := 14 m
x := 30 m
z := 10 m
n :=
$$\begin{bmatrix} 20 + \left(\frac{\min(L, 300)}{12}\right) \end{bmatrix} \text{ if structure} = 1$$

$$\begin{bmatrix} 10 + \left(\frac{\min(L, 300)}{12}\right) \end{bmatrix} \text{ if structure} = 2$$

$$\begin{bmatrix} 5 + \left(\frac{\min(L, 300)}{15}\right) \end{bmatrix} \text{ if structure} = 3$$

$$\begin{bmatrix} 7 + \left(\frac{\min(L, 300)}{100}\right) - 8 \cdot \left(\frac{x}{L}\right) \end{bmatrix} \text{ if structure} = 4$$

$$\begin{bmatrix} 5 + \left(\frac{\min(L, 300)}{100}\right) - 4 \cdot \left(\frac{x}{L}\right) \end{bmatrix} \text{ if structure} = 5$$

DODATAK A - Proračun u Mathcad programskom paketu

$$b := \left[1 + \left[\frac{\left(\frac{x}{L}\right) - 0.45}{\left| \max(\min(C_{b}, 0.8), 0.6) \text{ if structure } \neq 5}{\left| \max(C_{b}, 0.8) \text{ if structure } = 5} \right]^{2} \right]^{2} \text{ if } \left(\frac{x}{L}\right) < 0.45$$

$$1 + 1.5 \cdot \left[\frac{\left(\frac{x}{L}\right) - 0.45}{\left| \max(\min(C_{b}, 0.8), 0.6) \text{ if structure } \neq 5}{\left| \max(C_{b}, 0.8) \text{ if structure } = 5} \right]^{2} \text{ if } \left(\frac{x}{L}\right) \ge 0.45$$

$$f := \left[\left[0.1 \cdot L \cdot e^{\left(\frac{-L}{300}\right)} - \left[1 - \left(\frac{L}{150}\right)^{2} \right] \right] \text{ if } L < 150$$

$$0.1 \cdot L \cdot e^{\left(\frac{-L}{300}\right)} \text{ if } 150 \le L \le 300$$

$$11 \text{ if } L > 300$$

If calculating structure of exposed parts of machinery casing -> mach_casing = 1 otherwise mach_casing = 0

 $mach_casing := 0$

$$c_{\text{min}} = \begin{bmatrix} 0.3 + 0.7 \cdot \max\left[\left(\frac{b'}{B'}\right), 0.25 \end{bmatrix} & \text{if mach_casing} = 0 \\ 1 & \text{if mach_casing} = 1 \end{bmatrix}$$

$$p_{A} := \max\left[n \cdot c \cdot (b \cdot f - z), \left| \begin{array}{l} 30 \quad \text{if structure} = 1 \land L \leq 50 \\ \left[25 + \left(\frac{L}{50}\right)\right] \quad \text{if structure} = 1 \land 50 < L \leq 250 \\ 50 \quad \text{if structure} = 1 \land L > 250 \\ 15 \quad \text{if structure} = 0 \land L \leq 50 \\ \left[12.5 + \left(\frac{L}{20}\right)\right] \quad \text{if structure} = 0 \land 50 < L \leq 250 \\ 25 \quad \text{if structure} = 0 \land L > 250 \end{array}\right]$$

 $p_A = 26.52 \qquad \text{kN/m}^2$

13.3.3 Scantlings

13.3.3.1 Stiffeners

The section modulus of the stiffeners is to be determined according to the following formula:

l = unsupported span, in [m]; l is to be taken as the superstructure height or deckhouse height respectively, however,

not less than 2,0 m;

s = spacing of stiffeners, in [m].

$$W(s,1,k,p_A) := 0.35 \cdot s \cdot (max(1,2))^2 \cdot p_A \cdot k \quad cm^3$$

k = 2.7 m m k = 1

$W(s,1,k,p_A) = 40.599$ mm CHOSEN STIFFENERS: L75x50x7 mm

13.3.3.2 Plate thickness

The thickness of the plating is to be determined according to the following formula:

$$\mathbf{t} := \max \left[0.95 \cdot \mathbf{s} \cdot \sqrt{\mathbf{p}_{\mathbf{A}} \cdot \mathbf{k}} + \mathbf{t}_{\mathbf{k}}, \left| \left(5 + \frac{\mathbf{L}}{100} \right) \cdot \sqrt{\mathbf{k}} \text{ if structure} = 1 \right. \\ \left(4 + \frac{\mathbf{L}}{100} \right) \cdot \sqrt{\mathbf{k}} \text{ if structure} \neq 1 \right]$$

t = 5.76 mm **CHOSEN THICKNESS: 7 mm**

When determining p_A , z is to be measured to the middle of the plate field.

<u>GLAVNE ZNAČAJKE</u>

DULJINA PREKO SVEGA	79,50 m
DULJINA NA GLAVNOJ PALUBI	79,20 m
ŠIRINA	18,00 m
VISINA	4,60 m
GAZ	2,50 m
KONSTRUKTIVNI (MAX) GAZ	2,70 m
RAZMAK OKVIRNIH RÉBARA	SVAKO 4. REBRO

<u>NAPOMENE</u>

MATERIJAL: CRS–A AKO NIJE NAVEDENO DRUGAČIJE NOSIVOST GLAVNE PALUBE: OSOVINSKO OPTEREĆENJE 12 TONA, DVOSTRUKI KOTAČI NOSIVOST POKROVA DVODNA: OSOVINSKO OPTEREĆENJE 2 TONE, JEDNOSTRUKI KOTAČI

Mjerilo: 1:50 Format: A1	Zadatak za diplomski rad: Projekt strukture trupa dvostranog trajekta duljine 80 m za Jadran	Sveučilišto TEHNIČKI Diplomski sve brodog	e u Rijeci FAKULTET eučilišni studij gradnje
Crtao:	Naslov:	•	
Maša Stanković 0069074798	DODATAK B		
⊲⊕ Metric	GLAVNU REDRU		
Predmet:	Datum:	Stranica:	Revizija:
Čvrstoća broda	20.09.2022	1/1	00

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Rešetkasta primarna struktura glavne palube

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
1		1	3	1800	583	2	180,0	0	0			
2		3	5	4800	1555	2	180,0	0	0			
3		4	2	1800	583	2	180,0	0	0			
4		5	4	4800	1555	2	180,0	0	0			
5		6	7	4800	1555	2	180,0	0	0			
6		8	6	4800	1555	2	180,0	0	0			
7		7	9	1800	583	2	180,0	0	0			
8		10	8	1800	583	2	180,0	0	0			
9		11	12	4800	1555	2	180,0	0	0			
10		13	11	4800	1555	2	180,0	0	0			
11		12	14	1800	583	2	180,0	0	0			
12		15	13	1800	583	2	180,0	0	0			
13		16	17	4800	1555	2	180,0	0	0			
14		18	16	4800	1555	2	180,0	0	0			
15		17	19	1800	583	2	180,0	0	0			
16		20	18	1800	583	2	180,0	0	0			
17		21	22	4800	1555	2	180,0	0	0			
18		23	21	4800	1555	2	180,0	0	0			
19		22	24	1800	583	2	180,0	0	0			
20		25	23	1800	583	2	180,0	0	0			
21		5	6	2400	778	1	180,0	0	0			
22		6	11	2400	778	1	180,0	0	0			
23		11	16	2400	778	1	180,0	0	0			
24		16	21	2400	778	1	180,0	0	0			
25		18	23	2400	778	1	180,0	0	0			
26		13	18	2400	778	1	180,0	0	0			
27		8	13	2400	778	1	180,0	0	0			
28		3	8	2400	778	1	180,0	0	0			
29		17	22	2400	778	1	180,0	0	0			
30		12	17	2400	778	1	180,0	0	0			
31		7	12	2400	778	1	180,0	0	0			
32		4	7	2400	778	1	180,0	0	0			
33		4	26	2400	778	1	180,0	0	0			
34		26	27	2400	778	1	180,0	0	0			
35		27	28	2400	778	1	180,0	0	0			
36		28	29	2400	778	1	180,0	0	0			
37		3	30	2400	778	1	180,0	0	0			
38		30	31	2400	778	1	180,0	0	0			
39		31	32	2400	778	1	180,0	0	0			
40		32	33	2400	778	1	180,0	0	0			
41		34	35	2400	778	1	180,0	0	0			
42		36	34	2400	778	1	180,0	0	0			
43		37	36	2400	778	1	180,0	0	0			
44		5	37	2400	778	1	180,0	0	0			
45		38	33	1800	583	2	180,0	0	0			
46		29	39	1800	583	2	180,0	0	0			
47		33	35	4800	1555	2	180,0	0	0			
48		35	29	4800	1555	2	180,0	0	0			
49		40	32	1800	583	2	180,0	0	0			
50		28	41	1800	583	2	180,0	0	0			
51		32	34	4800	1555	2	180,0	0	0			
52		34	28	4800	1555	2	180,0	0	0			
53		42	31	1800	583	2	180,0	0	0			

Beam information, sorted by Beam in Ascending order

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
54		27	43	1800	583	2	180,0	0	0			
55		31	36	4800	1555	2	180,0	0	0			
56		36	27	4800	1555	2	180,0	0	0			
57		44	30	1800	583	2	180,0	0	0			
58		26	45	1800	583	2	180,0	0	0			
59		30	37	4800	1555	2	180,0	0	0			
60		37	26	4800	1555	2	180.0	0	0			

Beam information, sorted by Beam in Ascending order

.40 26.

Abbreviations

Beam information:	
Beam:	Beam identification number
Beam Name:	User's beam identification
Start/End Node:	Node numbers for the start and end nodes respectively
Elastic length:	Elastic length of beam, excluding possible rigid ends
Mass:	Mass of the elastic length of beam
Profile:	Profile identification number
Angle:	Angle between the profile's z-axis and the plane through the beam and the global Z-axis. Positive for
	clockwise rotation when seen in positive local x-direction.
Rigid Start/End:	Length of possible rigid part of the beam at the start and end ends respectively
Hinged at Start/End:	Possibly defined hinge at the start and end nodes respectively, where hinges are defined as:
dX, dY, dZ:	Hinged with respect to translation in the global X-, Y-, and Z-direction respectively
rX, rY, rZ:	Hinged with respect to rotation about the global X-, Y-, and Z-axis respectively

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Non Linearities: Possibly specified non-linear properties for the beam. For definition see figure below.

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Node	Name	X	Y	Z	Boundary Conditions							
		[]	[IIIIII]	(IIIIII)	X transl	Y transl	Z transl	X rot	Y rot	Z rot		
1		0	6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
2		0	-6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
3		0	4800	0								
4		0	-4800	0								
5		0	0	0								
6		2400	0	0								
7		2400	-4800	0								
8		2400	4800	0								
9		2400	-6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
10		2400	6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
11		4800	0	0								
12		4800	-4800	0								
13		4800	4800	0								
14		4800	-6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
15		4800	6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
16		7200	0	0								
17		7200	-4800	0								
18		7200	4800	0								
19		7200	-6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
20		7200	6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
21		9600	0	0								
22		9600	-4800	0								
23		9600	4800	0								
24		9600	-6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
25		9600	6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
26		-2400	-4800	0								

Node information, sorted by Node in Ascending order

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Node	Name	X	Y	Z	Boundary Conditions							
		[]	[]	[]	X transl	Y transl	Z transl	X rot	Y rot	Z rot		
27		-4800	-4800	0								
28		-7200	-4800	0								
29		-9600	-4800	0								
30		-2400	4800	0								
31		-4800	4800	0								
32		-7200	4800	0								
33		-9600	4800	0								
34		-7200	0	0								
35		-9600	0	0								
36		-4800	0	0								
37		-2400	0	0								
38		-9600	6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
39		-9600	-6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
40		-7200	6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
41		-7200	-6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
42		-4800	6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
43		-4800	-6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
44		-2400	6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
45		-2400	-6600	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		

Node information, sorted by Node in Ascending order

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Abbreviations

Node No: Node identification number Name: X, Y, Z: X rot, Y rot, Zrot:

Where: Free: Fixed: FD: Spring:

User's node identification Node coordinates in the global coordinate system X transl, Y transl, Z transl: Boundary conditions w.r.t. translation along the global axes Boundary conditions w.r.t. rotation about the global axes

> The node is free The node is fixed The node has a prescribed displacement or rotation The node is supported by a spring

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Profiles used in the model

Profiles

Profile	Profile Name	Туре	Material	Ignore S. C.	Shear factor fy	Shear factor fz	Profile parameters
1	Palubna proveza	40	3 VL-36 Steel		1,00	1,00	Effective plate Width=2088 [mm], Plate Thickness, pT=14 [mm], Web Height, hw=550 [mm], Web Thickness, t=15 [mm], Flange width (incl. web), bf=250 [mm], Flange thickness, tf=22 [mm], Angle Between Profile & Plate=90 [Degrees], NeglectIyz=True
2	Okvirne sponje	40	3 VL-36 Steel		1,00	1,00	Effective plate Width=2088 [mm], Plate Thickness, pT=14 [mm], Web Height, hw=550 [mm], Web Thickness, t=15 [mm], Flange width (incl. web), bf=250 [mm], Flange thickness, tf=22 [mm], Angle Between Profile & Plate=90 [Degrees], NeglectIyz=True

Profile properties

Profile		Axial			Local x-z plane				Local x-y plane				Shear Centre	
	Ax [mm ²]	Wx [mm ³]	Ix [mm⁴]	Az [mm ²]	Wy _t [mm ³]	Wy _b [mm ³]	Iy [mm⁴]	Ay [mm²]	Wz+ [mm³]	Wz- [mm³]	Iz [mm⁴]	e _y [mm]	e _z [mm]	
1	41535	205029	2,9729e+06	7427	4193010	14086481	1,8919e+09	35304	9836212	9836212	1,0269e+10	0	-125,8	
2	41535	205029	2,9729e+06	7427	4193010	14086481	1,8919e+09	35304	9836212	9836212	1,0269e+10	0	-125,8	

Materials

Material	Material Name	E [N/mm²]	Density [kg/m³]	Poisson	Thermal Coefficient [mm/mm/C]	Yield Stress [N/mm²]	Ultimate Strength [N/mm ²]
3	VL-36 Steel	210000	7800,0	0,30	1,26e-05	355	490

Abbreviations

Profiles:	
Profile:	Profile identification number
Profile Name:	User's profile identification
Туре:	Profile type
Material:	Material identification
Ignore S.C.:	If ticked "X", then the program ignores the possible shear centre offset for the profile.
Shear factors fy, fz:	The shear factor may be < 1.0 for beams with large cut-outs. The factors affect the beam stiffness but not the computed shear stress.
Profile parameters:	Input parameters defining the profile.

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Profile properties:	
Profile:	Profile identification number
Ax:	Axial area (total profile area)
Wx:	Torsion section modulus
Ix:	Torsional moment of inertia
Az:	Shear area in local z-direction ($I_y t_p / S_y$)
Wyt:	Section modulus about local y-axis at top of profile
Wy _b :	Section modulus about local y-axis at bottom of profile
Iy:	Moment of inertia about local y-axis
Ay:	Shear area in local y-direction ($I_z t_p / S_z$)
Wz+:	Section modulus about local z-axis on positive y-side of profile
Wz-:	Section modulus about local z-axis on negative y-side of profile
Iz:	Moment of inertia about local z-axis
	Note: $W_{Z_t} = W_{Z_b} = W_{Z_{min}}$ for all profile types except I - types
e _y :	Shear centre distance from vertical neutral axis
e _z :	Shear centre distance from horizontal neutral axis
f _y :	Shear factor in local y-direction
f _z :	Shear factor in local z-direction
	Note: The shear factor is used for shear stiffness of beam, but not for calculation of shear stress
Where:	
S_y, S_z :	1 st area moment about y- and z- axis respectively
t _p :	value for profile thickness depending on profile type
Materials:	
Material:	Material identification
Material Name:	User's material identification
E:	Young's Modulus
Density:	Density
Poisson:	Poisson's ratio for transverse contraction
Thermal Coefficient:	Coefficient of thermal expansion
Yield Stress:	Nominal yield stress
Ultimate Strength:	Nominal ultimate tensile strength

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Beam No			I	Distributed Load	Temperature Loads				
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]
1	0	0	32,5	0	0	32,5			
2	0	0	57,2	0	0	62,4			
3	0	0	32,5	0	0	32,5			
4	0	0	57,2	0	0	62,4			
5	0	0	57,2	0	0	62,4			
6	0	0	57,2	0	0	62,4			
7	0	0	32,5	0	0	32,5			
8	0	0	32,5	0	0	32,5			
9	0	0	57,2	0	0	62,4			
10	0	0	57,2	0	0	62,4			
11	0	0	32,5	0	0	32,5			
12	0	0	32,5	0	0	32,5			
13	0	0	57,2	0	0	62,4			
14	0	0	57,2	0	0	62,4			
15	0	0	32,5	0	0	32,5			
16	0	0	32,5	0	0	32,5			
17	0	0	57,2	0	0	62,4			
18	0	0	57,2	0	0	62,4			
19	0	0	32,5	0	0	32,5			
20	0	0	32,5	0	0	32,5			
45	0	0	32,5	0	0	32,5			
46	0	0	32,5	0	0	32,5			
47	0	0	57,2	0	0	62,4			
48	0	0	57,2	0	0	62,4			
49	0	0	32,5	0	0	32,5			
50	0	0	32,5	0	0	32,5			
51	0	0	57,2	0	0	62,4			
52	0	0	57,2	0	0	62,4			
53	0	0	32,5	0	0	32,5			
54	0	0	32,5	0	0	32,5			
55	0	0	57,2	0	0	62,4			
56	0	0	57,2	0	0	62,4			
57	0	0	32,5	0	0	32,5			
58	0	0	32,5	0	0	32,5			
59	0	0	57,2	0	0	62,4			
60	0	0	57,2	0	0	62,4			

Beam Loads in local coordinate system, sorted by Beam in Ascending order

Abbreviations

Beam No:	Beam identification number
Px1, Px2:	Load intensity in local x-direction at the start and end ends of the beam respectively
Py1, Py2:	Load intensity in local y-direction at the start and end ends of the beam respectively
Pz1, Pz2:	Load intensity in local z-direction at the start and end ends of the beam respectively
Gy, Gz:	Temperature gradients in local y- and z-directions
Temperature:	Mean temperature. NB! Any non-zero value is regarded as a temperature load

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Beam	Stresses	, values,	sorted	by Si	g-My i	in Desce	ending o	rder

Beam No.	σ _{Nx} [N/mm²]	τ _{Qy} [N/mm ²]	τ _{Qz} [N/mm²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
3	0	0	47	0	198	0
7	0	0	47	0	198	0
11	0	0	47	0	198	0
15	0	0	47	0	198	0
19	0	0	47	0	198	0
46	0	0	47	0	198	0
50	0	0	47	0	198	0
54	0	0	47	0	198	0
58	0	0	47	0	198	0
1	0	0	46	0	197	0
8	0	0	46	0	197	0
12	0	0	46	0	197	0
16	0	0	46	0	197	0
20	0	0	46	0	197	0
45	0	0	46	0	197	0
49	0	0	46	0	197	0
53	0	0	46	0	197	0
57	0	0	46	0	197	0
2	0	0	38	0	103	0
6	0	0	38	0	103	0
10	0	0	38	0	103	0
14	0	0	38	0	103	0
18	0	0	38	0	103	0
47	0	0	38	0	103	0
51	0	0	38	0	103	0
55	0	0	38	0	103	0
59	0	0	38	0	103	0
4	0	0	39	0	103	0
	0	0	39	0	103	0
9	0	0	39	0	103	0
13	0	0	39	0	103	0
17	0	0	39	0	103	0
17	0	0	20	0	103	0
40	0	0	39	0	103	0
52	0	0	39	0	103	0
50	0	0	39	0	103	0
21	0	0	39	0	105	0
21	0	0	0	0	0	0
22	0	0	0	0	0	0
23	0	0	0	0	0	0
24	0	0	0	0	0	0
25	0	0	0	0	0	0
26	0	0	0	0	0	0
27	0	0	0	0	0	0
28	0	0	0	0	0	0
29	0	0	0	0	0	0
30	0	0	0	0	0	0
31	0	0	0	0	0	0
32	0	0	0	0	0	0
33	0	0	0	0	0	0
34	0	0	0	0	0	0
35	0	0	0	0	0	0
36	0	0	0	0	0	0
37	0	0	0	0	0	0
Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Beam Stresses, values, sorted by Sig-My in Descending order

Beam No.	σ _{Nx} [N/mm²]	τ _{Qy} [N/mm²]	τ _{Qz} [N/mm²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
38	0	0	0	0	0	0
39	0	0	0	0	0	0
40	0	0	0	0	0	0
41	0	0	0	0	0	0
42	0	0	0	0	0	0
43	0	0	0	0	0	0
44	0	0	0	0	0	0

Combined Element stresses

Beam No.	σ _{Nv} (min) [N/mm²]	σ _{Nv} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
3	198	59	0	0
7	198	59	0	0
11	198	59	0	0
15	198	59	0	0
19	198	59	0	0
46	198	59	0	0
50	198	59	0	0
54	198	59	0	0
58	198	59	0	0
1	197	59	0	0
8	197	59	0	0
12	197	59	0	0
16	197	59	0	0
20	197	59	0	0
45	197	59	0	0
49	197	59	0	0
53	197	59	0	0
57	197	59	0	0
2	62	103	0	0
6	62	103	0	0
10	62	103	0	0
14	62	103	0	0
18	62	103	0	0
47	62	103	0	0
51	62	103	0	0
55	62	103	0	0
59	62	103	0	0
4	61	103	0	0
5	61	103	0	0
9	61	103	0	0
13	61	103	0	0
17	61	103	0	0
48	61	103	0	0
52	61	103	0	0
56	61	103	0	0
60	61	103	0	0
21	0	0	0	0
22	0	0	0	0
23	0	0	0	0
24	0	0	0	0
25	0	0	0	0
26	0	0	0	0

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Combined	Element	stresses
00111011104		501 05505

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
27	0	0	0	0
28	0	0	0	0
29	0	0	0	0
30	0	0	0	0
31	0	0	0	0
32	0	0	0	0
33	0	0	0	0
34	0	0	0	0
35	0	0	0	0
36	0	0	0	0
37	0	0	0	0
38	0	0	0	0
39	0	0	0	0
40	0	0	0	0
41	0	0	0	0
42	0	0	0	0
43	0	0	0	0
44	0	0	0	0

Abbreviations

Principal stresses:

- $\sigma_{Nx} : \qquad \text{Axial stress} \left(N_x / A_x \right)$
- $\tau_{Mx} : \qquad \text{Torsional stress} \left(M_x / W_x \right)$
- $\tau_{Qy}\!\!:\qquad \text{Shear stress in local y-direction }(Q_y\!/A_y)$
- $\tau_{Qz} \text{:} \qquad \text{Shear stress in local z-direction} \left(Q_z \! / \! A_z \right)$
- $\sigma_{My} {:} \qquad \text{Bending stress about local y-axis} \left(M_y \! / \! W_y \right)$
- $\sigma_{Mz} {:} \qquad \text{Bending stress about local z-axis} \left(M_z/W_z\right)$

Stress combinations:

 $\begin{aligned} &\sigma_{Ny}(min): \text{Normal stress in local xz-plane, max of } (\sigma_{Nx} + \sigma_{My(min)}) \\ &\sigma_{Ny}(max): \text{Normal stress in local xz-plane, max of } (\sigma_{Nx} + \sigma_{My(max)}) \\ &\sigma_{Nz}(min): \text{Normal stress in local xy-plane, max of } (\sigma_{Nx} + \sigma_{Mz(min)}) \\ &\sigma_{Nz}(max): \text{Normal stress in local xy-plane, max of } (\sigma_{Nx} + \sigma_{Mz(max)}) \end{aligned}$

Where:

- A_x: Axial area (total profile area)
- $A_y\!\!:\qquad \text{Shear area in local y-direction}\left(\left.I_z\,t_p\,\right/\,S_z\right)$
- A_z: Shear area in local z-direction ($I_y t_p / S_y$)
- W_x: Torsion section modulus
- W_y: Minimum section modulus about local y-axis
- W_z: Minimum section modulus about local z-axis
- N_x: Axial force
- Qy: Shear force in local y-direction
- Q_z: Shear force in local z-direction
- M_x: Torsional moment
- M_y: Bending moment about local y-axis
- M_z: Bending moment about local z-axis
- S_y, S_z : 1st area moment about y- and z- axis respectively
- t_p: profile thickness value depending on profile type

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Rešetkasta primarna struktura glavne palube

Effective Stress, values, sorted by SigEff in Descending order

Beam No.	σ _{eff} [N/mm²]	Usage	x-pos [mm]	y-pos [mm]	z-pos [mm]	σ _{Nx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]	τ _{Mx} [N/mm²]	τ _{Qy} [N/mm²]	τ _{Qz} [N/mm²]
3	200	0,56	1800	0	440,2	0	193	0	0	0	29
7	200	0,56	1800	0	440,2	0	193	0	0	0	29
11	200	0,56	1800	0	440,2	0	193	0	0	0	29
15	200	0,56	1800	0	440,2	0	193	0	0	0	29
19	200	0,56	1800	0	440,2	0	193	0	0	0	29
46	200	0,56	1800	0	440,2	0	193	0	0	0	29
50	200	0,56	1800	0	440,2	0	193	0	0	0	29
54	200	0,56	1800	0	440,2	0	193	0	0	0	29
58	200	0,56	1800	0	440,2	0	193	0	0	0	29
1	198	0,56	0	0	440,2	0	192	0	0	0	28
8	198	0,56	0	0	440,2	0	192	0	0	0	28
12	198	0,56	0	0	440,2	0	192	0	0	0	28
16	198	0,56	0	0	440,2	0	192	0	0	0	28
20	198	0,56	0	0	440,2	0	192	0	0	0	28
45	198	0,56	0	0	440,2	0	192	0	0	0	28
49	198	0,56	0	0	440,2	0	192	0	0	0	28
53	198	0,56	0	0	440,2	0	192	0	0	0	28
57	198	0,56	0	0	440,2	0	192	0	0	0	28
2	103	0,29	4800	125	451,2	0	103	0	0	0	0
4	103	0,29	0	125	451,2	0	103	0	0	0	0
5	103	0,29	0	125	451,2	0	103	0	0	0	0
6	103	0,29	4800	125	451,2	0	103	0	0	0	0
9	103	0,29	0	125	451,2	0	103	0	0	0	0
10	103	0,29	4800	125	451,2	0	103	0	0	0	0
13	103	0,29	0	125	451,2	0	103	0	0	0	0
14	103	0,29	4800	125	451,2	0	103	0	0	0	0
17	103	0,29	0	125	451,2	0	103	0	0	0	0
18	103	0,29	4800	125	451,2	0	103	0	0	0	0
47	103	0,29	4800	125	451,2	0	103	0	0	0	0
48	103	0,29	0	125	451,2	0	103	0	0	0	0
51	103	0,29	4800	125	451,2	0	103	0	0	0	0
52	103	0,29	0	125	451,2	0	103	0	0	0	0
55	103	0,29	4800	125	451,2	0	103	0	0	0	0
56	103	0,29	0	125	451,2	0	103	0	0	0	0
59	103	0,29	4800	125	451,2	0	103	0	0	0	0
60	103	0,29	0	125	451,2	0	103	0	0	0	0
21	0	0,00	2400	0	440,2	0	0	0	0	0	0
22	0	0,00	0	0	440,2	0	0	0	0	0	0
23	0	0,00	0	125	451,2	0	0	0	0	0	0
24	0	0,00	0	125	451,2	0	0	0	0	0	0
25	0	0,00	0	125	451,2	0	0	0	0	0	0
26	0	0,00	2400	0	440,2	0	0	0	0	0	0
27	0	0,00	0	0	440,2	0	0	0	0	0	0
28	0	0,00	0		429,2			0		0	0
29	0	0,00	2400	1044	127,3			0		0	0
30	0	0,00	0	125	451,2			0		0	0
31	0	0,00	2400	0	429,2	0	0	0	0	0	0
32	0	0,00	2400		429,2			0		0	0
33	0	0,00	2400		429,2			0		0	0
25	0	0,00	2400	0	440,2		0	0			0
35	0	0,00	2400	105	429,2	0	0	0	0	0	0
30	U	0,00	2400	125	451,2	0	U	U	0	U	U

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Rešetkasta primarna struktura glavne palube

Beam No.	σ _{eff} [N/mm²]	Usage	x-pos [mm]	y-pos [mm]	z-pos [mm]	σ _{Nx} [N/mm ²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]	Тмх [N/mm²]	τ _{Qy} [N/mm²]	TQz [N/mm²]
37	0	0,00	2400	125	451,2	0	0	0	0	0	0
38	0	0,00	0	0	429,2	0	0	0	0	0	0
39	0	0,00	2400	1044	134,3	0	0	0	0	0	0
40	0	0,00	2400	1044	134,3	0	0	0	0	0	0
41	0	0,00	0	0	440,2	0	0	0	0	0	0
42	0	0,00	0	125	451,2	0	0	0	0	0	0
43	0	0,00	0	0	440,2	0	0	0	0	0	0
44	0	0,00	2400	0	440,2	0	0	0	0	0	0

Abbreviations

$$\sigma_{\text{eff}}: \qquad \text{Effective stress according to von Mises, } \sigma_{\text{eff}} = \sqrt{(\sigma_{Nx} + \sigma_{My} + \sigma_{Mz})^2 + 3(|\tau_{Mx}| + |\tau_{Qy} + \tau_{Qz}|)^2}$$

Usage: Usage factor = $\sigma_{eff} / (\sigma_{yield} / \gamma_M)$ σ_{yield} = specified yield stress

 γ_M = material factor = 1.0 unless otherwise specified

Position of stress point where σ_{eff} is computed:

- x-pos: Distance from start of beam
- y-pos: y-coordinate on profile
- z-pos: z-coordinate on profile

Stresses at the stress point:

- σ_{Nx} : Axial stress
- σ_{My} : Bending stress about local y-axis
- σ_{Mz} : Bending stress about local z-axis
- τ_{Mx} : Torsional stress
- τ_{Qy} : Shear stress in local y-direction
- τ_{Qz} : Shear stress in local z-direction

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
1		3	155	1400	82	23	90,0	0	0			
2		3	5	3600	233	7	0,0	0	0			
3		2	5	2800	136	8	-90,0	0	0			
4		6	146	1400	82	23	-90,0	0	0			
5		6	8	3600	233	7	0,0	0	0			
6		1	8	2800	136	8	90,0	0	0			
7		11	94	2400	328	5	0,0	0	0			
8		12	132	2100	287	5	0,0	0	0			
9		14	154	1400	82	23	90,0	0	0			
10		14	15	3600	233	7	0,0	0	0			
11		13	15	2800	136	8	-90,0	0	0			
12		16	145	1400	82	23	-90,0	0	0			
13		17	127	1500	205	5	0,0	0	0			
14		17	18	2800	136	8	90,0	0	0			
15		16	18	3600	233	7	0,0	0	0			
16		19	197	1800	246	5	0,0	0	0			
17		20	101	2100	287	5	0,0	0	0			
18		22	152	1400	82	23	90,0	0	0			
19		22	23	3600	233	7	0,0	0	0			
20		21	23	2800	136	8	-90,0	0	0			
21		24	143	1400	82	23	-90,0	0	0			
22		25	103	1500	205	5	0,0	0	0			
23		25	26	2800	136	8	90,0	0	0			
24		24	26	3600	233	7	0,0	0	0			
25		27	96	2400	328	5	0,0	0	0			
26		28	100	2100	287	5	0,0	0	0			
27		30	150	1400	82	23	90,0	0	0			
28		30	31	3600	233	7	0,0	0	0			
29		29	31	2800	136	8	-90,0	0	0			
30		32	141	1400	82	23	-90,0	0	0			
31		33	102	1500	205	5	0,0	0	0			
32		33	34	2800	136	8	90,0	0	0			
33		32	34	3600	233	7	0,0	0	0			
34		10	97	2400	986	2	0,0	0	0			
35		9	130	2100	863	2	0,0	0	0			
36		36	148	1400	82	23	90,0	0	0			
37		36	37	3600	233	7	0,0	0	0			
38		35	37	2800	136	8	-90,0	0	0			
39		38	139	1400	82	23	-90,0	0	0			
40		39	126	1500	616	2	0,0	0	0			
41		39	40	2800	136	8	90,0	0	0			
42		38	40	3600	233	7	0,0	0	0			
43		41	153	1400	82	23	90,0	0	0			
44		41	43	3600	233	7	0,0	0	0			
45		44	151	1400	82	23	90,0	0	0			
46		44	46	3600	233	7	0,0	0	0			
47		47	149	1400	82	23	90,0	0	0			
48		47	49	3600	233	7	0,0	0	0			
49		50	147	1400	82	23	90,0	0	0			
50		50	52	3600	233	7	0,0	0	0			
51		53	144	1400	82	23	-90,0	0	0			
52		53	55	3600	233	7	0,0	0	0			
53		56	142	1400	82	23	-90,0	0	0			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
54		56	58	3600	233	7	0,0	0	0			
55		59	140	1400	82	23	-90,0	0	0			
56		59	61	3600	233	7	0,0	0	0			
57		62	138	1400	82	23	-90,0	0	0			
58		62	64	3600	233	7	0,0	0	0			
59		65	8	3200	273	6	90,0	0	0			
60		66	55	3200	273	6	90,0	0	0			
61		67	18	3200	273	6	90,0	0	0			
62		68	58	3200	273	6	90,0	0	0			
63		69	26	3200	273	6	90,0	0	0			
64		70	61	3200	273	6	90,0	0	0			
65		71	34	3200	273	6	90,0	0	0			
66		72	64	3200	2/3	0	90,0	0	0			
67		73	40	3200	794	24	90,0	0	0			
60		74	45	3200	273	6	-90,0	0	0			
70		75	15	3200	273	6	-90,0	0	0			
70		70	46	3200	273	6	-90,0	0	0			
72		78	23	3200	273	6	-90.0	0	0			
73		79	49	3200	273	6	-90.0	0	0			
74		80	31	3200	273	6	-90.0	0	0			
75		81	52	3200	273	6	-90,0	0	0			
76		82	37	3200	794	24	-90,0	0	0			
77		83	85	2400	358	9	0,0	0	0			
78		85	89	3000	410	5	0,0	0	0			
79		85	86	2400	358	9	0,0	0	0			
80		86	90	3000	410	5	0,0	0	0			
81		86	87	2400	358	9	0,0	0	0			
82		87	91	3000	410	5	0,0	0	0			
83		87	84	2400	358	9	0,0	0	0			
84		84	92	3000	1233	2	0,0	0	0			
85		88	89	2400	358	9	0,0	0	0			
86		89	12	2400	328	5	0,0	0	0			
87		89	90	2400	358	9	0,0	0	0			
88		90	198	1000	137	5	0,0	0	0			
89		90	91	2400	358	9	0,0	0	0			
90		91	28	2400	328	5	0,0	0	0			
91		91	92	2400	338	9	0,0	0	0			
92		92	9	2400	358	2	0,0	0	0			
93		93	85	3000	410	5	0,0	0	0			
95		94	95	2400	358	9	0.0	0	0			
96		95	86	3000	410	5	0.0	0	0			
97		95	96	2400	358	9	0.0	0	0			
98		96	87	3000	410	5	0.0	0	0			
99		96	97	2400	358	9	0,0	0	0			
100		97	84	3000	1233	2	0,0	0	0			
101		100	29	1500	205	5	0,0	0	0			
102		101	21	1500	205	5	0,0	0	0			
103		102	27	2100	287	5	0,0	0	0			
104		103	19	2100	287	5	0,0	0	0			
105		106	83	2800	156	12	0,0	0	0			
106		107	199	3500	984	10	0,0	0	0			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
107		109	116	3900	1096	10	0,0	0	0			
108		107	101	2800	180	13	-90,0	0	0			
109		109	100	2800	180	13	-90,0	0	0			
110		110	102	2800	180	13	90,0	0	0			
111		108	103	2800	180	13	90,0	0	0			
112		111	113	1200	322	11	0,0	0	0			
113		113	114	1200	322	11	0,0	0	0			
114		114	118	7200	2024	10	0,0	0	0			
115		114	115	2400	643	11	0,0	0	0			
116		115	119	7200	2024	10	0,0	0	0			
117		115	116	2400	643	11	0,0	0	0			
118		116	120	7200	2024	10	0,0	0	0			
119		116	112	2400	643	11	0,0	0	0			
120		105	117	1200	322	11	0,0	0	0			
121		117	118	1200	322	11	0,0	0	0			
122		118	124	3900	1096	10	0,0	0	0			
123		118	119	2400	643	11	0,0	0	0			
124		119	108	3900	1096	10	0,0	0	0			
125		119	104	50	13	11	0,0	0	0			
126		104	120	2350	630	11	0,0	0	0			
127		120	110	3900	1096	10	0,0	0	0			
128		120	121	2400	643	11	0,0	0	0			
129		99	122	2800	156	12	0,0	0	0			
130		125	126	2800	180	13	90,0	0	0			
131		126	10	2100	863	2	0,0	0	0			
132		124	127	2800	180	13	90,0	0	0			
133		127	11	2100	287	5	0,0	0	0			
134		123	128	2800	180	13	90,0	0	0			
135		129	130	2800	180	13	-90,0	0	0			
136		130	35	1500	616	2	0,0	0	0			
137		131	132	2800	180	13	-90,0	0	0			
138		132	13	1500	205	5	0,0	0	0			
139		131	114	3900	1096	10	0,0	0	0			
140		133	134	2800	180	13	-90,0	0	0			
141		98	135	2800	156	12	0,0	0	0			
142		105	135	105	30	10	0,0	0	0			
143		135	123	3795	1067	10	0,0	0	0			
144		123	136	1500	422	10	0,0	0	0			
145		111	106	3600	1012	10	0,0	0	0			
146		106	105	3600	1012	10	0,0	0	0			
147		133	122	3300	928	10	0,0	0	0			
148		122	111	600	169	10	0,0	0	0			
149		137	133	1500	422	10	0,0	0	0			
150		121	125	3900	1096	10	0,0	0	0			
151		112	121	7200	2024	10	0,0	0	0			
152		129	112	3900	1096	10	0,0	0	0			
153		123	195	1200	350	15	0,0	0	0			
154		110	125	2400	699	15	0,0	0	0			
155		108	110	2400	699	15	0,0	0	0			
156		124	108	2400	699	15	0,0	0	0			
157		133	192	1200	350	15	0,0	0	0			
158		131	107	2400	699	15	0,0	0	0			
159		107	109	2400	699	15	0,0	0	0			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
160		109	129	2400	699	15	0,0	0	0			
161		138	139	1200	529	4	0,0	0	0			
162		139	10	1400	82	23	-90,0	0	0			
163		138	63	1400	82	23	-90,0	0	0			
164		140	141	1200	529	4	0,0	0	0			
165		141	27	1400	82	23	-90,0	0	0			
166		140	60	1400	82	23	-90,0	0	0			
167		142	143	1200	529	4	0,0	0	0			
168		143	19	1400	82	23	-90,0	0	0			
169		142	57	1400	82	23	-90,0	0	0			
170		144	145	1200	529	4	0,0	0	0			
171		145	11	1400	82	23	-90,0	0	0			
172		144	54	1400	82	23	-90,0	0	0			
173		141	138	1200	529	4	0,0	0	0			
174		143	140	1200	529	4	0,0	0	0			
175		145	142	1200	529	4	0,0	0	0			
176		146	144	1200	529	4	0,0	0	0			
177		146	7	1400	82	23	-90,0	0	0			
178		147	148	1200	529	4	0,0	0	0			
179		148	9	1400	82	23	90,0	0	0			
180		147	51	1400	82	23	90,0	0	0			
181		149	150	1200	529	4	0,0	0	0			
182		150	28	1400	82	23	90,0	0	0			
183		149	48	1400	82	23	90,0	0	0			
184		151	152	1200	529	4	0,0	0	0			
185		152	20	1400	82	23	90,0	0	0			
186		151	45	1400	82	23	90,0	0	0			
187		153	154	1200	529	4	0,0	0	0			
188		154	12	1400	82	23	90,0	0	0			
189		153	42	1400	82	23	90,0	0	0			
190		150	147	1200	529	4	0,0	0	0			
191		152	149	1200	529	4	0,0	0	0			
192		154	151	1200	529	4	0,0	0	0			
193		155	153	1200	529	4	0,0	0	0			
194		155	4	1400	82	23	90,0	0	0			
195		1	156	1200	40	16	0,0	0	0			
196		17	157	1200	40	16	0,0	0	0			
197		25	158	1200	40	16	0,0	0	0			
198		33	159	1200	40	16	0,0	0	0			
199		7	54	1200	40	17	0,0	0	0			
200		11	57	1200	40	17	0,0	0	0			
201		19	60	1200	40	17	0,0	0	0			
202		27	63	1200	40	17	0,0	0	0			
203		63	10	1200	40	17	0,0	0	0			
204		60	27	1200	40	17	0,0	0	0			
205		57	19	1200	40	17	0,0	0	0			
206		54	11	1200	40	17	0,0	0	0			
207		51	9	1200	40	17	0,0	0	0			
208		28	51	1200	40	17	0,0	0	0			
209		48	28	1200	40	17	0,0	0	0			
210		20	48	1200	40	17	0,0	0	0			
211		45	20	1200	40	17	0,0	0	0			
212		12	45	1200	40	17	0,0	0	0			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
213		42	12	1200	40	17	0,0	0	0			
214		4	42	1200	40	17	0,0	0	0			
215		29	163	1200	40	16	0,0	0	0			
216		21	162	1200	40	16	0,0	0	0			
217		13	161	1200	40	16	0,0	0	0			
218		2	160	1200	40	16	0,0	0	0			
219		156	55	2800	136	8	90,0	0	0			
220		156	17	1200	40	16	0,0	0	0			
221		157	58	2800	136	8	90,0	0	0			
222		157	25	1200	40	16	0,0	0	0			
223		158	61	2800	136	8	90,0	0	0			
224		158	33	1200	40	16	0,0	0	0			
225		159	64	2800	136	8	90,0	0	0			
226		159	39	1200	40	16	0,0	0	0			
227		160	43	2800	136	8	-90,0	0	0			
228		160	13	1200	40	16	0,0	0	0			
229		161	46	2800	136	8	-90,0	0	0			
230		161	21	1200	40	16	0,0	0	0			
231		162	49	2800	136	8	-90,0	0	0			
232		162	29	1200	40	16	0,0	0	0			
233		163	52	2800	136	8	-90,0	0	0			
234		163	35	1200	40	16	0,0	0	0			
235		164	177	1850	243	18	0,0	0	0			
236		165	164	7200	946	18	0,0	0	0			
237		168	169	1200	610	20	-90,0	0	0			
238		169	137	1200	189	22	0,0	0	0			
239		168	166	1200	610	20	0,0	0	0			
240		170	171	1200	610	20	90,0	0	0			
241		171	136	1200	189	22	0,0	0	0			
242		170	167	1200	610	20	0,0	0	0			
243		172	170	1500	763	20	0,0	0	0			
244		173	178	1850	941	20	0,0	0	0			
245		174	173	7200	3661	20	0,0	0	0			
246		175	180	2050	1042	20	0,0	0	0			
247		168	175	1500	763	20	0,0	0	0			
248		176	165	1850	243	18	0,0	0	0			
249		178	172	2050	1042	20	0,0	0	0			
250		177	178	1200	158	18	0,0	0	0			
251		178	179	1200	610	20	0,0	0	0			
252		176	180	1200	158	18	0,0	0	0			
253		180	174	1850	941	20	0,0	0	0			
254		180	181	1200	610	20	0,0	0	0			
255		182	183	1200	158	18	0,0	0	0			
256		183	184	1200	158	18	0,0	0	0			
257		185	186	1200	158	18	0,0	0	0			
258		187	185	1200	158	18	0,0	0	0			
259		187	188	1850	243	18	0,0	0	0			
260		188	189	7200	946	18	0,0	0	0			
261		189	182	1850	243	18	0,0	0	0			
262		187	176	3000	394	18	-90,0	0	0			
263		182	177	3000	394	18	90,0	0	0			
264		183	178	3000	394	18	90,0	0	0			
265		185	180	3000	394	18	-90,0	0	0			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
266		186	181	3000	394	18	-90,0	0	0			
267		184	179	3000	394	18	90,0	0	0			
268		190	184	1850	243	18	0,0	0	0			
269		191	190	7200	946	18	0,0	0	0			
270		186	191	1850	243	18	0,0	0	0			
271		166	181	3550	1805	20	0,0	0	0			
272		179	167	3550	1805	20	0,0	0	0			
273		181	179	10900	5542	20	0,0	0	0			
274		169	192	1500	422	10	0,0	0	0			
275		192	131	1200	350	15	0,0	0	0			
276		193	113	600	169	10	0,0	0	0			
277		192	193	3300	928	10	0,0	0	0			
278		194	117	3600	1012	10	0,0	0	0			
279		105	194	3600	1012	10	0,0	0	0			
280		195	1/1	1200	422	10	0,0	0	0			
281		195	124	2705	1067	15	0,0	0	0			
282		190	195	105	30	10	0,0	0	0			
283		136	167	1200	610	20	90.0	0	0			
285		130	166	1200	610	20	-90.0	0	0			
286		2	134	1500	205	5	0.0	0	0			
287		83	93	3000	410	5	0.0	0	0			
288		93	98	705	96	5	0,0	0	0			
289		128	1	1500	205	5	0,0	0	0			
290		98	7	1695	232	5	0,0	0	0			
291		7	128	2100	287	5	0,0	0	0			
292		88	83	3000	410	5	0,0	0	0			
293		99	88	1200	164	5	0,0	0	0			
294		134	4	2100	287	5	0,0	0	0			
295		4	99	1200	164	5	0,0	0	0			
296		119	197	2800	156	12	0,0	0	0			
297		197	95	600	82	5	0,0	0	0			
298		198	199	2800	156	12	0,0	0	0			
299		198	20	1400	191	5	0,0	0	0			
300		199	115	400	112	10	0,0	0	0			
301		40	200	2280,4	171	21	0,0	0	0			
302		39	200	2280,4	171	21	0,0	0	0			
303		200	10	2280,4	1/1	21	0,0	0	0			
304		200	- 38 - 201	2280,4	1/1	21	0,0	0	0			
305		36	201	2280,4	171	21	0,0	0	0			
307		201	37	2280,4	171	21	0,0	0	0			
308		201	35	2280,4	171	21	0.0	0	0			
309		202	2.03	2280,1	171	21	0.0	0	0			
310		202	203	2280,1	171	21	0.0	0	0			
311		205	202	2280,4	171	21	0,0	0	0			
312		206	202	2280,4	171	21	0,0	0	0			
313		207	208	2280,4	171	21	0,0	0	0			
314		207	209	2280,4	171	21	0,0	0	0	1	1	
315		210	207	2280,4	171	21	0,0	0	0			
316		211	207	2280,4	171	21	0,0	0	0			
317		212	213	400	112	10	0,0	0	0			
318		214	215	1400	191	5	0,0	0	0			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
319		214	212	2800	156	12	0,0	0	0			
320		216	217	600	82	5	0,0	0	0			
321		218	216	2800	156	12	0,0	0	0			
322		219	220	105	30	10	0,0	0	0			
323		220	221	3795	1067	10	0,0	0	0			
324		221	222	1200	350	15	0,0	0	0			
325		221	223	1500	422	10	0,0	0	0			
326		224	225	3600	1012	10	0,0	0	0			
327		225	219	3600	1012	10	0,0	0	0			
328		226	227	3300	928	10	0,0	0	0			
329		227	224	600	169	10	0,0	0	0			
330		226	228	1200	350	15	0,0	0	0			
331		229	226	1500	422	10	0,0	0	0			
332		230	231	3000	394	18	-90,0	0	0			
333		232	233	3000	394	18	90,0	0	0			
225		234	235	3000	394	18	90,0	0	0			
335		230	237	1850	243	10	-90,0	0	0			
337		230	234	7200	946	18	0,0	0	0			
338		235	230	1850	243	18	0.0	0	0			
339		236	230	1200	158	18	0.0	0	0			
340		230	186	1200	158	18	0.0	0	0			
341		232	184	1200	158	18	0,0	0	0			
342		234	232	1200	158	18	0,0	0	0			
343		231	181	1200	610	20	0,0	0	0			
344		231	240	1850	941	20	0,0	0	0			
345		237	231	1200	158	18	0,0	0	0			
346		233	179	1200	610	20	0,0	0	0			
347		235	233	1200	158	18	0,0	0	0			
348		233	241	2050	1042	20	0,0	0	0			
349		237	242	1850	243	18	0,0	0	0			
350		243	244	1500	763	20	0,0	0	0			
351		244	231	2050	1042	20	0,0	0	0			
352		240	245	7200	3661	20	0,0	0	0			
353		245	233	1850	941	20	0,0	0	0			
354		241	246	1500	763	20	0,0	0	0			
355		246	16/	1200	610	20	0,0	0	0			
350		223	130	1200	189	22	0,0	0	0			
357		240	166	1200	610	20	90,0	0	0			
350		243	100	1200	180	20	0,0	0	0			
360		243	229	1200	610	22	-90.0	0	0			
361		243	247	7200	946	18	0.0	0	0			
362		247	235	1850	243	18	0.0	0	0			
363		248	203	1200	40	16	0.0	0	0			
364		248	249	2800	136	8	-90,0	0	0			
365		250	251	1200	40	16	0,0	0	0			
366		250	252	2800	136	8	-90,0	0	0			
367		253	254	1200	40	16	0,0	0	0			
368		253	255	2800	136	8	-90,0	0	0			
369		256	257	1200	40	16	0,0	0	0			
370		256	258	2800	136	8	-90,0	0	0			
371		259	210	1200	40	16	0,0	0	0			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
372		259	260	2800	136	8	90,0	0	0			
373		261	262	1200	40	16	0,0	0	0			
374		261	263	2800	136	8	90,0	0	0			
375		264	265	1200	40	16	0,0	0	0			
376		264	266	2800	136	8	90,0	0	0			
377		267	268	1200	40	16	0,0	0	0			
378		267	269	2800	136	8	90,0	0	0			
379		2	256	1200	40	16	0,0	0	0			
380		257	253	1200	40	16	0,0	0	0			
381		254	250	1200	40	16	0,0	0	0			
382		251	248	1200	40	16	0,0	0	0			
383		4	270	1200	40	17	0,0	0	0			
384		270	271	1200	40	17	0,0	0	0			
385		271	272	1200	40	17	0,0	0	0			
386		272	215	1200	40	17	0,0	0	0			
387		215	273	1200	40	17	0,0	0	0			
388		273	274	1200	40	17	0,0	0	0			
389		274	275	1200	40	17	0,0	0	0			
390		275	206	1200	40	17	0,0	0	0			
391		276	277	1200	40	17	0,0	0	0			
392		278	279	1200	40	17	0,0	0	0			
393		280	281	1200	40	17	0,0	0	0			
394		282	209	1200	40	17	0,0	0	0			
395		281	282	1200	40	17	0,0	0	0			
396		279	280	1200	40	17	0,0	0	0			
397		277	278	1200	40	17	0,0	0	0			
398		7	276	1200	40	17	0,0	0	0			
399		262	259	1200	40	16	0,0	0	0			
400		265	261	1200	40	16	0,0	0	0			
401		268	264	1200	40	16	0,0	0	0			
402		1	267	1200	40	16	0,0	0	0			
403		155	283	1200	529	4	0,0	0	0			
404		284	285	1200	529	4	0,0	0	0			
405		286	287	1200	529	4	0,0	0	0			
406		288	289	1200	529	4	0,0	0	0			
407		283	270	1400	82	23	90,0	0	0			
408		284	271	1400	82	23	90,0	0	0			
409		283	284	1200	529	4	0,0	0	0			
410		285	272	1400	82	23	90,0	0	0			
411		286	215	1400	82	23	90,0	0	0			
412		285	286	1200	529	4	0,0	0	0			
413		287	273	1400	82	23	90,0	0	0			
414		288	274	1400	82	23	90,0	0	0			
415		287	288	1200	529	4	0,0	0	0			
416		289	275	1400	82	23	90,0	0	0			
417		290	206	1400	82	23	90,0	0	0			
418		289	290	1200	529	4	0,0	0	0			
419		146	291	1200	529	4	0,0	0	0			
420		292	293	1200	529	4	0,0	0	0			
421		294	295	1200	529	4	0,0	0	0			
422		296	297	1200	529	4	0,0	0	0			
423		291	276	1400	82	23	-90,0	0	0			
424		292	277	1400	82	23	-90,0	0	0			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
425		291	292	1200	529	4	0,0	0	0			
426		293	278	1400	82	23	-90,0	0	0			
427		294	279	1400	82	23	-90,0	0	0			
428		293	294	1200	529	4	0,0	0	0			
429		295	280	1400	82	23	-90,0	0	0			
430		296	281	1400	82	23	-90,0	0	0			
431		295	296	1200	529	4	0,0	0	0			
432		297	282	1400	82	23	-90,0	0	0			
433		298	209	1400	82	23	-90,0	0	0			
434		297	298	1200	529	4	0,0	0	0			
435		299	300	2400	699	15	0,0	0	0			
436		301	299	2400	699	15	0,0	0	0			
437		1228	301	2400	699	15	0,0	0	0			
438		155	220	1200	350	15	0,0	0	0			
439		202	302	2400	699	15	0,0	0	0			
440		302	303	2400	699	15	0,0	0	0			
441		123	221	1200	350	15	0,0	0	0			
443		300	305	3900	1096	10	0.0	0	0			
444		305	306	7200	2024	10	0.0	0	0			
445		306	304	3900	1096	10	0.0	0	0			
446		228	307	3900	1096	10	0,0	0	0			
447		308	257	1500	205	5	0,0	0	0			
448		228	308	2800	180	13	-90,0	0	0			
449		309	203	1500	616	2	0,0	0	0			
450		300	309	2800	180	13	-90,0	0	0			
451		310	277	2100	287	5	0,0	0	0			
452		222	310	2800	180	13	90,0	0	0			
453		311	209	2100	863	2	0,0	0	0			
454		304	311	2800	180	13	90,0	0	0			
455		312	306	2400	643	11	0,0	0	0			
456		312	303	3900	1096	10	0,0	0	0			
457		313	312	2350	630	11	0,0	0	0			
458		218	313	50	13	11	0,0	0	0			
459		218	302	3900	1096	10	0,0	0	0			
460		314	218	2400	643	11	0,0	0	0			
461		314	222	3900	1096	10	0,0	0	0			
462		219	314	1200	322	11	0,0	0	0			
403		215	219	2400	522 642	11	0,0	0	0			
404		315	312	2400	2024	10	0,0	0	0			
465		213	315	2400	643	10	0,0	0	0			
467		213	218	7200	2024	10	0.0	0	0			
468		307	213	2400	643	10	0.0	0	0			
469		307	314	7200	2024	10	0.0	0	0			
470		224	307	1200	322	11	0.0	0	0			
471		111	224	1200	322	11	0,0	0	0			
472		302	316	2800	180	13	90,0	0	0			
473		303	317	2800	180	13	90,0	0	0	1		
474		299	318	2800	180	13	-90,0	0	0			
475		301	319	2800	180	13	-90,0	0	0			
476		299	315	3900	1096	10	0,0	0	0			
477		301	212	3500	984	10	0,0	0	0			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
478		316	279	2100	287	5	0,0	0	0			
479		317	281	2100	287	5	0,0	0	0			
480		319	254	1500	205	5	0,0	0	0			
481		318	251	1500	205	5	0,0	0	0			
482		320	321	3000	1233	2	0,0	0	0			
483		322	320	2400	358	9	0,0	0	0			
484		322	323	3000	410	5	0,0	0	0			
485		217	322	2400	358	9	0,0	0	0			
486		217	324	3000	410	5	0,0	0	0			
487		325	217	2400	358	9	0,0	0	0			
488		325	326	3000	410	5	0,0	0	0			
489		93	325	2400	358	9	0,0	0	0			
490		327	206	2400	986	2	0,0	0	0			
491		328	327	2400	358	9	0,0	0	0			
492		328	274	2400	328	5	0,0	0	0			
493		329	328	2400	358	9	0,0	0	0			
494		329	214	1000	137	5	0,0	0	0			
495		330	329	2400	358	9	0,0	0	0			
496		330	271	2400	328	5	0,0	0	0			
497		88	330	2400	358	9	0,0	0	0			
498		321	327	3000	1233	2	0,0	0	0			
499		323	321	2400	358	9	0,0	0	0			
500		323	328	3000	410	5	0,0	0	0			
501		324	323	2400	358	9	0,0	0	0			
502		324	329	3000	410	5	0,0	0	0			
503		326	324	2400	358	9	0,0	0	0			
504		326	330	3000	410	5	0,0	0	0			
505		83	326	2400	358	9	0,0	0	0			
506		331	204	3200	794	24	-90,0	0	0			
507		332	249	3200	273	6	-90,0	0	0			
508		333	334	3200	273	6	-90,0	0	0			
509		335	252	3200	273	6	-90,0	0	0			
510		336	337	3200	273	6	-90,0	0	0			
511		338	255	3200	273	6	-90,0	0	0			
512		339	340	3200	273	6	-90,0	0	0			
515		242	258	3200	275	0	-90,0	0	0			
515		342	211	3200	272	24 6	90,0	0	0			
516		243	200	3200	273	6	90,0	0	0			
517		344	263	3200	273	6	90,0	0	0			
518		340	3/18	3200	273	6	90,0	0	0			
510		3/19	266	3200	273	6	90,0	0	0			
520		350	351	3200	273	6	90.0	0	0			
520		352	269	3200	273	6	90.0	0	0			
522		353	260	3600	273	7	0.0	0	0			
523		353	297	1400	82	23	-90.0	0	0	ļ		
524		354	263	3600	233	7	0.0	0	0			
525		354	295	1400	82	23	-90.0	0	0			
526		355	266	3600	233	7	0.0	0	0			1
527		355	293	1400	82	23	-90.0	0	0			
528		356	269	3600	233	7	0.0	0	0			
529		356	291	1400	82	23	-90.0	0	0			
530		357	249	3600	233	7	0,0	0	0			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
531		357	289	1400	82	23	90,0	0	0			
532		358	252	3600	233	7	0,0	0	0			
533		358	287	1400	82	23	90,0	0	0			
534		359	255	3600	233	7	0,0	0	0			
535		359	285	1400	82	23	90,0	0	0			
536		360	258	3600	233	7	0,0	0	0			
537		360	283	1400	82	23	90,0	0	0			
538		208	211	3600	233	7	0,0	0	0			
539		210	211	2800	136	8	90,0	0	0			
540		210	311	1500	616	2	0,0	0	0			
541		208	298	1400	82	23	-90,0	0	0			
542		203	204	2800	136	8	-90,0	0	0			
543		205	204	3600	233	7	0,0	0	0			
544		205	290	1400	82	23	90,0	0	0			
545		206	309	2100	863	2	0,0	0	0			
546		209	320	2400	986	2	0,0	0	0			
547		361	345	3600	233	7	0,0	0	0			
548		262	345	2800	136	8	90,0	0	0			
549		262	317	1500	205	5	0,0	0	0			
550		361	296	1400	82	23	-90,0	0	0			
551		251	334	2800	136	8	-90,0	0	0			
552		362	334	3600	233	7	0.0	0	0			
553		362	288	1400	82	23	90,0	0	0			
554		274	318	2100	287	5	0.0	0	0			
555		281	322	2400	328	5	0.0	0	0			
556		363	348	3600	233	7	0,0	0	0			
557		265	348	2800	136	8	90,0	0	0			
558		265	316	1500	205	5	0.0	0	0			
559		363	294	1400	82	23	-90,0	0	0			
560		254	337	2800	136	8	-90,0	0	0			
561		364	337	3600	233	7	0,0	0	0			
562		364	286	1400	82	23	90,0	0	0			
563		215	319	2100	287	5	0,0	0	0			
564		279	216	1800	246	5	0,0	0	0			
565		365	351	3600	233	7	0.0	0	0			
566		268	351	2800	136	8	90.0	0	0			
567		268	310	1500	205	5	0,0	0	0			
568		365	292	1400	82	23	-90,0	0	0			
569		257	340	2800	136	8	-90.0	0	0			
570		366	340	3600	233	7	0.0	0	0			
571		366	284	1400	82	23	90,0	0	0			
572		271	308	2100	287	5	0,0	0	0			
573		277	325	2400	328	5	0,0	0	0			
574		125	367	7629,5	574	21	0,0	0	0			
575		129	367	7629.5	574	21	0.0	0	0			
576		367	130	7629,5	574	21	0.0	0	0			
577		367	126	7629.5	574	21	0.0	0	0			
578		304	368	7629.5	574	21	0.0	0	0			
579		368	311	7629.5	574	21	0.0	0	0			
580		368	309	7629.5	574	21	0.0	0	0			
581		300	368	7629.5	574	21	0.0	0	0			
582		211	260	1200	91	26	90.0	0	0			
583		8	55	1200	91	26	90,0	0	0			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
584		18	58	1200	91	26	90,0	0	0			
585		26	61	1200	91	26	90,0	0	0			
586		34	64	1200	91	26	90,0	0	0			
587		64	40	1200	91	26	90,0	0	0			
588		61	34	1200	91	26	90,0	0	0			
589		58	26	1200	91	26	90,0	0	0			
590		55	18	1200	91	26	90,0	0	0			
591		260	345	1200	91	26	90,0	0	0			
592		263	348	1200	91	26	90,0	0	0			
593		266	351	1200	91	26	90,0	0	0			
594		269	8	1200	91	26	90,0	0	0			
595		351	269	1200	91	26	90,0	0	0			
596		348	266	1200	91	26	90,0	0	0			
597		345	263	1200	91	26	90,0	0	0			
598		255	340	1200	91	26	90,0	0	0			
599		252	337	1200	91	26	90,0	0	0			
600		249	334	1200	91	26	90,0	0	0			
601		31	52	1200	91	26	90,0	0	0			
602		23	49	1200	91	26	90,0	0	0			
603		15	46	1200	91	26	90,0	0	0			
604		5	43	1200	91	26	90,0	0	0			
605		204	249	1200	91	26	90,0	0	0			
606		334	252	1200	91	26	90,0	0	0			
607		337	255	1200	91	26	90,0	0	0			
608		340	258	1200	91	26	90,0	0	0			
609		258	5	1200	91	26	90,0	0	0			
610		43	15	1200	91	26	90,0	0	0			
611		46	23	1200	91	26	90,0	0	0			
612		49	31	1200	91	26	90,0	0	0			
613		52	37	1200	91	26	90,0	0	0			

Beam information, sorted by Beam in Ascending order

Abbreviations

Beam information:	
Beam:	Beam identification number
Beam Name:	User's beam identification
Start/End Node:	Node numbers for the start and end nodes respectively
Elastic length:	Elastic length of beam, excluding possible rigid ends
Mass:	Mass of the elastic length of beam
Profile:	Profile identification number
Angle:	Angle between the profile's z-axis and the plane through the beam and the global Z-axis. Positive for
	clockwise rotation when seen in positive local x-direction.
Rigid Start/End:	Length of possible rigid part of the beam at the start and ends respectively
Hinged at Start/End:	Possibly defined hinge at the start and end nodes respectively, where hinges are defined as:
dX, dY, dZ:	Hinged with respect to translation in the global X-, Y-, and Z-direction respectively
rX, rY, rZ:	Hinged with respect to rotation about the global X-, Y-, and Z-axis respectively

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Non Linearities: Possibly specified non-linear properties for the beam. For definition see figure below.

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node	Name	X	Y	Z	Boundary Conditions							
110		[]	[]	[]	X transl	Y transl	Z transl	X rot	Y rot	Z rot		
1		0	-9000	10900								
2		0	9000	10900								
3		0	5400	8100								
4		0	5400	10900								
5		0	9000	8100								
6		0	-5400	8100								
7		0	-5400	10900								
8		0	-9000	8100								
9		9600	5400	10900								
10		9600	-5400	10900								
11		2400	-5400	10900								
12		2400	5400	10900								
13		2400	9000	10900								
14		2400	5400	8100								
15		2400	9000	8100								
16		2400	-5400	8100								
17		2400	-9000	10900								
18		2400	-9000	8100								
19		4800	-5400	10900								
20		4800	5400	10900								
21		4800	9000	10900								
22		4800	5400	8100								
23		4800	9000	8100								
24		4800	-5400	8100								
25		4800	-9000	10900								
26		4800	-9000	8100								

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node	Name	X	Y	Z	Boundary Conditions								
110		[IIIII]	[IIIII]	լոույ	X transl	Y transl	Z transl	X rot	Y rot	Z rot			
27		7200	-5400	10900									
28		7200	5400	10900									
29		7200	9000	10900									
30		7200	5400	8100									
31		7200	9000	8100									
32		7200	-5400	8100									
33		7200	-9000	10900									
34		7200	-9000	8100									
35		9600	9000	10900									
36		9600	5400	8100									
37		9600	9000	8100									
38		9600	-5400	8100									
39		9600	-9000	10900									
40		9600	-9000	8100									
41		1200	5400	8100									
42		1200	5400	10900									
43		1200	9000	8100									
44		3600	5400	8100									
45		3600	5400	10900									
46		3600	9000	8100									
47		6000	5400	8100									
48		6000	5400	10900									
49		6000	9000	8100									
50		8400	5400	8100									
51		8400	5400	10900									
52		8400	9000	8100									

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node	Name	X	Y	Z	Boundary Conditions							
NU		լոույ	լոույ	լոույ	X transl	Y transl	Z transl	X rot	Y rot	Z rot		
53		1200	-5400	8100								
54		1200	-5400	10900								
55		1200	-9000	8100								
56		3600	-5400	8100								
57		3600	-5400	10900								
58		3600	-9000	8100								
59		6000	-5400	8100								
60		6000	-5400	10900								
61		6000	-9000	8100								
62		8400	-5400	8100								
63		8400	-5400	10900								
64		8400	-9000	8100								
65		0	-9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
66		1200	-9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free		
67		2400	-9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
68		3600	-9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free		
69		4800	-9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
70		6000	-9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free		
71		7200	-9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
72		8400	-9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free		
73		9600	-9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
74		1200	9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free		
75		0	9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
76		2400	9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
77		3600	9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free		
78		4800	9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node information	, sorted by	Node in A	Ascending order
	,		

Node	Name	X	Y	Z	Boundary Conditions							
NU		լոույ	լոույ	լոույ	X transl	Y transl	Z transl	X rot	Y rot	Z rot		
79		6000	9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free		
80		7200	9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
81		8400	9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free		
82		9600	9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed		
83		0	0	10900								
84		9600	0	10900								
85		2400	0	10900								
86		4800	0	10900								
87		7200	0	10900								
88		0	3000	10900								
89		2400	3000	10900								
90		4800	3000	10900								
91		7200	3000	10900								
92		9600	3000	10900								
93		0	-3000	10900								
94		2400	-3000	10900								
95		4800	-3000	10900								
96		7200	-3000	10900								
97		9600	-3000	10900								
98		0	-3705	10900								
99		0	4200	10900								
100		7200	7500	10900								
101		4800	7500	10900								
102		7200	-7500	10900								
103		4800	-7500	10900								
104		4850	-3600	13700								

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node	Name	X	Y	Z			Boundary	Conditions		
NU		[IIIII]	[IIIII]	լոույ	X transl	Y transl	Z transl	X rot	Y rot	Z rot
105		0	-3600	13700						
106		0	0	13700						
107		4800	7500	13700						
108		4800	-7500	13700						
109		7200	7500	13700						
110		7200	-7500	13700						
111		0	3600	13700						
112		9600	3600	13700						
113		1200	3600	13700						
114		2400	3600	13700						
115		4800	3600	13700						
116		7200	3600	13700						
117		1200	-3600	13700						
118		2400	-3600	13700						
119		4800	-3600	13700						
120		7200	-3600	13700						
121		9600	-3600	13700						
122		0	4200	13700						
123		0	-7500	13700						
124		2400	-7500	13700						
125		9600	-7500	13700						
126		9600	-7500	10900						
127		2400	-7500	10900						
128		0	-7500	10900						
129		9600	7500	13700						
130		9600	7500	10900						

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node	Name	X	Y	Z			Boundary	Conditions		
110		լոույ	[IIIII]	լոույ	X transl	Y transl	Z transl	X rot	Y rot	Z rot
131		2400	7500	13700						
132		2400	7500	10900						
133		0	7500	13700						
134		0	7500	10900						
135		0	-3705	13700						
136		0	-9000	13700						
137		0	9000	13700						
138		8400	-5400	9500						
139		9600	-5400	9500						
140		6000	-5400	9500						
141		7200	-5400	9500						
142		3600	-5400	9500						
143		4800	-5400	9500						
144		1200	-5400	9500						
145		2400	-5400	9500						
146		0	-5400	9500						
147		8400	5400	9500						
148		9600	5400	9500						
149		6000	5400	9500						
150		7200	5400	9500						
151		3600	5400	9500						
152		4800	5400	9500						
153		1200	5400	9500						
154		2400	5400	9500						
155		0	5400	9500						
156		1200	-9000	10900						

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node	Name	X	Y	Z	Boundary Conditions						
NU		[IIIII]	[IIIII]	[IIIII]	X transl	Y transl	Z transl	X rot	Y rot	Z rot	
157		3600	-9000	10900							
158		6000	-9000	10900							
159		8400	-9000	10900							
160		1200	9000	10900							
161		3600	9000	10900							
162		6000	9000	10900							
163		8400	9000	10900							
164		2400	-3600	14900							
165		2400	3600	14900							
166		0	9000	14900							
167		0	-9000	14900							
168		1200	9000	14900							
169		1200	9000	13700							
170		1200	-9000	14900							
171		1200	-9000	13700							
172		1200	-7500	14900							
173		1200	-3600	14900							
174		1200	3600	14900							
175		1200	7500	14900							
176		2400	5450	14900							
177		2400	-5450	14900							
178		1200	-5450	14900							
179		0	-5450	14900							
180		1200	5450	14900							
181		0	5450	14900							
182		2400	-5450	17900							

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node	Name	X	Y	Z			Boundary	Conditions		
110		[11111]	[IIIII]	[IIIII]	X transl	Y transl	Z transl	X rot	Y rot	Z rot
183		1200	-5450	17900						
184		0	-5450	17900						
185		1200	5450	17900						
186		0	5450	17900						
187		2400	5450	17900						
188		2400	3600	17900						
189		2400	-3600	17900						
190		0	-3600	17900						
191		0	3600	17900						
192		1200	7500	13700						
193		1200	4200	13700						
194		1200	0	13700						
195		1200	-7500	13700						
196		1200	-3705	13700						
197		4800	-3600	10900						
198		4800	4000	10900						
199		4800	4000	13700						
200		9600	-7200	9500						
201		9600	7200	9500						
202		-9600	7200	9500						
203		-9600	9000	10900						
204		-9600	9000	8100						
205		-9600	5400	8100						
206		-9600	5400	10900						
207		-9600	-7200	9500						
208		-9600	-5400	8100						

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node	Name	X	Y	Z			Boundary	Conditions		
110		[]	լոույ	[]	X transl	Y transl	Z transl	X rot	Y rot	Z rot
209		-9600	-5400	10900						
210		-9600	-9000	10900						
211		-9600	-9000	8100						
212		-4800	4000	13700						
213		-4800	3600	13700						
214		-4800	4000	10900						
215		-4800	5400	10900						
216		-4800	-3600	10900						
217		-4800	-3000	10900						
218		-4800	-3600	13700						
219		-1200	-3600	13700						
220		-1200	-3705	13700						
221		-1200	-7500	13700						
222		-2400	-7500	13700						
223		-1200	-9000	13700						
224		-1200	3600	13700						
225		-1200	0	13700						
226		-1200	7500	13700						
227		-1200	4200	13700						
228		-2400	7500	13700						
229		-1200	9000	13700						
230		-1200	5450	17900						
231		-1200	5450	14900						
232		-1200	-5450	17900						
233		-1200	-5450	14900						
234		-2400	-5450	17900						

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node	Name	X	Y	Z			Boundary	Conditions		
110		լոույ	[IIIII]	լոույ	X transl	Y transl	Z transl	X rot	Y rot	Z rot
235		-2400	-5450	14900						
236		-2400	5450	17900						
237		-2400	5450	14900						
238		-2400	-3600	17900						
239		-2400	3600	17900						
240		-1200	3600	14900						
241		-1200	-7500	14900						
242		-2400	3600	14900						
243		-1200	9000	14900						
244		-1200	7500	14900						
245		-1200	-3600	14900						
246		-1200	-9000	14900						
247		-2400	-3600	14900						
248		-8400	9000	10900						
249		-8400	9000	8100						
250		-6000	9000	10900						
251		-7200	9000	10900						
252		-6000	9000	8100						
253		-3600	9000	10900						
254		-4800	9000	10900						
255		-3600	9000	8100						
256		-1200	9000	10900						
257		-2400	9000	10900						
258		-1200	9000	8100						
259		-8400	-9000	10900						
260		-8400	-9000	8100						

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node	Name	X	Y	Z	Boundary Conditions						
110		լոույ	[]	[]	X transl	Y transl	Z transl	X rot	Y rot	Z rot	
261		-6000	-9000	10900							
262		-7200	-9000	10900							
263		-6000	-9000	8100							
264		-3600	-9000	10900							
265		-4800	-9000	10900							
266		-3600	-9000	8100							
267		-1200	-9000	10900							
268		-2400	-9000	10900							
269		-1200	-9000	8100							
270		-1200	5400	10900							
271		-2400	5400	10900							
272		-3600	5400	10900							
273		-6000	5400	10900							
274		-7200	5400	10900							
275		-8400	5400	10900							
276		-1200	-5400	10900							
277		-2400	-5400	10900							
278		-3600	-5400	10900							
279		-4800	-5400	10900							
280		-6000	-5400	10900							
281		-7200	-5400	10900							
282		-8400	-5400	10900							
283		-1200	5400	9500							
284		-2400	5400	9500							
285		-3600	5400	9500							
286		-4800	5400	9500							

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node	Name	X	Y	Z			Boundary	Conditions		
NU		[IIIII]	լոույ	լոույ	X transl	Y transl	Z transl	X rot	Y rot	Z rot
287		-6000	5400	9500						
288		-7200	5400	9500						
289		-8400	5400	9500						
290		-9600	5400	9500						
291		-1200	-5400	9500						
292		-2400	-5400	9500						
293		-3600	-5400	9500						
294		-4800	-5400	9500						
295		-6000	-5400	9500						
296		-7200	-5400	9500						
297		-8400	-5400	9500						
298		-9600	-5400	9500						
299		-7200	7500	13700						
300		-9600	7500	13700						
301		-4800	7500	13700						
302		-4800	-7500	13700						
303		-7200	-7500	13700						
304		-9600	-7500	13700						
305		-9600	3600	13700						
306		-9600	-3600	13700						
307		-2400	3600	13700						
308		-2400	7500	10900						
309		-9600	7500	10900						
310		-2400	-7500	10900						
311		-9600	-7500	10900						
312		-7200	-3600	13700						

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node	Name	X	Y	Z	Boundary Conditions						
110		[IIIII]	[IIIII]	[IIIII]	X transl	Y transl	Z transl	X rot	Y rot	Z rot	
313		-4850	-3600	13700							
314		-2400	-3600	13700							
315		-7200	3600	13700							
316		-4800	-7500	10900							
317		-7200	-7500	10900							
318		-7200	7500	10900							
319		-4800	7500	10900							
320		-9600	-3000	10900							
321		-9600	0	10900							
322		-7200	-3000	10900							
323		-7200	0	10900							
324		-4800	0	10900							
325		-2400	-3000	10900							
326		-2400	0	10900							
327		-9600	3000	10900							
328		-7200	3000	10900							
329		-4800	3000	10900							
330		-2400	3000	10900							
331		-9600	9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed	
332		-8400	9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free	
333		-7200	9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed	
334		-7200	9000	8100							
335		-6000	9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free	
336		-4800	9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed	
337		-4800	9000	8100							
338		-3600	9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free	

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

|--|

Node	Name	X	Y	Z	Boundary Conditions						
		[IIIII]	[IIIII]	լոույ	X transl	Y transl	Z transl	X rot	Y rot	Z rot	
339		-2400	9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed	
340		-2400	9000	8100							
341		-1200	9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free	
342		-9600	-9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed	
343		-8400	-9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free	
344		-7200	-9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed	
345		-7200	-9000	8100							
346		-6000	-9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free	
347		-4800	-9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed	
348		-4800	-9000	8100							
349		-3600	-9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free	
350		-2400	-9000	4900	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed	
351		-2400	-9000	8100							
352		-1200	-9000	4900	Fixed	Fixed	Fixed	Fixed	Free	Free	
353		-8400	-5400	8100							
354		-6000	-5400	8100							
355		-3600	-5400	8100							
356		-1200	-5400	8100							
357		-8400	5400	8100							
358		-6000	5400	8100							
359		-3600	5400	8100							
360		-1200	5400	8100							
361		-7200	-5400	8100							
362		-7200	5400	8100							
363		-4800	-5400	8100							
364		-4800	5400	8100							

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Node No	Name	X [mm]	Y [mm]	Y Z mm] [mm]	Boundary Conditions						
110		[]	[]	[]	X transl	Y transl	Z transl	X rot	Y rot	Z rot	
365		-2400	-5400	8100							
366		-2400	5400	8100							
367		9600	0	12300							
368		-9600	0	12300							

Node information, sorted by Node in Ascending order

Abbreviations

Node No:Node identification numberName:User's node identificationX, Y, Z:Node coordinates in the global coordinate systemX transl, Y transl, Z transl:Boundary conditions w.r.t. translation along the global axesX rot, Y rot, Zrot:Boundary conditions w.r.t. rotation about the global axes

Where:Free:The node is freeFixed:The node is fixedFD:The node has a prescribed displacement or rotationSpring:The node is supported by a spring

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Profiles used in the model

Profiles

Profile	Profile Name	Туре	Material	Ignore S. C.	Shear factor fy	Shear factor fz	Profile parameters
2	Popreèna pregrada R16 i R-16	40	9 Gl.paluba - Paluba 4		1,00	1,00	Effective plate Width=3000 [mm], Plate Thickness, pT=7 [mm], Web Height, hw=2200 [mm], Web Thickness, t=7 [mm], Flange width (incl. web), bf=3000 [mm], Flange thickness, tf=7 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, NeglectIyz=True
4	Uzdužna pregrada	40	9 Gl.paluba - Paluba 4		1,00	1,00	Effective plate Width=3000 [mm], Plate Thickness, pT=7 [mm], Web Height, hw=2800 [mm], Web Thickness, t=7 [mm], Flange width (incl. web), bf=3000 [mm], Flange thickness, tf=7 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, NeglectIyz=True
5	Okvirne sponje	40	9 Gl.paluba - Paluba 4		1,00	1,00	Effective plate Width=1440 [mm], Plate Thickness, pT=7 [mm], Web Height, hw=500 [mm], Web Thickness, t=10 [mm], Flange width (incl. web), bf=250 [mm], Flange thickness, tf=15 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, NeglectIyz=True
6	Rebra oplate u garaži	40	9 Gl.paluba - Paluba 4		1,00	1,00	Effective plate Width=600 [mm], Plate Thickness, pT=8 [mm], Web Height, hw=280 [mm], Web Thickness, t=10 [mm], Flange width (incl. web), bf=200 [mm], Flange thickness, tf=20 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, FlipZ=True, NeglectIyz=True
7	Paluba 3 - 8100	40	10 Paluba 3 (AH 36)		1,00	1,00	Effective plate Width=720 [mm], Plate Thickness, pT=7 [mm], Web Height, hw=190 [mm], Web Thickness, t=10 [mm], Flange width (incl. web), bf=200 [mm], Flange thickness, tf=10 [mm], Angle Between Profile & Plate=90 [Degrees], FlipZ=True, NeglectIyz=True
8	Rebra u salonu	40	9 Gl.paluba - Paluba 4		1,00	1,00	Effective plate Width=450 [mm], Plate Thickness, pT=7 [mm], Web Height, hw=125 [mm], Web Thickness, t=10 [mm], Flange width (incl. web), bf=150 [mm], Flange thickness, tf=15 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, FlipZ=True, NeglectIyz=True
9	Paluba 4 - 10900	40	9 Gl.paluba - Paluba 4		1,00	1,00	Effective plate Width=1800 [mm], Plate Thickness, pT=7 [mm], Web Height, hw=500 [mm], Web Thickness, t=10 [mm], Flange width (incl. web), bf=200 [mm], Flange thickness, tf=15 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, NeglectIyz=True
10	Okvirne sponje Paluba 5	40	11 Paluba 4 - Paluba 5		1,00	1,00	Effective plate Width=1440 [mm], Plate Thickness, pT=7 [mm], Web Height, hw=450 [mm], Web Thickness, t=8 [mm], Flange width (incl. web), bf=200 [mm], Flange thickness, tf=15 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, NeglectIyz=True
11	Podveze Paluba 5	40	11 Paluba 4 - Paluba 5		1,00	1,00	Effective plate Width=1440 [mm], Plate Thickness, pT=7 [mm], Web Height, hw=450 [mm], Web Thickness, t=8 [mm], Flange width (incl. web), bf=150 [mm], Flange thickness, tf=15 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, NeglectIyz=True
12	Upore	10	11 Paluba 4 - Paluba 5		1,00	1,00	Outer Diameter=139.7 [mm], Thickness=8 [mm]
13	Rebra vanjske stijene salona (Paluba 4)	40	1 VL-NS Mild Steel		1,00	1,00	Effective plate Width=500 [mm], Plate Thickness, pT=7 [mm], Web Height, hw=150 [mm], Web Thickness, t=12 [mm], Flange width (incl. web), bf=225 [mm], Flange thickness, tf=15 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, NeglectIyz=True
15	RolledAngles 1000 x 1500 x 7 x 7	99	11 Paluba 4 - Paluba 5		1,00	1,00	Effective plate Width=0 [mm], Plate Thickness=0 [mm], Stiffener Height, h=1000 [mm], Thickness of web, t=7 [mm], Flange width (incl. web t.), w=1500 [mm], Flange (average) Thickness=7 [mm], Radius of flange nose, r1=0 [mm], Radius betw.web && flange, r3=0 [mm], Angle of flange neck=0 [Degrees], Angle between Plate and web=90 [Degrees], NeglectIyz=True
16	Spoj vanjske oplate i palube 4	99	9 Gl.paluba - Paluba 4		1,00	1,00	Effective plate Width=0 [mm], Plate Thickness=0 [mm], Stiffener Height, h=300 [mm], Thickness of web, t=8.5 [mm], Flange width (incl. web t.), w=300 [mm], Flange (average) Thickness=7 [mm], Radius of flange nose, r1=0 [mm], Radius betw.web && flange, r3=0 [mm], Angle of flange neck=0 [Degrees], Angle between Plate and web=90 [Degrees], NeglectIyz=True
17	Spoj uzdužne stijene salona i palube 4	99	9 Gl.paluba - Paluba 4		1,00	1,00	Effective plate Width=0 [mm], Plate Thickness=0 [mm], Stiffener Height, h=300 [mm], Thickness of web, t=8.5 [mm], Flange width (incl. web t.), w=300 [mm], Flange (average) Thickness=7 [mm], Radius of flange nose, r1=0 [mm], Radius betw.web && flange, r3=0 [mm], Angle of flange neck=0 [Degrees], Angle between Plate and web=90 [Degrees], NeglectIyz=True

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Profiles

Profile	Profile Name	Туре	Material	Ignore S. C.	Shear factor fy	Shear factor fz	Profile parameters
18	Simulator mase kormilarnice	40	8 Kormilarnic a		1,00	1,00	Effective plate Width=1000 [mm], Plate Thickness, pT=12 [mm], Web Height, hw=600 [mm], Web Thickness, t=12 [mm], Flange width (incl. web), bf=250 [mm], Flange thickness, tf=22 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, NeglectIyz=True
20	Simulator mase protuljuljnog tanka	40	7 Protuljuljni tank		1,00	1,00	Effective plate Width=600 [mm], Plate Thickness, pT=8 [mm], Web Height, hw=300 [mm], Web Thickness, t=10 [mm], Flange width (incl. web), bf=150 [mm], Flange thickness, tf=10 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, NeglectIyz=True
21	Čeona pregrada salona	61	9 Gl.paluba - Paluba 4		1,00	1,00	Effective plate Width=0 [mm], Plate Thickness=0 [mm], Flatbar Height=1500 [mm], Flatbar Width=7 [mm], Angle between Plate and profile=90 [Degrees], FlipY=True, NeglectIyz=True
22	Simulator mase protuljuljnog tanka 2	40	11 Paluba 4 - Paluba 5		1,00	1,00	Effective plate Width=600 [mm], Plate Thickness, pT=8 [mm], Web Height, hw=300 [mm], Web Thickness, t=10 [mm], Flange width (incl. web), bf=150 [mm], Flange thickness, tf=10 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, NeglectIyz=True
23	Rebra u salonu unutarnja	40	9 Gl.paluba - Paluba 4		1,00	1,00	Effective plate Width=494.7 [mm], Plate Thickness, pT=7 [mm], Web Height, hw=125 [mm], Web Thickness, t=12 [mm], Flange width (incl. web), bf=200 [mm], Flange thickness, tf=15 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, FlipZ=True, NeglectIyz=True
24	Rebra oplate u garaži Rebro16	40	3 VL-36 Steel		1,00	1,00	Effective plate Width=600 [mm], Plate Thickness, pT=16 [mm], Web Height, hw=550 [mm], Web Thickness, t=20 [mm], Flange width (incl. web), bf=400 [mm], Flange thickness, tf=30 [mm], Angle Between Profile & Plate=90 [Degrees], FlipY=True, FlipZ=True, NeglectIyz=True
26	Paluba3	61	1 VL-NS Mild Steel		1,00	1,00	Effective plate Width=0 [mm], Plate Thickness=0 [mm], Flatbar Height=1500 [mm], Flatbar Width=7 [mm], Angle between Plate and profile=90 [Degrees], NeglectIyz=True

Profile properties

Profile	e Axial			Local x-z plane					Local x-y plane				Shear Centre	
	Ax [mm ²]	Wx [mm ³]	Ix [mm ⁴]	Az [mm ²]	Wy _t [mm ³]	Wy _b [mm³]	Iy [mm⁴]	Ay [mm ²]	Wz+ [mm ³]	Wz- [mm³]	Iz [mm⁴]	e _y [mm]	e _z [mm]	
2	53300	115307	7,4949e+05	13606	48124505	48118653	5,3259e+10	25998	19495159	19495159	2,9243e+10	0	0,08359	
4	57200	123757	8,0442e+05	17095	63066273	63059124	8,8713e+10	25998	19495169	19495169	2,9243e+10	-1,516e- 14	0,1461	
5	17733	52899	5,0255e+05	4484	4693487	2380168	8,2359e+08	15073	2272515	2272515	1,6362e+09	0	166,1	
6	11055	60760	5,7722e+05	2665	1395748	1196290	1,9808e+08	9192	493076	493076	1,4792e+08	0	112,3	
7	8385	18123	1,7217e+05	1775	445398	880342	6,1075e+07	7120	579099	579099	2,0848e+08	0	-59,9	
8	6285	21382	2,0313e+05	1249	394159	294729	2,4705e+07	5342	237359	237359	5,3406e+07	0	48,91	
9	19348	51020	4,8469e+05	4386	5551533	2076276	7,8805e+08	16445	3520700	3520700	3,1686e+09	0	136,9	
10	15632	49741	3,7306e+05	3202	4094012	1693250	5,6478e+08	13287	2259747	2259747	1,627e+09	0	131,7	
11	14907	42967	3,2225e+05	3129	3963068	1384652	4,8382e+08	12671	2252030	2252030	1,6215e+09	0	117,4	
12	3103	193957	1,3499e+07	1555	96978	96978	6,7497e+06	1555	96978	96978	6,7497e+06	0	0	
13	8236	28131	3,2351e+05	1783	545649	516311	4,5497e+07	5805	325598	325598	8,14e+07	0	52,88	
15	16205	35106	2,2819e+05	4727	7418305	1883737	1,5023e+09	7279	3810826	8824295	3,9909e+09	-449	199,3	
16	4295	9730	77842	1774	478659	190037	4,0809e+07	1599	162024	530551	3,7174e+07	-66,07	82,01	
17	4295	9730	77842	1774	478659	190037	4,0809e+07	1599	162024	530551	3,7174e+07	-66,07	82,01	
18	23770	131930	1,5172e+06	6570	7094792	4152568	1,6594e+09	20205	1972473	1972473	9,8624e+08	0	210,5	
20	8775	21871	2,0778e+05	2636	1317857	640694	1,3688e+08	6429	458889	458889	1,3767e+08	0	93,93	
21	9750	21121	1,3729e+05	6504	2437500	2437500	1,8281e+09	6500	10562	10563	34328	0	-0,125	
22	8775	21871	2,0778e+05	2636	1317857	640694	1,3688e+08	6429	458889	458889	1,3767e+08	0	93,93	
23	7552	24778	2,8494e+05	1514	443271	383570	3,0125e+07	5827	303975	303975	7,5188e+07	0	47,14	
24	31820	260569	5,0811e+06	10383	6304406	7101123	1,9887e+09	15259	1453614	1453614	4,3608e+08	0	101,4	
26	9750	21121	1,3729e+05	6504	2437500	2437500	1,8281e+09	6500	10562	10563	34328	0	0,125	

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Okvir boka garažnog prostora i nadgrađe

Materials

Material	Material Name	E [N/mm²]	Density [kg/m³]	Poisson	Thermal Coefficient [mm/mm/C]	Yield Stress [N/mm²]	Ultimate Strength [N/mm²]
9	Gl.paluba - Paluba 4	210000	7711,0	0,30	1,26e-05	235	400
10	Paluba 3 (AH 36)	210000	7711,0	0,30	1,26e-05	355	490
11	Paluba 4 - Paluba 5	210000	17983,5	0,30	1,26e-05	235	400
1	VL-NS Mild Steel	210000	7800,0	0,30	1,26e-05	235	400
8	Kormilarnica	210000	5529,8	0,30	1,26e-05	235	400
7	Protuljuljni tank	210000	57944,7	0,30	1,26e-05	235	400
3	VL-36 Steel	210000	7800.0	0.30	1.26e-05	355	490

Abbreviations

Profiles								
Profile:	Profile identification number							
Profile Name	User's profile identification							
Type:	Profile type							
Material [.]	Material identification							
Ignore S C ·	If ticked "X" then the program ignores the possible shear centre offset for the profile							
Shear factors fy fz:	The shear factor may be < 1.0 for beams with large cut-outs. The factors affect the beam stiffness but							
Shour fuotors ry, iz.	not the computed shear stress							
Profile parameters:	Input parameters defining the profile.							
Profile properties:								
Profile:	Profile identification number							
Ax:	Axial area (total profile area)							
Wx:	Torsion section modulus							
Ix:	Torsional moment of inertia							
Az:	Shear area in local z-direction ($I_y t_p / S_y$)							
Wy _t :	Section modulus about local y-axis at top of profile							
Wy _b :	Section modulus about local y-axis at bottom of profile							
Iy:	Moment of inertia about local y-axis							
Ay:	Shear area in local y-direction ($I_z t_p / S_z$)							
Wz+:	Section modulus about local z-axis on positive y-side of profile							
Wz-:	Section modulus about local z-axis on negative y-side of profile							
Iz:	Moment of inertia about local z-axis							
	Note: $Wz_t = Wz_b = Wz_{min}$ for all profile types except I - types							
e _y :	Shear centre distance from vertical neutral axis							
e _z :	Shear centre distance from horizontal neutral axis							
f _y :	Shear factor in local y-direction							
f _z :	Shear factor in local z-direction							
	Note: The shear factor is used for shear stiffness of beam, but not for calculation of shear stress							
Where:								
S_y, S_z :	1 st area moment about y- and z- axis respectively							
t _p :	value for profile thickness depending on profile type							
Materials:								
Material:	Material identification							
Material Name:	User's material identification							
E:	Young's Modulus							
Density:	Density							
Poisson:	Poisson's ratio for transverse contraction							
Thermal Coefficient:	Coefficient of thermal expansion							
Yield Stress:	Nominal yield stress							
Ultimate Strength:	Nominal ultimate tensile strength							

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe
Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam Lo	oads in local	coordinate s	ystem,	sorted l	oy Beam	in Asc	ending	order

Beam No	Distributed Loads					Temperature Loads			
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]
1	0.4042	0	0.210	0.4043	0	0.210			
1	-0,4945	0	-0,519	-0,4943	0	-0,319			
2	0,4093	0	-5,034	0,4093	0	-5,034			
3	0,4945	0	0,319	0,4943	0	0,319			
4	-0,4945	0	5.624	-0,4943	0	0,319			
5	-0,4095	0	-5,034	-0,4093	0	-5,034			
0	0,4945	0	-0,9778	0,4943	0	-0,9778			
/ 0	0,8055	0	-11,34	0,8055	0	-11,34			
0	0,8055	0	0.310	0,8055	0	-11,34			
10	0,4943	0	-0,519	-0,4943	0	-0,319			
10	0,4093	0	0.319	0.4943	0	0.319			
11	0,4943	0	0,319	0,4943	0	0,319			
12	-0,4943	0	16 34	-0,4943	0	16 34			
13	0,8055	0	0.0778	0,8055	0	0.0778			
14	-0.4093	0	-5,634	-0.4093	0	-5,634			
15	0.8655	0	11.34	-0,4095	0	11.34			
10	0,8055	0	-11,34	0,8055	0	-11,34			
17	0,8055	0	0.310	0,0055	0	0.310			
10	0,4943	0	-5,634	-0,4943	0	-5,634			
20	0,40/3	0	0.310	0,4073	0	0.319			
20	-0.4943	0	0,319	-0.4943	0	0,319			
21	0,4545	0	-1634	0,4945	0	-16 34			
22	0.4943	0	-0.9778	0.4943	0	-0.9778			
23	-0.4093	0	-5 634	-0 4093	0	-5 634			
25	0.8655	0	-11.34	0.8655	0	-11.34			
25	0.8655	0	-11 34	0,8655	0	-11 34			
20	-0.4943	0	-0.319	-0 4943	0	-0 319			
28	0.4093	0	-5.634	0.4093	0	-5.634			
2.9	0.4943	0	0.319	0.4943	0	0.319			
30	-0.4943	0	0.319	-0.4943	0	0.319			
31	0.8655	0	-16.34	0.8655	0	-16.34			
32	0,4943	0	-0.9778	0.4943	0	-0.9778			
33	-0.4093	0	-5.634	-0.4093	0	-5.634			
34	2,602	0	-14.03	2.602	0	-14.03			
35	2,602	0	-14,03	2,602	0	-14,03			
36	-0,4943	0	-0,319	-0,4943	0	-0,319			
37	0,4093	0	-5,634	0,4093	0	-5,634			
38	0,4943	0	0,319	0,4943	0	0,319			
39	-0,4943	0	0,319	-0,4943	0	0,319			
40	2,602	0	-19,03	2,602	0	-19,03			
41	0,4943	0	-0,9778	0,4943	0	-0,9778			
42	-0,4093	0	-5,634	-0,4093	0	-5,634			
43	-0,4943	0	-0,319	-0,4943	0	-0,319			
44	0,4093	0	-5,634	0,4093	0	-5,634			
45	-0,4943	0	-0,319	-0,4943	0	-0,319			
46	0,4093	0	-5,634	0,4093	0	-5,634			
47	-0,4943	0	-0,319	-0,4943	0	-0,319			

1

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam Loads in local coordinate system, sorted by Beam in Ascending order

Beam No	Distributed Loads							Temperature I	Loads
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]
48	0.4093	0	-5 634	0.4093	0	-5 634			
40	-0 4943	0	-0.319	-0 4943	0	-0.319			
50	0.4093	0	-5 634	0 4093	0	-5 634			
51	-0.4943	0	0.319	-0.4943	0	0.319			
52	-0.4093	0	-5 634	-0.4093	0	-5 634			
53	-0 4943	0	0 319	-0 4943	0	0 319			
54	-0 4093	0	-5 634	-0.4093	0	-5 634			
55	-0 4943	0	0 319	-0 4943	0	0 319			
56	-0.4093	0	-5.634	-0.4093	0	-5.634			
57	-0.4943	0	0.319	-0.4943	0	0.319			
58	-0.4093	0	-5.634	-0.4093	0	-5.634			
59	-0.8362	0	-1,198	-0.8362	0	-1.198			
60	-0.8362	0	-1,198	-0.8362	0	-1,198			
61	-0.8362	0	-1,198	-0.8362	0	-1,198			
62	-0.8362	0	-1,198	-0.8362	0	-1,198			
63	-0.8362	0	-1.198	-0.8362	0	-1.198			
64	-0.8362	0	-1,198	-0.8362	0	-1,198			
65	-0.8362	0	-1,198	-0.8362	0	-1,198			
66	-0.8362	0	-1,198	-0.8362	0	-1,198			
67	-0.8362	0	-1.198	-0.8362	0	-1.198			
68	-0.8362	0	0.5396	-0.8362	0	0.5396			
69	-0.8362	0	0.5396	-0.8362	0	0.5396			
70	-0.8362	0	0.5396	-0.8362	0	0.5396			
71	-0.8362	0	0.5396	-0.8362	0	0.5396			
72	-0,8362	0	0,5396	-0,8362	0	0,5396			
73	-0,8362	0	0,5396	-0,8362	0	0,5396			
74	-0,8362	0	0,5396	-0,8362	0	0,5396			
75	-0,8362	0	0,5396	-0,8362	0	0,5396			
76	-0,8362	0	0,5396	-0,8362	0	0,5396			
77	0	0,9444	-1,464	0	0,9444	-1,464			
78	0,8655	0	-11,34	0,8655	0	-11,34			
79	0	0,9444	-1,464	0	0,9444	-1,464			
80	0,8655	0	-11,34	0,8655	0	-11,34			
81	0	0,9444	-1,464	0	0,9444	-1,464			
82	0,8655	0	-11,34	0,8655	0	-11,34			
83	0	0,9444	-1,464	0	0,9444	-1,464			
84	2,602	0	-14,03	2,602	0	-14,03			
85	0	0,9444	-1,464	0	0,9444	-1,464			
86	0,8655	0	-11,34	0,8655	0	-11,34			
87	0	0,9444	-1,464	0	0,9444	-1,464			
88	0,8655	0	-11,34	0,8655	0	-11,34			
89	0	0,9444	-1,464	0	0,9444	-1,464			
90	0,8655	0	-11,34	0,8655	0	-11,34			
91	0	0,9444	-1,464	0	0,9444	-1,464			
92	2,602	0	-14,03	2,602	0	-14,03			
93	0	0,9444	-1,464	0	0,9444	-1,464			
94	0,8655	0	-11,34	0,8655	0	-11,34			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam	Loads in	local	coordinate s	vstem,	sorted by	y Beam	in Asce	ending	order
				, ,					

Beam No	Distributed Loads								
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]
95	0	0.9444	-1.464	0	0.9444	-1.464			
96	0.8655	0	-11.34	0.8655	0	-11.34			
97	0	0.9444	-1.464	0	0.9444	-1.464			
98	0,8655	0	-11,34	0,8655	0	-11,34			
99	0	0,9444	-1,464	0	0,9444	-1,464			
100	2,602	0	-14,03	2,602	0	-14,03			
101	0,8655	0	-16,34	0,8655	0	-16,34			
102	0,8655	0	-16,34	0,8655	0	-16,34			
103	0,8655	0	-11,34	0,8655	0	-11,34			
104	0,8655	0	-11,34	0,8655	0	-11,34			
105	0,5474	0,3532	0	0,5474	0,3532	0			
106	-1,779	0	-17,76	-1,779	0	-17,76			
107	-1,779	0	-17,76	-1,779	0	-17,76			
108	0,5481	0	0,3537	0,5481	0	0,3537			
109	0,7592	0	0,4899	0,7592	0	0,4899			
110	0,7592	0	-1,807	0,7592	0	-1,807			
111	0,7592	0	-1,807	0,7592	0	-1,807			
112	0	1,697	-2,63	0	1,697	-2,63			
113	0	1,697	-2,63	0	1,697	-2,63			
114	-1,779	0	-17,76	-1,779	0	-17,76			
115	0	1,697	-2,63	0	1,697	-2,63			
116	-1,779	0	-17,76	-1,779	0	-17,76			
117	0	1,697	-2,63	0	1,697	-2,63			
118	-1,779	0	-17,76	-1,779	0	-17,76			
119	0	1,697	-2,63	0	1,697	-2,63			
120	0	1,697	-2,63	0	1,697	-2,63			
121	0	1,697	-2,63	0	1,697	-2,63			
122	-1,779	0	-17,76	-1,779	0	-17,76			
123	0	1,697	-2,63	0	1,697	-2,63			
124	-1,779	0	-17,76	-1,779	0	-17,76			
125	0	1,697	-2,63	0	1,697	-2,63			
126	0	1,697	-2,63	0	1,697	-2,63			
127	-1,779	0	-17,76	-1,779	0	-17,76			
128	0	1,697	-2,63	0	1,697	-2,63			
129	-0,5474	0,3532	0	-0,5474	0,3532	0			
130	0,5481	0	-1,671	0,5481	0	-1,671			
131	2,602	0	-14,03	2,602	0	-14,03			
132	0,7592	0	-1,807	0,7592	0	-1,807			
133	0,8655	0	-11,34	0,8655	0	-11,34			
134	0,7592	0	-1,807	0,7592	0	-1,807			
135	0,5481	0	0,3537	0,5481	0	0,3537			
136	2,602	0	-19,03	2,602	0	-19,03			
137	0,7592	0	0,4899	0,7592	0	0,4899			
138	0,8655	0	-16,34	0,8655	0	-16,34			
139	-1,779	0	-17,76	-1,779	0	-17,76			
140	0,7592	0	0,4899	0,7592	0	0,4899			
141	-0,5474	0,3532	0	-0,5474	0,3532	0			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam	Loads in	local co	ordinate sys	tem, sorted	by Bean	ı in Asc	ending	order
							· · •	

Beam No	o Distributed Loads							Temperature I	Loads
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]
142	-1 779	0	-17.76	-1 779	0	-17.76			
142	-1 779	0	-17.76	-1 779	0	-17.76			
143	-1 779	0	-2 758	-1 779	0	-2 758			
145	-1.779	0	-17.76	-1.779	0	-17.76			
146	-1 779	0	-17.76	-1 779	0	-17.76			
140	-1 779	0	-17.76	-1 779	0	-17.76			
147	-1 779	0	-17.76	-1 779	0	-17.76			
140	-1 779	0	-2 758	-1 779	0	-2 758			
150	-1 779	0	-17.76	-1 779	0	-17.76			
150	-1.779	0	-17.76	-1.779	0	-17.76			
152	-1.779	0	-17.76	-1.779	0	-17.76			
153	0	1.075	-1.667	0	1.075	-1.667			
154	0	1.075	-1.667	0	1,075	-1.667			
155	0	1.075	-1.667	0	1,075	-1.667			
156	0	1.075	-1.667	0	1,075	-1.667			
157	0	1.075	-1.667	0	1.075	-1.667			
158	0	1.075	-1.667	0	1,075	-1.667			
159	0	1,075	-1.667	0	1,075	-1.667			
160	0	1,075	-1.667	0	1,075	-1.667			
161	0	2,792	-4.327	0	2,792	-4.327			
162	-0.4943	0	0.319	-0.4943	0	0.319			
163	-0.4943	0	0.319	-0.4943	0	0.319			
164	0	2,792	-4,327	0	2,792	-4,327			
165	-0,4943	0	0,319	-0,4943	0	0,319			
166	-0,4943	0	0,319	-0,4943	0	0,319			
167	0	2,792	-4,327	0	2,792	-4,327			
168	-0,4943	0	0,319	-0,4943	0	0,319			
169	-0,4943	0	0,319	-0,4943	0	0,319			
170	0	2,792	-4,327	0	2,792	-4,327			
171	-0,4943	0	0,319	-0,4943	0	0,319			
172	-0,4943	0	0,319	-0,4943	0	0,319			
173	0	2,792	-4,327	0	2,792	-4,327			
174	0	2,792	-4,327	0	2,792	-4,327			
175	0	2,792	-4,327	0	2,792	-4,327			
176	0	2,792	-4,327	0	2,792	-4,327			
177	-0,4943	0	0,319	-0,4943	0	0,319			
178	0	2,792	-4,327	0	2,792	-4,327			
179	-0,4943	0	-0,319	-0,4943	0	-0,319			
180	-0,4943	0	-0,319	-0,4943	0	-0,319			
181	0	2,792	-4,327	0	2,792	-4,327			
182	-0,4943	0	-0,319	-0,4943	0	-0,319			
183	-0,4943	0	-0,319	-0,4943	0	-0,319			
184	0	2,792	-4,327	0	2,792	-4,327			
185	-0,4943	0	-0,319	-0,4943	0	-0,319			
186	-0,4943	0	-0,319	-0,4943	0	-0,319			
187	0	2,792	-4,327	0	2,792	-4,327			
188	-0,4943	0	-0,319	-0,4943	0	-0,319			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam Lo	oads in local	coordinate sys	stem, sorted	by Beam	in Ascending	order

Beam No			I	Distributed Load	s			Temperature I	Loads
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]
189	-0 4943	0	-0 319	-0 4943	0	-0.319			
190	0,4245	2 792	-4 327	0	2 792	-4 327			
191	0	2,792	-4 327	0	2,792	-4 327			
192	0	2,792	-4.327	0	2,792	-4.327			
193	0	2,792	-4 327	0	2,792	-4 327			
194	-0.4943	0	-0.319	-0 4943	0	-0.319			
195	0,4245	0 2096	-0 3249	0	0 2096	-0 3249			
196	0	0,2096	-0 3249	0	0,2096	-0 3249			
197	0	0.2096	-0 3249	0	0,2096	-0 3249			
198	0	0.2096	-0.3249	0	0.2096	-0.3249			
199	0	0.2096	-0.3249	0	0.2096	-0.3249			
200	0	0.2096	-0.3249	0	0.2096	-0.3249			
201	0	0.2096	-0.3249	0	0.2096	-0.3249			
202	0	0.2096	-0.3249	0	0.2096	-0.3249			
203	0	0.2096	-0.3249	0	0.2096	-0.3249			
204	0	0.2096	-0.3249	0	0.2096	-0.3249			
205	0	0.2096	-0.3249	0	0.2096	-0.3249			
205	0	0.2096	-0.3249	0	0.2096	-0.3249			
207	0	0.2096	-0.3249	0	0.2096	-0.3249			
208	0	0.2096	-0.3249	0	0.2096	-0.3249			
209	0	0.2096	-0.3249	0	0.2096	-0.3249			
210	0	0.2096	-0.3249	0	0.2096	-0.3249			
211	0	0.2096	-0.3249	0	0.2096	-0.3249			
212	0	0.2096	-0.3249	0	0.2096	-0.3249			
213	0	0.2096	-0.3249	0	0.2096	-0.3249			
214	0	0.2096	-0.3249	0	0.2096	-0.3249			
215	0	0.2096	-0.3249	0	0.2096	-0.3249			
216	0	0.2096	-0.3249	0	0.2096	-0.3249			
217	0	0.2096	-0.3249	0	0.2096	-0.3249			
218	0	0.2096	-0.3249	0	0.2096	-0.3249			
219	0,4943	0	-0,9778	0,4943	0	-0,9778			
220	0	0,2096	-0,3249	0	0,2096	-0,3249			
221	0,4943	0	-0,9778	0,4943	0	-0,9778			
222	0	0,2096	-0,3249	0	0,2096	-0,3249			
223	0,4943	0	-0,9778	0,4943	0	-0,9778			
224	0	0,2096	-0,3249	0	0,2096	-0,3249			
225	0,4943	0	-0,9778	0,4943	0	-0,9778			
226	0	0,2096	-0,3249	0	0,2096	-0,3249			
227	0,4943	0	0,319	0,4943	0	0,319			
228	0	0,2096	-0,3249	0	0,2096	-0,3249		T	
229	0,4943	0	0,319	0,4943	0	0,319			
230	0	0,2096	-0,3249	0	0,2096	-0,3249			
231	0,4943	0	0,319	0,4943	0	0,319			
232	0	0,2096	-0,3249	0	0,2096	-0,3249			
233	0,4943	0	0,319	0,4943	0	0,319		T	
234	0	0,2096	-0,3249	0	0,2096	-0,3249		T	
235	-0,832	0	-1,289	-0,832	0	-1,289			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam	Loads in	local	coordinate s	vstem,	sorted by	y Beam	in Asce	ending	order
				, ,					

Beam No			I	Distributed Load			Gy [C/mm]Sz [C/mm]Temperature [C/mm]Gy [C/mm]Interperature [C/mm]Interperature [C/mm]IInterperature Int		
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]
236	-0.832	0	-1 289	-0.832	0	-1 289			
230	4 988	0	3 219	4 988	0	3 219			
238	0	-0 9989	-1 548	0	-0.9989	-1 548			
239	0	-3.219	-4.988	0	-3.219	-4.988			
240	4.988	0	-3.219	4.988	0	-3.219			
241	0	-0.9989	-1.548	0	-0.9989	-1.548			
242	0	-3.219	-4.988	0	-3.219	-4.988			
243	-3.219	0	-4.988	-3.219	0	-4.988			
244	-3.219	0	-4.988	-3.219	0	-4.988			
245	-3,219	0	-4,988	-3,219	0	-4,988			
246	-3,219	0	-4,988	-3,219	0	-4,988			
247	-3,219	0	-4,988	-3,219	0	-4,988			
248	-0,832	0	-1,289	-0,832	0	-1,289			
249	-3,219	0	-4,988	-3,219	0	-4,988			
250	0	-0,832	-1,289	0	-0,832	-1,289			
251	0	-3,219	-4,988	0	-3,219	-4,988			
252	0	-0,832	-1,289	0	-0,832	-1,289			
253	-3,219	0	-4,988	-3,219	0	-4,988			
254	0	-3,219	-4,988	0	-3,219	-4,988			
255	0	-0,832	-1,289	0	-0,832	-1,289			
256	0	-0,832	-1,289	0	-0,832	-1,289			
257	0	-0,832	-1,289	0	-0,832	-1,289			
258	0	-0,832	-1,289	0	-0,832	-1,289			
259	-0,832	0	-1,289	-0,832	0	-1,289			
260	-0,832	0	-1,289	-0,832	0	-1,289			
261	-0,832	0	-1,289	-0,832	0	-1,289			
262	1,289	0	0,832	1,289	0	0,832			
263	1,289	0	-1,757	1,289	0	-1,757			
264	1,289	0	-1,757	1,289	0	-1,757			
265	1,289	0	0,832	1,289	0	0,832			
266	1,289	0	0,832	1,289	0	0,832			
267	1,289	0	-1,757	1,289	0	-1,757			
268	-0,832	0	-1,289	-0,832	0	-1,289			
269	-0,832	0	-1,289	-0,832	0	-1,289			
270	-0,832	0	-1,289	-0,832	0	-1,289			
271	-3,219	0	-4,988	-3,219	0	-4,988			
272	-3,219	0	-4,988	-3,219	0	-4,988			
273	-3,219	0	-4,988	-3,219	0	-4,988			
274	-1,779	0	-2,758	-1,779	0	-2,758			
275	0	1,075	-1,667	0	1,075	-1,667			
276	-1,779	0	-17,76	-1,779	0	-17,76			
277	-1,779	0	-17,76	-1,779	0	-17,76			
278	-1,779	0	-17,76	-1,779	0	-17,76			
279	-1,779	0	-17,76	-1,779	0	-17,76			
280	-1,779	0	-2,758	-1,779	0	-2,758			
281	0	1,075	-1,667	0	1,075	-1,667			
282	-1,779	0	-17,76	-1,779	0	-17,76			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam Lo	oads in loca	l coordinate s	system,	sorted b	y Beam	in Ascen	iding or	rder

Beam No			I	Distributed Load	s		Temperature Loads			
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]	
283	-1 779	0	-17.76	-1 779	0	-17.76				
283	-4 988	0	-3 219	-4.988	0	-3 219				
285	-4 988	0	3 219	-4 988	0	3 219				
286	-0.8655	0	-1634	-0.8655	0	-16 34				
280	-0.8655	0	-11 34	-0.8655	0	-11 34				
288	-0,8655	0	-11,34	-0,8655	0	-11,34				
289	-0,8655	0	-1634	-0,8655	0	-16.34				
290	-0.8655	0	-11 34	-0.8655	0	-11 34				
291	-0.8655	0	-11 34	-0.8655	0	-11 34				
292	-0.8655	0	-11.34	-0.8655	0	-11.34				
293	-0.8655	0	-11 34	-0.8655	0	-11 34				
294	-0.8655	0	-11 34	-0.8655	0	-11 34				
295	-0.8655	0	-11 34	-0.8655	0	-11 34				
296	0.5474	0 3532	0	0 5474	0 3532	0				
297	0,8655	0	-11 34	0,8655	0	-11 34				
298	-0 5474	0 3532	0	-0 5474	0 3532	0				
299	0,8655	0,3332	-11 34	0,8655	0	-11 34				
300	-1 779	0	-17.76	-1 779	0	-17.76				
301	-0.07715	0	-0.8743	-0.07715	0	-0.8743				
302	0.8285	0	-0.29	0.8285	0	-0.29				
303	-0.07715	0	-0.8743	-0.07715	0	-0.8743				
304	0.8285	0	-0.29	0.8285	0	-0.29				
305	0.8285	0	-0.29	0.8285	0	-0.29				
306	-0.07715	0	-0.8743	-0.07715	0	-0.8743				
307	0.8285	0	-0.29	0.8285	0	-0.29				
308	-0.07715	0	-0.8743	-0.07715	0	-0.8743				
309	-0.07715	0	-0.8743	-0.07715	0	-0.8743				
310	0.8285	0	-0.29	0.8285	0	-0.29				
311	-0.07715	0	-0.8743	-0.07715	0	-0.8743				
312	0.8285	0	-0.29	0.8285	0	-0.29				
313	0.8285	0	-0.29	0.8285	0	-0.29				
314	-0,07715	0	-0,8743	-0,07715	0	-0,8743				
315	0,8285	0	-0,29	0,8285	0	-0,29				
316	-0,07715	0	-0,8743	-0,07715	0	-0,8743				
317	-1,779	0	-17,76	-1,779	0	-17,76				
318	0,8655	0	-11,34	0,8655	0	-11,34				
319	-0,5474	0,3532	0	-0,5474	0,3532	0				
320	0,8655	0	-11,34	0,8655	0	-11,34				
321	0,5474	0,3532	0	0,5474	0,3532	0				
322	-1,779	0	-17,76	-1,779	0	-17,76				
323	-1,779	0	-17,76	-1,779	0	-17,76				
324	0	-1,075	-1,667	0	-1,075	-1,667				
325	-1,779	0	-2,758	-1,779	0	-2,758				
326	-1,779	0	-17,76	-1,779	0	-17,76				
327	-1,779	0	-17,76	-1,779	0	-17,76				
328	-1,779	0	-17,76	-1,779	0	-17,76				
329	-1,779	0	-17,76	-1,779	0	-17,76				

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam	Loads in	local	coordinate s	vstem,	sorted by	y Beam	in Asce	ending	order
				, ,					

Beam No			I	Distributed Load	s		Temperature Loads			
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]	
330	0	-1.075	-1.667	0	-1.075	-1.667				
331	-1.779	0	-2.758	-1.779	0	-2.758				
332	1.289	0	0.832	1.289	0	0.832				
333	1,289	0	-1,757	1,289	0	-1,757				
334	1,289	0	-1,757	1,289	0	-1,757				
335	1,289	0	0,832	1,289	0	0,832				
336	-0,832	0	-1,289	-0,832	0	-1,289				
337	-0,832	0	-1,289	-0,832	0	-1,289				
338	-0,832	0	-1,289	-0,832	0	-1,289				
339	0	0,832	-1,289	0	0,832	-1,289				
340	0	0,832	-1,289	0	0,832	-1,289				
341	0	0,832	-1,289	0	0,832	-1,289				
342	0	0,832	-1,289	0	0,832	-1,289				
343	0	3,219	-4,988	0	3,219	-4,988				
344	-3,219	0	-4,988	-3,219	0	-4,988				
345	0	0,832	-1,289	0	0,832	-1,289				
346	0	3,219	-4,988	0	3,219	-4,988				
347	0	0,832	-1,289	0	0,832	-1,289				
348	-3,219	0	-4,988	-3,219	0	-4,988				
349	-0,832	0	-1,289	-0,832	0	-1,289				
350	-3,219	0	-4,988	-3,219	0	-4,988				
351	-3,219	0	-4,988	-3,219	0	-4,988				
352	-3,219	0	-4,988	-3,219	0	-4,988				
353	-3,219	0	-4,988	-3,219	0	-4,988				
354	-3,219	0	-4,988	-3,219	0	-4,988				
355	0	3,219	-4,988	0	3,219	-4,988				
356	0	0,9989	-1,548	0	0,9989	-1,548				
357	4,988	0	-3,219	4,988	0	-3,219				
358	0	3,219	-4,988	0	3,219	-4,988				
359	0	0,9989	-1,548	0	0,9989	-1,548				
360	4,988	0	3,219	4,988	0	3,219				
361	-0,832	0	-1,289	-0,832	0	-1,289				
362	-0,832	0	-1,289	-0,832	0	-1,289				
363	0	-0,2096	-0,3249	0	-0,2096	-0,3249				
364	0,4943	0	0,319	0,4943	0	0,319				
365	0	-0,2096	-0,3249	0	-0,2096	-0,3249				
366	0,4943	0	0,319	0,4943	0	0,319				
367	0	-0,2096	-0,3249	0	-0,2096	-0,3249				
368	0,4943	0	0,319	0,4943	0	0,319				
369	0	-0,2096	-0,3249	0	-0,2096	-0,3249	ļ			
370	0,4943	0	0,319	0,4943	0	0,319	ļ			
371	0	-0,2096	-0,3249	0	-0,2096	-0,3249	ļ			
372	0,4943	0	-0,9778	0,4943	0	-0,9778	ļ			
373	0	-0,2096	-0,3249	0	-0,2096	-0,3249				
374	0,4943	0	-0,9778	0,4943	0	-0,9778	ļ			
375	0	-0,2096	-0,3249	0	-0,2096	-0,3249				
376	0,4943	0	-0,9778	0,4943	0	-0,9778				

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam L	oads in l	ocal c	coordinate s	ystem,	sorted	by	Beam	in	Ascending	g ordei

Beam No			1	Distributed Load	s		Temperature Loads		
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]
277	0	0.2006	0 2240	0	0.2006	0.2240			
279	0 4042	-0,2090	-0,3249	0 4042	-0,2096	-0,3249			
378	0,4943	0 2006	-0,9778	0,4943	0 2006	-0,9778			
280	0	-0,2096	-0,3249	0	-0,2096	-0,3249			
201	0	-0,2090	-0,3249	0	-0,2096	-0,3249			
282	0	-0,2096	-0,3249	0	-0,2096	-0,3249			
282	0	-0,2096	-0,3249	0	-0,2096	-0,3249			
284	0	-0,2096	-0,3249	0	-0,2096	-0,3249			
385	0	-0,2090	-0,3249	0	-0,2090	-0,3249			
386	0	-0,2090	-0,3249	0	-0,2090	-0,3249			
387	0	-0,2090	-0.3249	0	-0,2090	-0,3249			
307	0	-0,2090	0.3249	0	-0,2090	0.3249			
389	0	-0,2090	-0.3249	0	-0,2090	-0,3249			
300	0	-0,2090	0.3249	0	-0,2090	0.3249			
390	0	-0,2090	-0.3249	0	-0,2090	-0,3249			
302	0	0.2006	0.3249	0	0.2096	0.3249			
392	0	-0,2090	0.3249	0	-0,2090	0.3249			
393	0	-0,2090	0.3249	0	-0,2090	0.3249			
394	0	-0,2090	-0.3249	0	-0,2090	-0,3249			
306	0	0.2006	0.3249	0	0.2096	0.3249			
307	0	-0,2096	-0.3249	0	-0,2096	-0,3249			
398	0	-0.2096	-0.3249	0	-0.2096	-0 3249			
399	0	-0.2096	-0 3249	0	-0 2096	-0 3249			
400	0	-0.2096	-0 3249	0	-0 2096	-0 3249			
401	0	-0.2096	-0.3249	0	-0.2096	-0.3249			
402	0	-0.2096	-0.3249	0	-0.2096	-0 3249			
403	0	-2.792	-4.327	0	-2.792	-4.327			
404	0	-2.792	-4.327	0	-2.792	-4.327			
405	0	-2.792	-4.327	0	-2.792	-4.327			
406	0	-2.792	-4.327	0	-2.792	-4.327			
407	-0.4943	0	-0.319	-0.4943	0	-0.319			
408	-0.4943	0	-0.319	-0.4943	0	-0.319			
409	0	-2,792	-4,327	0	-2,792	-4,327			
410	-0,4943	0	-0,319	-0,4943	0	-0,319			
411	-0,4943	0	-0,319	-0,4943	0	-0,319			
412	0	-2,792	-4,327	0	-2,792	-4,327			
413	-0,4943	0	-0,319	-0,4943	0	-0,319			
414	-0,4943	0	-0,319	-0,4943	0	-0,319			
415	0	-2,792	-4,327	0	-2,792	-4,327			
416	-0,4943	0	-0,319	-0,4943	0	-0,319			
417	-0,4943	0	-0,319	-0,4943	0	-0,319			
418	0	-2,792	-4,327	0	-2,792	-4,327			
419	0	-2,792	-4,327	0	-2,792	-4,327			
420	0	-2,792	-4,327	0	-2,792	-4,327			
421	0	-2,792	-4,327	0	-2,792	-4,327			
422	0	-2,792	-4,327	0	-2,792	-4,327			
423	-0,4943	0	0,319	-0,4943	0	0,319			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam Lo	oads in loca	l coordinate s	system,	sorted b	y Beam	in Ascen	iding or	rder

Beam No			I	Distributed Load	s		Temperature Loads		
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]
474	-0 4943	0	0 319	-0 4943	0	0.319			
425	0	-2 792	-4 327	0	-2 792	-4 327			
426	-0 4943	0	0.319	-0 4943	0	0.319			
427	-0.4943	0	0.319	-0.4943	0	0,319			
428	0	-2 792	-4 327	0	-2 792	-4 327			
429	-0 4943	0	0.319	-0 4943	0	0.319			
430	-0.4943	0	0.319	-0.4943	0	0.319			
431	0	-2.792	-4.327	0	-2.792	-4.327			
432	-0.4943	0	0.319	-0.4943	0	0.319			
433	-0.4943	0	0.319	-0.4943	0	0.319			
434	0	-2,792	-4,327	0	-2,792	-4,327			
435	0	-1.075	-1.667	0	-1.075	-1.667			
436	0	-1.075	-1.667	0	-1.075	-1.667			
437	0	-1,075	-1,667	0	-1,075	-1,667			
438	0	-1,075	-1,667	0	-1,075	-1,667			
439	0	-1,075	-1,667	0	-1,075	-1,667			
440	0	-1,075	-1,667	0	-1,075	-1,667			
441	0	-1,075	-1,667	0	-1,075	-1,667			
442	0	-1,075	-1,667	0	-1,075	-1,667			
443	-1,779	0	-17,76	-1,779	0	-17,76			
444	-1,779	0	-17,76	-1,779	0	-17,76			
445	-1,779	0	-17,76	-1,779	0	-17,76			
446	-1,779	0	-17,76	-1,779	0	-17,76			
447	0,8655	0	-16,34	0,8655	0	-16,34			
448	0,7592	0	0,4899	0,7592	0	0,4899			
449	2,602	0	-19,03	2,602	0	-19,03			
450	0,5481	0	0,3537	0,5481	0	0,3537			
451	0,8655	0	-11,34	0,8655	0	-11,34			
452	0,7592	0	-1,807	0,7592	0	-1,807			
453	2,602	0	-14,03	2,602	0	-14,03			
454	0,5481	0	-1,671	0,5481	0	-1,671			
455	0	-1,697	-2,63	0	-1,697	-2,63			
456	-1,779	0	-17,76	-1,779	0	-17,76			
457	0	-1,697	-2,63	0	-1,697	-2,63			
458	0	-1,697	-2,63	0	-1,697	-2,63			
459	-1,779	0	-17,76	-1,779	0	-17,76			
460	0	-1,697	-2,63	0	-1,697	-2,63			
461	-1,779	0	-17,76	-1,779	0	-17,76			
462	0	-1,697	-2,63	0	-1,697	-2,63			
463	0	-1,697	-2,63	0	-1,697	-2,63			
464	0	-1,697	-2,63	0	-1,697	-2,63			
465	-1,779	0	-17,76	-1,779	0	-17,76			
466	0	-1,697	-2,63	0	-1,697	-2,63			
467	-1,779	0	-17,76	-1,779	0	-17,76			
468	0	-1,697	-2,63	0	-1,697	-2,63			
469	-1,779	0	-17,76	-1,779	0	-17,76			
470	0	-1,697	-2,63	0	-1,697	-2,63			

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam	Loads in	local	coordinate s	vstem,	sorted by	y Beam	in Asce	ending	order
				, ,					

Beam No			1	Distributed Load	s		Temperature Loads			
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]	
471	0	-1.697	-2.63	0	-1.697	-2.63				
472	0.7592	0	-1.807	0.7592	0	-1.807				
473	0.7592	0	-1.807	0.7592	0	-1.807				
474	0,7592	0	0,4899	0,7592	0	0,4899				
475	0,5481	0	0,3537	0,5481	0	0,3537				
476	-1,779	0	-17,76	-1,779	0	-17,76				
477	-1,779	0	-17,76	-1,779	0	-17,76				
478	0,8655	0	-11,34	0,8655	0	-11,34				
479	0,8655	0	-11,34	0,8655	0	-11,34				
480	0,8655	0	-16,34	0,8655	0	-16,34				
481	0,8655	0	-16,34	0,8655	0	-16,34				
482	2,602	0	-14,03	2,602	0	-14,03				
483	0	-0,9444	-1,464	0	-0,9444	-1,464				
484	0,8655	0	-11,34	0,8655	0	-11,34				
485	0	-0,9444	-1,464	0	-0,9444	-1,464				
486	0,8655	0	-11,34	0,8655	0	-11,34				
487	0	-0,9444	-1,464	0	-0,9444	-1,464				
488	0,8655	0	-11,34	0,8655	0	-11,34				
489	0	-0,9444	-1,464	0	-0,9444	-1,464				
490	2,602	0	-14,03	2,602	0	-14,03				
491	0	-0,9444	-1,464	0	-0,9444	-1,464				
492	0,8655	0	-11,34	0,8655	0	-11,34				
493	0	-0,9444	-1,464	0	-0,9444	-1,464				
494	0,8655	0	-11,34	0,8655	0	-11,34				
495	0	-0,9444	-1,464	0	-0,9444	-1,464				
496	0,8655	0	-11,34	0,8655	0	-11,34				
497	0	-0,9444	-1,464	0	-0,9444	-1,464				
498	2,602	0	-14,03	2,602	0	-14,03				
499	0	-0,9444	-1,464	0	-0,9444	-1,464				
500	0,8655	0	-11,34	0,8655	0	-11,34				
501	0	-0,9444	-1,464	0	-0,9444	-1,464				
502	0,8655	0	-11,34	0,8655	0	-11,34				
503	0	-0,9444	-1,464	0	-0,9444	-1,464				
504	0,8655	0	-11,34	0,8655	0	-11,34				
505	0	-0,9444	-1,464	0	-0,9444	-1,464				
506	-0,8362	0	0,5396	-0,8362	0	0,5396				
507	-0,8362	0	0,5396	-0,8362	0	0,5396				
508	-0,8362	0	0,5396	-0,8362	0	0,5396				
509	-0,8362	0	0,5396	-0,8362	0	0,5396				
510	-0,8362	0	0,5396	-0,8362	0	0,5396	+			
511	-0,8362	0	0,5396	-0,8362	0	0,5396				
512	-0,8362	0	0,5396	-0,8362	0	0,5396				
513	-0,8362	0	0,5396	-0,8362	0	0,5396				
514	-0,8362	0	-1,198	-0,8362	0	-1,198				
515	-0,8362	0	-1,198	-0,8362	0	-1,198				
510	-0,8362	0	-1,198	-0,8362	0	-1,198				
51/	-0,8362	U	-1,198	-0,8362	0	-1,198				

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam Lo	oads in loca	l coordinate s	system,	sorted b	y Beam	in Ascen	iding or	rder

Beam No			1	Distributed Load	S		Temperature Loads			
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]	
518	-0.8362	0	-1 198	-0.8362	0	-1 198				
510	-0,8362	0	-1,198	-0,8362	0	-1,198				
520	-0,8362	0	-1,198	-0,8362	0	-1,198				
520	-0,8362	0	-1,198	-0,8362	0	-1,198				
522	0.4003	0	5 634	0.4093	0	5 634				
522	-0,4093	0	0.310	-0,4093	0	0.310				
523	0,4943	0	5 634	0,4943	0	5.634				
525	-0,4073	0	0.310	-0,40/3	0	0.319				
525	-0,4093	0	-5.634	-0,4093	0	-5.634				
520	-0.4943	0	0 319	-0 4943	0	0.319				
528	-0.4093	0	-5 634	-0.4093	0	-5 634				
520	-0.4943	0	0.319	-0.4943	0	0.319				
530	0.4093	0	-5 634	0.4093	0	-5 634				
531	-0 4943	0	-0.319	-0 4943	0	-0.319				
532	0.4093	0	-5 634	0.4093	0	-5 634				
533	-0 4943	0	-0.319	-0 4943	0	-0.319				
534	0.4093	0	-5 634	0 4093	0	-5 634				
535	-0 4943	0	-0.319	-0 4943	0	-0.319				
536	0.4093	0	-5.634	0.4093	0	-5.634				
537	-0.4943	0	-0.319	-0.4943	0	-0.319				
538	-0.4093	0	-5.634	-0.4093	0	-5.634				
539	0.4943	0	-0.9778	0.4943	0	-0.9778				
540	2.602	0	-19.03	2.602	0	-19.03				
541	-0.4943	0	0.319	-0.4943	0	0.319				
542	0,4943	0	0,319	0,4943	0	0,319				
543	0.4093	0	-5.634	0.4093	0	-5.634				
544	-0,4943	0	-0,319	-0,4943	0	-0,319				
545	2,602	0	-14.03	2,602	0	-14,03				
546	2,602	0	-14,03	2,602	0	-14,03				
547	-0,4093	0	-5,634	-0,4093	0	-5,634				
548	0,4943	0	-0,9778	0,4943	0	-0,9778				
549	0,8655	0	-16,34	0,8655	0	-16,34				
550	-0,4943	0	0,319	-0,4943	0	0,319				
551	0,4943	0	0,319	0,4943	0	0,319				
552	0,4093	0	-5,634	0,4093	0	-5,634				
553	-0,4943	0	-0,319	-0,4943	0	-0,319				
554	0,8655	0	-11,34	0,8655	0	-11,34				
555	0,8655	0	-11,34	0,8655	0	-11,34				
556	-0,4093	0	-5,634	-0,4093	0	-5,634				
557	0,4943	0	-0,9778	0,4943	0	-0,9778				
558	0,8655	0	-16,34	0,8655	0	-16,34				
559	-0,4943	0	0,319	-0,4943	0	0,319				
560	0,4943	0	0,319	0,4943	0	0,319				
561	0,4093	0	-5,634	0,4093	0	-5,634				
562	-0,4943	0	-0,319	-0,4943	0	-0,319				
563	0,8655	0	-11,34	0,8655	0	-11,34				
564	0,8655	0	-11,34	0,8655	0	-11,34				

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No			I	Distributed Load		Temperature Loads			
	Px1 [N/mm]	Py1 [N/mm]	Pz1 [N/mm]	Px2 [N/mm]	Py2 [N/mm]	Pz2 [N/mm]	Gy [C/mm]	Gz [C/mm]	Temperature [C]
565	-0,4093	0	-5,634	-0,4093	0	-5,634			
566	0,4943	0	-0,9778	0,4943	0	-0,9778			
567	0,8655	0	-16,34	0,8655	0	-16,34			
568	-0,4943	0	0,319	-0,4943	0	0,319			
569	0,4943	0	0,319	0,4943	0	0,319			
570	0,4093	0	-5,634	0,4093	0	-5,634			
571	-0,4943	0	-0,319	-0,4943	0	-0,319			
572	0,8655	0	-11,34	0,8655	0	-11,34			
573	0,8655	0	-11,34	0,8655	0	-11,34			

Beam Loads in local coordinate system, sorted by Beam in Ascending order

Abbreviations

Beam identification number
Load intensity in local x-direction at the start and end ends of the beam respectively
Load intensity in local y-direction at the start and end ends of the beam respectively
Load intensity in local z-direction at the start and end ends of the beam respectively
Temperature gradients in local y- and z-directions
Mean temperature. NB! Any non-zero value is regarded as a temperature load

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No.	σ _{Nx} [N/mm ²]	τ _{Qy} [N/mm ²]	τ _{Qz} [N/mm²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
307	71	0	51	0	298	1
310	71	0	51	0	298	1
360	10	0	77	0	203	3
350	23	0	30	0	203	6
443	15	3	47	0	202	32
152	15	3	46	0	199	32
249	12	0	23	0	199	3
150	3	2	46	0	197	38
445	3	2	45	0	194	38
271	17	0	29	0	193	9
285	10	0	66	0	190	3
351	22	0	27	0	190	17
237	9	0	64	0	188	6
247	20	1	27	0	187	14
272	10	0	24	0	186	9
137	20	1	39	0	186	42
448	25	1	35	0	175	61
2	3	0	25	0	175	0
348	9	0	20	0	173	7
140	38	0	32	0	170	14
10	3	0	24	0	169	5
570	3	0	24	0	169	6
44	5	0	24	0	168	3
536	5	0	24	0	167	4
246	19	1	25	0	164	21
194	41	1	33	0	164	18
188	20	3	32	0	162	41
76	36	0	54	0	161	3
506	36	0	54	0	161	3
203	18	3	27	0	160	24
277	1	1	36	0	160	21
108	12	1	33	0	160	47
408	28	3	32	0	159	43
109	5	1	31	0	159	49
394	18	3	26	0	158	21
46	4	0	23	0	158	6
534	4	0	23	0	158	6
474	12	1	31	0	158	35
390	17	0	26	0	157	11
19	3	0	22	0	155	3
475	10	1	32	0	154	53
561	3	0	22	0	154	4
331	13	3	32	0	154	25
411	32	6	30	0	150	81
3	29	0	20	0	150	17
185	30	5	30	0	149	78
207	18	1	23	0	147	13
147	4	0	33	0	145	2
48	3	0	21	0	142	1
532	4	0	21	0	141	2

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No.	σ _{Nx} [N/mm ²]	τ _{Qy} [N/mm ²]	τ _{Qz} [N/mm²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
210	11	2	22	2	136	14
569	25	0	18	0	134	1
28	2	0	19	0	134	8
552	2	0	19	0	134	9
578	7	0	8	0	133	0
574	7	0	8	0	132	0
11	17	0	17	0	130	2
243	11	0	26	0	130	4
240	9	1	35	0	129	9
151	8	1	21	0	128	29
444	8	1	21	0	128	30
452	19	1	27	0	126	36
473	5	1	25	0	125	48
110	11	1	25	0	125	35
274	12	3	28	0	125	24
575	25	0	8	0	124	0
284	8	0	28	0	123	3
5	2	0	18	0	122	0
581	26	0	7	0	122	0
50	2	0	17	0	122	15
530	2	0	17	0	121	16
149	11	0	25	0	119	3
316	25	0	26	0	118	0
301	25	0	26	0	118	0
208	4	1	19	1	117	10
472	12	1	25	0	117	41
528	2	0	18	0	117	5
52	2	0	18	0	116	6
565	1	0	17	0	116	10
15	1	0	17	0	116	10
396	14	2	19	1	115	21
357	8	1	24	0	114	6
537	3	0	24	0	114	3
43	3	0	24	0	114	2
354	8	0	23	0	114	7
132	22	1	24	0	112	52
286	1	0	49	0	111	1
111	11	1	24	0	111	48
1	3	0	17	0	110	0
134	34	0	22	0	109	11
571	3	0	17	0	106	4
526	2	0	17	0	106	13
9	3	0	16	0	106	4
118	3	2	20	0	106	39
465	3	2	21	0	106	38
54	2	0	17	0	105	14
535	3	0	23	0	105	5
45	3	0	23	0	105	4
292	1	0	14	0	105	1
323	1	0	31	0	104	5

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No.	σ _{Nx} [N/mm²]	τ _{Qy} [N/mm ²]	τ _{Qz} [N/mm²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
287	1	0	10	0	103	0
6	26	0	13	0	102	11
20	10	0	13	0	102	2
289	1	0	43	0	102	1
212	17	1	17	2	102	11
560	13	0	13	0	101	1
424	21	3	21	0	100	37
314	23	0	14	0	100	0
303	23	0	14	0	100	0
177	37	1	21	0	100	11
556	1	0	15	0	100	16
24	1	0	16	0	99	16
327	3	0	19	0	99	8
395	5	2	16	1	99	19
278	3	0	19	0	99	10
279	3	0	20	0	99	9
326	3	0	21	0	98	7
171	26	3	21	0	98	39
114	2	1	21	0	97	19
371	9	3	15	0	97	25
469	2	1	21	0	97	21
94	0	1	8	0	96	10
488	0	1	7	0	96	10
467	4	1	21	0	96	32
168	28	5	21	0	96	73
116	4	2	20	0	96	35
504	1	0	11	0	96	4
427	27	5	21	0	96	71
78	1	0	11	0	96	4
328	8	1	26	0	95	18
226	9	2	15	0	95	21
157	8	1	17	0	94	30
275	10	25	28	1	93	53
562	2	0	15	0	92	3
182	9	8	18	0	92	109
143	3	0	30	0	92	3
18	2	0	15	0	92	3
389	4	0	15	1	91	7
280	5	2	27	0	90	14
14	21	0	12	0	90	1
234	5	1	14	0	89	12
414	15	8	18	0	89	112
564	1	0	39	0	88	11
566	16	0	12	0	88	3
446	1	3	26	0	88	35
397	23	1	14	1	87	9
16	0	0	38	0	87	11
145	3	0	15	0	86	4
524	1	0	14	0	86	17
56	1	0	14	0	86	16
50	1	0	14	0	00	10

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
47 2 0 18 0 85 1 218 6 0 14 3 84 3 297 0 0 12 3 84 7 363 6 2 13 0 84 16	
218 6 0 14 3 84 3 297 0 0 12 3 84 7 363 6 2 13 0 84 16	
297 0 0 12 3 84 7 363 6 2 13 0 84 16	
363 6 2 13 0 84 16	
324 9 8 24 1 82 25	
387 11 2 13 2 82 15	
507 6 0 19 1 81 2	
75 7 0 19 1 81 2	
442 8 2 14 0 80 2	
201 14 3 13 1 80 24	
273 10 0 11 0 78 5	
291 1 0 30 0 78 1	
228 6 1 13 3 78 9	
447 1 0 36 0 78 1	
135 21 1 15 0 78 49	
466 3 6 20 0 78 41	
344 8 0 11 0 78 4	
253 8 0 11 0 78 8	
450 17 0 15 0 77 21	
438 9 5 10 0 77 30	
123 3 5 22 0 77 39	
573 1 1 26 0 76 8	
117 3 6 19 0 76 41	
330 10 16 30 0 76 44	
486 0 2 4 0 76 18	
33 0 0 13 0 75 16	
547 0 0 13 0 75 16	
7 1 1 27 0 75 8	
96 0 2 4 0 75 18	
460 3 4 22 0 75 33	
468 6 6 21 0 75 43	
125 2 6 18 0 74 40	
294 2 0 32 0 74 1	
204 5 3 13 1 73 26	
115 5 6 21 0 73 50	
13 1 0 32 0 73 2	
458 2 6 17 0 72 40	
126 2 6 18 0 72 41	
295 0 0 42 0 71 1	
281 9 1 25 0 71 17	
214 18 1 12 2 71 9	
457 2 6 17 0 71 39	
144 5 0 24 0 70 3	

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No.	σ _{Nx} [N/mm ²]	τ _{Qy} [N/mm ²]	τ _{Qz} [N/mm ²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
74	8	0	17	0	70	2
508	11	0	17	0	70	3
288	1	0	6	0	69	1
153	8	2	9	0	69	5
23	13	0	9	0	69	3
557	11	0	9	0	69	5
402	11	0	12	2	68	4
80	1	1	7	0	68	9
502	1	1	7	0	68	9
353	5	0	10	0	67	1
244	5	0	10	0	67	4
138	1	0	33	0	67	1
73	6	0	17	0	66	0
567	1	0	30	0	66	2
509	4	0	17	0	66	0
217	5	0	11	3	66	2
553	2	0	11	0	66	7
27	2	0	11	0	66	6
51	1	0	13	0	66	4
325	4	2	24	0	66	15
529	1	0	13	0	66	4
290	1	0	38	0	65	1
377	11	2	11	2	65	16
551	14	0	7	0	65	2
487	6	1	10	0	64	10
95	6	1	10	0	64	11
4	2	0	9	0	64	0
299	0	1	48	0	64	11
122	1	1	25	0	63	17
318	0	1	46	0	62	11
485	4	2	8	0	62	13
97	4	2	8	0	62	13
386	12	2	11	2	61	15
71	7	0	17	0	61	0
511	5	0	17	0	61	0
107	2	4	24	0	61	48
522	0	0	11	0	61	14
398	24	0	10	1	61	3
513	6	0	17	0	61	0
68	9	0	17	0	60	0
58	0	0	11	0	60	14
12	1	0	8	0	60	8
568	1	0	8	0	59	7
72	10	0	15	0	59	1
29	8	0	6	0	59	2
215	4	0	8	1	59	2
399	8	2	8	1	59	22
419	4	0	8	0	59	5
176	4	0	8	0	59	5
510	11	0	15	0	59	2

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No.	σ _{Nx} [N/mm ²]	τ _{Qy} [N/mm ²]	τ _{Qz} [N/mm²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
495	3	1	8	0	58	4
87	3	1	8	0	58	5
454	13	1	11	0	58	50
53	1	0	11	0	58	11
130	9	0	11	0	58	25
88	1	1	6	2	57	12
527	1	0	11	0	57	10
89	2	1	7	0	57	9
476	2	4	23	0	57	49
493	3	1	7	0	57	9
193	5	1	9	0	57	8
403	5	1	9	0	57	9
170	4	1	8	0	56	5
425	4	1	9	0	56	5
230	5	1	10	2	56	7
494	1	1	6	2	56	12
86	0	1	26	0	56	10
70	14	0	15	0	56	1
305	67	0	10	0	56	0
430	8	7	13	0	56	100
312	67	0	10	0	55	0
512	18	0	14	0	55	1
69	21	0	14	0	55	3
200	23	2	8	1	54	12
501	2	2	3	0	54	10
409	5	1	8	0	54	9
187	5	1	9	0	54	8
81	2	2	3	0	54	11
496	0	1	27	0	54	9
175	4	0	19	0	54	4
420	4	0	18	0	53	4
503	1	1	3	0	53	8
79	1	1	3	0	53	8
484	1	2	4	0	53	20
209	1	1	9	1	53	7
401	10	1	9	2	52	14
198	8	2	6	1	52	27
98	1	2	4	0	52	21
404	5	0	19	0	52	8
477	4	4	17	0	52	49
165	13	7	12	0	52	103
393	5	3	9	1	52	27
382	5	1	6	1	51	7
192	4	0	17	0	51	7
456	1	3	23	0	51	43
142	2	0	46	0	51	3
205	17	1	8	1	50	10
379	6	0	7	3	50	2
31	1	0	22	0	50	4
32	14	0	7	0	50	4

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No.	σ _{Nx} [N/mm ²]	τ _{Qy} [N/mm ²]	τ _{Qz} [N/mm²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
49	1	0	10	0	49	12
514	27	0	10	0	49	5
67	26	0	10	0	49	5
282	5	0	22	0	49	6
82	1	1	6	0	49	11
531	1	0	10	0	49	12
500	1	1	6	0	49	11
133	1	1	19	0	49	9
375	10	3	9	1	49	25
481	0	0	22	0	48	1
385	18	2	7	2	48	14
167	4	1	19	0	48	4
308	13	0	12	0	48	1
428	4	1	20	0	48	4
555	0	1	13	1	48	17
21	1	0	6	0	48	12
559	1	0	6	0	47	12
309	14	0	11	0	47	1
127	1	3	22	0	47	42
412	4	1	18	0	46	8
195	11	1	7	2	46	6
184	4	1	18	0	46	7
148	4	0	48	0	46	3
25	0	1	14	1	46	17
293	0	0	15	0	45	2
139	5	3	19	0	45	38
315	1	0	2	0	45	1
548	8	0	6	0	44	6
302	1	0	2	0	44	1
216	4	0	8	2	44	3
60	5	0	7	0	44	0
322	1	0	10	0	44	5
245	8	0	7	0	43	6
352	8	0	7	0	43	3
521	7	0	7	0	43	0
120	4	3	18	0	43	15
199	25	1	5	1	42	7
121	4	1	4	0	42	12
34	2	3	1	1	42	9
100	3	0	6	0	42	5
482	3	0	6	0	42	6
546	2	3	1	1	42	9
174	3	0	31	0	42	3
83	3	2	9	0	42	17
499	3	2	9	0	42	17
421	3	0	31	0	42	2
558	1	0	21	0	41	4
405	4	0	31	1	41	6
55	1	0	8	0	41	13
191	3	0	31	1	41	5

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No.	σ _{Nx} [N/mm²]	τ _{Qy} [N/mm ²]	τ _{Qz} [N/mm²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
264	1	0	8	0	41	2
525	1	0	7	0	40	13
572	3	1	20	0	40	8
451	1	1	16	0	40	9
266	1	0	11	0	40	0
62	4	0	6	0	40	1
383	19	2	4	2	40	11
462	4	5	3	0	39	28
267	1	0	9	0	39	0
42	3	0	8	0	39	12
538	3	0	8	0	39	13
232	4	0	7	1	39	3
519	6	0	6	0	39	1
113	7	2	6	0	39	17
124	3	3	20	0	39	34
84	4	2	12	0	39	9
498	4	2	12	0	39	9
332	1	0	8	0	39	3
77	1	0	1	0	38	4
505	1	0	1	0	38	5
471	8	1	18	0	38	15
22	1	0	19	0	38	4
102	1	0	21	0	37	1
333	0	0	8	0	37	2
131	1	2	35	0	37	9
470	7	6	2	0	37	35
453	1	2	34	0	37	9
373	9	3	7	1	37	31
384	16	2	6	2	36	11
542	68	1	4	0	35	48
38	70	1	4	0	35	50
461	3	1	19	0	35	19
265	1	0	7	0	35	3
90	2	1	15	1	35	8
93	7	0	4	0	35	5
489	7	0	4	0	35	5
59	18	0	5	0	34	2
106	4	4	14	0	34	48
400	9	2	6	1	34	24
577	4	0	1	0	34	0
579	4	0	1	0	34	0
520	12	0	5	0	34	2
317	4	4	61	0	34	41
549	1	0	17	0	33	4
61	15	0	5	0	33	1
492	2	1	16	1	33	9
64	3	0	5	0	33	2
437	8	8	6	0	33	27
17	3	1	12	0	33	10
164	2	1	32	0	33	2

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No.	σ _{Nx} [N/mm ²]	τ _{Qy} [N/mm ²]	τ _{Qz} [N/mm²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
517	5	0	5	0	33	2
283	4	0	1	0	32	6
480	1	0	19	0	32	1
431	2	1	33	0	32	2
463	4	1	14	0	32	15
415	3	1	30	0	32	5
300	5	4	61	0	31	41
181	3	1	32	0	31	5
459	4	3	18	0	31	35
364	6	1	3	0	30	26
490	5	4	16	1	30	6
101	0	0	16	0	30	0
92	5	3	16	1	30	6
518	9	0	4	0	30	3
63	10	0	4	0	30	2
497	4	1	2	0	30	4
436	5	9	2	0	29	22
85	4	1	2	0	29	4
563	3	1	10	0	29	10
276	1	1	18	0	28	13
103	2	1	9	1	28	9
213	15	1	5	2	28	9
544	33	1	8	0	28	14
417	47	8	10	0	28	129
30	0	0	2	0	27	12
550	0	0	2	0	27	12
311	39	0	4	0	27	0
8	3	0	15	0	27	7
600	2	0	3	0	27	0
36	33	0	8	0	27	14
306	38	0	4	0	26	0
179	45	8	9	0	26	125
601	2	0	3	0	26	0
66	5	0	4	1	26	4
112	8	3	13	0	26	14
606	2	0	0	0	25	0
516	7	0	4	0	25	3
599	2	0	2	0	25	0
220	11	1	4	2	25	12
612	2	0	0	0	24	0
483	3	3	5	0	24	22
515	6	0	4	1	24	4
65	10	0	3	0	24	2
602	2	0	2	0	24	0
206	23	0	4	1	24	3
233	6	0	2	0	24	24
99	4	3	5	0	24	22
441	2	10	5	0	23	24
91	2	2	5	1	23	16
173	2	0	38	0	23	1

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No.	σ _{Nx} [N/mm ²]	τ _{Qy} [N/mm ²]	τ _{Qz} [N/mm ²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
304	7	0	3	0	23	0
313	6	0	3	0	22	0
406	2	1	37	0	22	3
422	2	0	36	0	22	1
491	3	2	5	1	22	17
605	1	0	8	0	22	2
224	9	3	4	1	22	29
160	2	6	6	0	22	19
128	1	5	5	0	22	41
190	2	1	35	0	21	3
158	8	7	7	0	21	20
613	1	0	8	0	21	2
391	22	1	3	1	21	5
478	1	1	12	0	21	12
156	8	5	5	0	21	26
464	1	8	4	0	20	60
410	1	5	3	0	20	64
540	0	2	44	0	20	3
435	2	6	3	0	20	19
407	0	2	3	0	19	28
186	4	4	3	0	19	61
40	0	2	43	0	19	3
369	6	0	3	3	19	4
607	2	0	2	0	19	0
554	3	0	10	1	19	7
611	2	0	2	0	19	0
189	4	2	2	0	18	26
104	1	1	11	0	18	13
155	5	5	1	0	18	22
580	36	0	0	0	18	0
455	1	5	5	0	18	41
576	36	0	0	0	18	0
440	5	6	4	0	18	25
545	5	1	14	0	18	6
227	8	0	3	0	18	5
35	5	1	13	0	18	6
41	86	1	4	0	18	59
539	88	1	4	0	18	58
196	11	1	3	2.	17	17
119	1	8	4	0	17	59
413	0	7	3	0	17	100
39	7	0	5	0	17	10
162	77	8	3	0	17	123
329	8	1	8	0	16	13
183	3	8	2	0	16	102
541	6	0	5	0	16	102
433	75	8	2	0	16	121
508	1	0	3	0	15	1
154	2	10	3	0	15	24
380	6	0	2	3	15	Δ+ Λ
500	0	0	2	3	13	+

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No.	σ _{Nx} [N/mm ²]	τ _{Qy} [N/mm ²]	τ _{Qz} [N/mm ²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
523	0	0	2	0	15	11
439	8	7	4	0	15	33
222	11	2	3	2	15	24
57	0	0	1	0	15	10
603	2	0	2	0	14	0
225	6	1	3	0	14	34
479	2	1	3	1	14	9
365	5	0	2	2	14	2
229	6	0	2	0	13	3
392	17	1	1	1	13	12
136	3	1	32	0	12	2
370	3	0	1	0	12	4
449	3	1	31	0	12	2
161	1	0	37	0	11	1
434	1	0	36	0	11	1
418	1	1	35	0	11	2
588	1	0	1	0	11	1
178	1	1	35	0	11	2
585	1	0	2	0	11	0
597	1	0	1	0	10	0
586	1	0	1	0	10	0
592	1	0	2	0	10	0
296	63	4	0	0	10	78
270	5	0	2	0	10	2
159	5	9	4	0	10	22
591	1	0	1	0	9	1
368	1	0	1	0	9	3
321	66	4	0	0	9	76
372	7	1	1	0	9	31
608	1	0	1	0	8	1
378	7	0	2	0	8	3
335	0	0	3	0	8	3
610	2	0	1	0	8	0
163	3	9	2	0	8	129
197	9	2	1	2	8	25
589	1	0	2	0	7	0
609	1	0	1	0	7	1
262	0	0	3	0	7	4
587	1	0	1	0	7	2
596	1	0	2	0	7	0
432	2	10	1	0	7	132
338	2	0	2	0	7	1
376	5	0	2	0	6	1
604	1	0	1	0	6	1
349	1	0	2	0	6	8
359	4	0	3	0	6	2
367	6	1	1	2	6	6
582	1	0	1	0	6	2
584	0	0	2	0	6	0
231	4	0	1	0	6	1

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No.	σ _{Nx} [N/mm ²]	τ _{Qy} [N/mm ²]	τ _{Qz} [N/mm ²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
259	2	0	1	0	6	2
172	1	2	1	0	5	25
248	1	0	1	0	5	12
269	5	0	1	0	5	1
219	3	0	2	0	5	2
593	0	0	2	0	5	0
169	0	4	1	0	5	59
374	4	0	1	0	5	3
423	3	2	0	0	5	23
180	1	10	1	0	4	132
381	5	1	0	2	4	5
211	11	1	0	2	4	13
223	2	0	2	0	4	7
238	4	2	2	0	4	16
242	1	1	2	0	4	6
426	3	4	0	0	4	56
221	2	0	1	0	4	1
26	3	0	4	1	4	7
416	2	10	0	0	3	132
254	1	1	2	0	3	16
343	1	4	1	0	3	48
337	1	0	1	0	3	3
358	0	1	2	0	3	3
361	1	0	1	0	3	7
336	1	0	1	0	3	4
429	2	7	1	0	3	93
241	2	2	1	0	3	21
260	1	0	1	0	3	2
362	0	0	1	0	3	1
236	1	0	1	0	3	9
366	1	0	1	0	3	3
339	0	1	2	0	3	11
257	0	1	1	0	3	9
346	0	1	2	0	3	3
261	1	0	1	0	2	1
340	0	2	0	0	2	11
268	5	0	0	0	2	2
239	0	2	1	0	2	14
235	0	0	1	0	2	4
251	0	3	1	0	2	27
258	0	1	2	0	2	9
590	0	0	1	0	2	0
355	1	1	2	0	2	7
252	0	2	2	0	2	11
545	0	2	2	0	2	16
283	0	0	1	0	2	1
356	2	1	0	0	2	6
594	0	0	1	0	2	1
393	0	1	1	0	1	1.4
200	0	1	1	U	1	14

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Load case No 5 LC1+LC2+LC3+LC4 - Combination : LC1 Poprečno akceleracijsko polje (1), LC2 Palubna opterećenja (1), LC3 Opterećenje od vjetra (1), LC4 Gravitacija (1)

Beam No.	σ _{Nx} [N/mm²]	τ _{Qy} [N/mm²]	τ _{Qz} [N/mm²]	τ _{Mx} [N/mm²]	σ _{My} [N/mm²]	σ _{Mz} [N/mm²]
334	0	0	1	0	1	2
341	0	1	1	0	1	12
298	69	7	0	0	1	149
250	0	0	1	1	1	6
319	66	7	0	0	1	150
342	0	1	1	0	1	12
347	0	0	1	0	1	1
256	0	2	0	0	1	13
166	0	7	0	0	1	92
263	0	0	0	0	1	2
105	11	3	0	0	0	53
129	35	8	0	0	0	173
141	39	4	0	0	0	80

Beam Stresses, values, sorted by Sig-My in Descending order

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
307	369	227	71	70
310	369	227	71	70
360	212	161	13	7
350	225	76	28	16
443	217	68	47	17
152	214	67	47	17
249	108	188	14	8
150	199	79	40	35
445	197	78	40	35
271	210	161	27	8
285	199	120	12	7
351	114	169	39	4
237	197	113	15	3
247	206	71	33	6
272	131	176	18	0
137	204	166	62	22
448	191	151	85	36
2	98	171	4	3
348	93	164	16	2
140	199	131	52	24
10	94	166	8	2
570	94	166	9	3
44	102	163	7	2
536	103	162	8	1
246	98	145	39	3
194	182	123	59	22
188	160	143	61	21
76	197	107	39	33
506	197	107	39	33
203	143	153	6	34
277	159	67	20	22
108	171	146	58	35

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
408	165	132	71	16
109	164	146	54	45
394	141	149	5	38
46	94	154	10	1
534	95	154	10	2
474	169	138	47	24
390	139	147	14	29
19	82	152	6	1
475	162	145	62	43
561	82	152	6	1
331	140	77	12	39
411	162	118	113	48
3	179	83	46	12
185	159	119	108	48
207	129	131	4	22
147	1/1	64	2	7
147	76	129	5	2
40 522	70	130	5	2
210	125	130	16	2
210	123	123	10	2
369	158	/0	25	24
28	70	132	11	6
552	/0	131	11	/
578	140	127	/	1
574	138	125	10	6
11	147	81	18	15
243	140	53	14	7
240	138	54	18	0
151	61	121	37	21
444	61	121	38	22
452	146	102	55	17
473	130	114	52	43
110	136	108	46	25
274	113	63	12	36
575	98	149	25	25
284	130	52	11	5
5	63	120	2	1
581	96	147	26	26
50	64	120	17	13
530	63	119	18	14
149	108	60	7	14
316	143	93	25	25
301	142	93	25	24
208	94	121	1	14
472	129	99	53	29
528	61	115	7	3
52	61	114	8	4
565	60	115	11	8
15	60	114	11	9
396	111	101	35	8
357	122	48	14	3
537	117	96	6	0
43	117	95	5	1
354	121	47	15	1
132	128	90	74	30

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
286	57	110	2	0
111	121	95	58	37
1	113	92	3	3
134	137	74	45	23
571	109	89	7	2
526	55	104	15	12
9	109	89	7	1
118	46	103	42	36
465	46	103	42	35
54	55	104	16	12
535	108	88	7	2
45	108	88	7	2
292	54	104	1	0
323	105	42	6	4
287	53	102	1	0
6	128	50	37	15
20	112	66	12	8
289	53	101	2	0
212	103	84	21	6
560	114	63	14	12
424	108	79	58	16
314	123	77	23	23
303	122	77	23	22
177	123	63	48	26
556	51	99	17	15
24	51	99	17	15
327	38	102	4	11
395	76	103	15	11
278	38	101	7	13
279	38	101	7	12
326	38	102	5	10
171	111	72	65	13
114	39	99	18	20
371	106	64	16	16
469	39	99	20	22
94	49	96	10	10
488	49	96	10	11
467	43	93	36	28
168	111	68	101	45
116	43	93	39	31
504	48	96	4	5
427	110	69	98	44
78	48	96	3	5
328	87	47	10	26
226	104	64	30	3
157	16	103	4	38
275	14	103	13	63
562	95	78	5	0
182	89	84	118	100
143	90	49	0	5
18	95	77	5	0
389	72	95	3	6
280	86	42	9	18
14	111	46	23	20

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
234	94	57	17	1
414	92	73	127	96
564	45	88	11	10
566	104	50	19	13
446	88	36	35	35
397	94	65	32	20
16	45	86	11	10
145	33	89	2	7
524	45	85	18	15
56	45	85	18	15
320	44	85	7	7
37	76	52	51	15
543	76	52	52	14
388	86	83	5	6
533	87	71	3	1
146	32	88	1	7
202	65	90	0	20
47	87	71	3	1
218	90	64	9	5
297	43	84	7	7
363	89	55	11	10
324	30	73	34	1
387	76	70	27	4
507	76	75	8	3
75	76	74	9	4
442	28	72	10	7
201	80	65	22	9
273	88	35	15	1
291	39	79	0	1
228	84	64	9	4
447	41	77	2	1
135	99	53	70	28
466	81	24	44	37
344	86	29	12	5
253	86	29	16	0
450	94	56	38	4
438	11	86	22	22
123	73	38	36	42
573	39	76	9	8
117	80	23	44	37
330	9	86	34	29
486	38	76	17	18
33	38	75	16	15
547	38	75	16	16
7	39	75	9	8
96	38	75	18	19
460	71	44	30	37
468	80	26	49	38
125	72	28	38	42
294	42	76	1	3
204	73	68	32	3
115	79	31	55	44
13	38	72	3	1
458	70	28	38	42

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
126	70	27	39	43
295	71	35	1	0
281	27	61	16	7
214	81	53	23	9
457	68	27	36	41
144	65	34	3	8
74	68	63	10	6
508	71	58	14	8
288	36	68	2	0
153	25	61	10	2
23	82	39	16	10
557	80	41	16	6
402	79	49	15	10
80	34	69	8	10
502	34	69	8	10
353	72	28	6	4
244	71	28	8	0
138	35	66	2	1
73	63	60	6	6
567	35	65	3	1
509	61	62	4	3
217	65	61	7	5
553	68	55	8	5
27	68	55	8	5
51	67	55	6	3
325	62	31	11	18
529	67	55	5	2
290	49	64	2	0
377	76	49	16	5
551	79	35	16	12
487	30	58	16	4
95	30	58	17	5
4	65	54	2	1
299	58	64	11	12
122	64	40	18	17
318	53	63	11	12
485	28	58	17	8
97	28	57	17	9
386	67	50	18	3
71	63	54	7	7
511	61	56	5	4
107	63	33	50	46
522	31	61	14	14
398	73	36	27	23
513	65	55	6	5
68	66	52	9	8
58	30	60	14	14
12	61	50	9	6
568	61	50	9	6
72	60	50	10	9
29	67	37	10	5
215	63	26	5	2
399	67	16	29	1
419	54	63	1	9

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
176	54	63	1	10
510	62	47	13	10
495	25	55	8	1
87	25	55	8	2
454	71	42	63	37
53	59	49	12	9
130	67	45	34	15
88	28	59	11	13
527	59	48	11	9
89	24	55	11	6
476	59	30	51	48
493	24	55	11	6
103	52	62	1	13
403	52	62	4	14
170	52	60	1	0
170	52	60	1	9
423	52 61	44	7	2
404	01	44 57	11	12
494	27	57	0	13
80	50	36	9	10
70	61	42	14	13
305	123	11	6/	6/
430	56	47	108	92
312	122	12	67	67
512	65	37	19	17
69	68	34	23	18
200	61	31	29	11
501	22	53	12	9
409	50	59	4	13
187	50	59	4	13
81	22	52	13	9
496	53	55	9	10
175	50	58	0	8
420	49	57	0	8
503	21	52	9	7
79	21	52	10	7
484	26	54	19	21
209	54	46	8	1
401	58	42	24	6
198	61	13	17	19
98	26	53	20	22
404	48	57	3	12
477	56	17	53	45
165	58	39	116	90
393	56	47	13	23
382	56	16	12	1
192	47	56	3	12
456	52	40	44	42
142	19	53	1	5
205	58	33	28	14
379	30	43	7	4
31	26	49	5	3
32	63	24	18	9
49	51	41	13	11
514	70	23	32	22

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
67	70	23	31	21
282	44	37	1	10
82	24	50	10	12
531	50	41	13	11
500	23	50	9	12
133	23	50	8	10
375	59	35	18	15
481	25	48	1	0
385	49	30	32	13
167	44	52	1	8
308	35	61	12	14
428	33	51	0	7
555	24	48	17	17
21	40	40	17	17
550	49	40	13	11
339	40	40	13	14
309	54	01	15	14
127	47	57	42	41
412	42	51	3	12
195	39	35	13	6
184	42	50	3	11
148	15	50	1	7
25	23	46	17	18
293	22	45	1	2
139	41	23	34	42
315	46	43	2	1
548	53	25	14	2
302	45	43	1	0
216	45	39	8	3
60	49	33	5	5
322	19	42	6	4
245	27	37	14	2
352	27	37	11	4
521	49	30	7	6
120	11	46	11	19
199	42	17	29	18
121	11	46	8	16
34	44	41	10	7
100	45	40	8	2
482	45	39	8	3
546	44	41	10	7
174	39	45	0	6
83	18	39	20	15
499	18	39	20	15
421	39	45	1	5
558	22	41	4	3
405	38	45	2	9
55	42	35	13	12
191	37	44	2	9
264	24	40	2	1
525	41	34	13	12
572	25	42	5	10
451	19	41	7	10
266	24	30	, 1	0
62	/2	30	1	3
02	43		4	5

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
383	34	21	30	9
462	10	43	24	31
267	24	39	1	0
42	23	36	16	9
538	23	36	16	10
232	44	29	5	1
519	45	28	7	5
113	21	32	24	10
124	42	28	37	31
84	43	35	12	5
498	43	35	12	5
332	23	38	3	2
77	15	38	5	<u> </u>
505	15	38	5	4
471	21	30	23	7
	20	30	1	3
102	20	27	4	1
322	20	27	2	2
121	26	29	2	0
131	30	30	0	29
470	20	30	42	28
453	30	38	8	9
3/3	45	27	18	23
384	46	20	24	5
542	103	41	116	19
38	105	43	119	20
461	21	38	16	22
265	21	35	4	3
90	18	37	7	10
93	20	28	12	2
489	20	28	12	2
59	52	12	19	16
106	38	10	52	43
400	41	25	33	1
577	38	30	4	4
579	37	30	4	4
520	46	17	14	10
317	18	29	45	37
549	18	33	4	3
61	48	14	16	14
492	23	35	7	10
64	36	25	5	2
437	25	16	19	20
17	30	19	7	13
164	30	35	0	5
517	37	23	6	3
283	9	37	1	10
480	17	32	2	0
431	30	35	0	5
463	7	36	11	19
415	29	34	2	8
300	18	27	46	37
181	29	34	2	8
459	27	27	39	32
364	36	17	31	20

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
490	35	26	11	1
101	16	30	1	0
92	35	26	11	1
518	39	17	11	6
63	40	16	12	8
497	15	26	7	0
436	24	13	15	27
85	15	26	8	1
563	26	17	8	13
276	10	30	12	15
103	13	30	7	10
213	37	12	25	10
544	61	9	48	10
417	19	73	82	176
30	27	23	12	170
550	27	23	12	12
211	12	 66	20	20
0	20	20	5	10
8 600	20	29	3	10
000	28	23	2	1
30	39	10	4/	19
306	12	65	38	39
179	19	70	80	1/0
601	28	25	2	1
66	31	17	10	1
112	17	17	22	6
606	27	24	2	1
516	32	14	10	4
599	26	23	2	1
220	36	10	23	8
612	26	23	2	1
483	13	21	25	18
515	30	15	10	1
65	34	11	12	7
602	26	22	2	2
206	37	1	25	22
233	30	12	30	18
99	12	20	25	18
441	9	21	26	20
91	11	20	19	14
173	21	25	0	3
304	16	29	6	7
313	16	28	6	6
406	20	24	1	5
422	20	24	1	3
491	11	19	19	14
605	23	21	3	1
224	26	12	39	0
160	9	23	17	10
128	7	23	40	42
190	20	23	1	5
158	14	27	3	28
613	22	20	3	1
391	34	1	24	17
478	20	19	11	14

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

156 28 2 19 19 464 8 19 61 58 410 17 21 63 65 540 20 20 3 3 435 17 7 6 21 166 21 15 65 57 40 19 19 4 3 369 26 9 11 5 607 21 18 2 1 554 7 21 4 10 611 20 17 2 2 189 20 14 30 22 104 17 11 14 155 23 0 15 18 580 54 18 36 36 440 10 13 30 5 545 13 22 1 10 227 2	Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
464819 61 58 410 1721 63 65 540 202033 435 177621 407 17202829 186 2115 65 57 40 191943 369 26911 5 607 211821 554 721410 611 201722 189 20143022 104 17171114 155 2301518 580 54183636 440 1013305 545 1322110 227 2110123 35 1322110 227 2110123 35 1322110 411 1037314427 539 1057414629 196 257167 199 2625716 413 1417100101 39 238163 413 1417100101 39 238164 433 598945196 598 1714	156	28	2	19	19
410 17 21 63 65 540 20 20 3 3 435 17 7 6 21 407 17 20 28 29 186 21 15 65 57 40 19 19 4 3 369 26 9 11 5 607 21 18 2 1 554 7 21 4 10 611 20 17 2 2 189 20 14 30 22 189 20 14 30 22 189 54 18 36 36 55 19 40 42 25 56 54 18 36 36 440 10 13 30 5 545 13 22 1 10 2	464	8	19	61	58
540 20 20 3 3 435 17 7 6 21 407 17 20 28 29 186 21 15 65 57 40 19 19 4 3 369 26 9 11 5 607 21 18 2 1 54 7 21 4 10 611 20 17 2 2 189 20 14 30 22 104 17 11 14 30 22 104 17 17 21 10 42 576 54 18 36 36 440 10 13 30 5 545 13 22 1 10 413 14	410	17	21	63	65
435 17 7 6 21 407 17 20 28 29 186 21 15 65 57 40 19 19 4 3 369 26 9 11 5 607 21 18 2 1 554 7 21 4 10 611 20 17 2 2 104 17 17 11 14 155 23 0 15 18 580 54 18 36 36 4455 5 19 40 42 576 54 18 36 36 545 13 22 1 10 227 21 10 12 3 35 13 22 1 10 41 103 73 144 27 <td< td=""><td>540</td><td>20</td><td>20</td><td>3</td><td>3</td></td<>	540	20	20	3	3
407 17 20 28 29 186 21 15 65 57 40 19 19 4 3 369 26 9 11 5 607 21 18 2 1 554 7 21 4 10 611 20 17 2 2 189 20 14 30 22 104 17 17 11 14 155 23 0 15 18 580 54 18 36 36 455 5 19 40 42 576 54 18 36 36 440 10 13 30 5 545 13 22 1 10 227 21 10 12 3 35 13 22 1 10 227 21 10 12 3 35 13 22 1 10 411 103 73 144 27 539 105 74 146 29 196 25 7 16 7 119 7 16 6 3 162 60 91 46 200 329 23 8 16 3 162 60 91 46 200 329 2 2 25 4 21 183 1	435	17	7	6	21
186 21 15 65 57 40 19 19 4 3 369 26 9 11 5 607 21 18 2 1 554 7 21 4 10 611 20 17 2 2 189 20 14 30 22 104 17 17 11 14 155 23 0 15 18 580 54 18 36 36 440 10 13 30 5 545 13 22 1 10 227 21 10 12 3 355 13 22 1 10 41 103 73 144 27 539 105 74 146 29 196 25 7 16 7 <	407	17	20	28	29
40 19 19 19 4 3 369 26 9 11 5 607 21 18 2 1 54 7 21 4 10 611 20 17 2 2 189 20 14 30 22 164 17 17 11 14 155 23 0 15 18 580 54 18 36 36 440 10 13 30 5 545 5 19 40 42 576 54 18 36 36 440 10 13 30 5 545 13 22 1 10 227 21 10 12 3 35 13 22 1 10 41 103 73 144 27 539 105 74 146 29 196 25 7 16 7 199 7 2 2 25 4 21 11 3 39 23 8 16 3 413 14 17 100 101 39 23 8 16 4 433 59 89 45 196 598 17 14 2 1 183 17 7 41 6 222 25 2 <	186	21	15	65	57
369 26 9 11 5 607 21 18 2 1 554 7 21 4 10 611 20 17 2 2 189 20 14 30 22 104 17 11 14 30 22 104 17 11 14 30 22 104 17 11 14 10 42 580 54 18 36 36 440 10 13 30 5 545 13 22 1 10 227 21 10 12 3 35 13 22 1 100 41 103 73 144 27 539 105 7 16 7 119	40	19	19	4	3
607 21 18 2 1 554 7 21 18 2 1 554 7 21 4 10 611 20 17 2 2 104 17 17 11 14 30 22 104 17 17 11 14 30 22 104 17 17 11 14 41 41 40 42 576 54 18 36 36 36 440 10 13 30 5 5 545 13 22 1 100 227 21 10 12 3 35 13 22 1 100 413 144 27 539 105 74 146 200 39 23 8	369	26	9	11	5
354 7 21 4 10 611 20 17 2 2 189 20 14 30 22 104 17 17 2 2 189 20 14 30 22 104 17 17 11 14 155 23 0 15 18 580 54 18 36 36 445 13 22 1 10 227 21 10 12 3 35 13 22 1 10 227 21 10 12 3 35 13 22 1 10 441 103 73 144 27 196 25 7 16 7 119 7 16 3	607	20	18	2	1
3.7 1 2 1 2 2 189 20 14 30 22 104 17 17 11 14 155 23 0 15 18 580 54 18 36 36 455 5 19 40 42 576 54 18 36 36 440 10 13 30 5 545 13 22 1 10 227 21 10 12 3 35 13 22 1 10 41 103 73 144 27 539 105 74 146 29 196 25 7 16 7 119 7 16 60 58 413 14 17 100 101 39 23 8 16 3	554	7	21	4	10
11 <t< td=""><td>611</td><td>20</td><td>17</td><td>2</td><td>2</td></t<>	611	20	17	2	2
104 17 17 11 14 155 23 0 15 18 580 54 18 36 36 455 5 19 40 42 576 54 18 36 36 440 10 13 30 5 545 13 22 1 10 227 21 10 12 3 35 13 22 1 10 227 21 10 12 3 35 13 22 1 10 217 71 16 7 16 7 16 60 58 413 14 17 100 101 39 23 8 16 3 3 16 6 200 329 2 25 4 21 18 11 11 11 14	189	20	1/	30	2
104 17 17 11 11 14 155 23 0 15 18 580 54 18 36 36 4455 5 19 40 42 576 54 18 36 36 440 10 13 30 5 545 13 22 1 10 227 21 10 12 3 35 13 22 1 10 41 103 73 1444 27 539 105 74 146 29 196 25 7 16 60 58 119 7 16 60 39 23 8 16 3 162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 603 16 13 2 1 252 20 4 400 28 479 6 15 8 11 365 14 8 7 5 229 16 <t< td=""><td>10/</td><td>17</td><td>17</td><td>11</td><td>14</td></t<>	10/	17	17	11	14
133 23 0 13 13 18 580 54 18 36 36 4455 5 19 40 42 576 54 18 36 36 440 10 13 30 5 545 13 22 1 10 227 21 10 12 3 35 13 22 1 10 41 103 73 144 27 539 105 74 146 29 196 25 7 16 7 119 7 16 60 58 413 14 17 100 101 39 23 8 16 3 162 60 91 446 200 329 2 25 4 21 183 17 14 2	104	22	0	11	14
380 34 18 30 30 4455 5 19 40 42 576 54 18 36 36 440 10 13 30 5 545 13 22 1 10 227 21 10 12 3 35 13 22 1 10 41 103 73 144 27 539 105 74 146 29 196 25 7 16 7 119 7 16 60 58 413 14 17 100 101 39 23 8 16 3 162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 111 603 16 13 2 1 225 20 4 40 28 479 6 15 8 111 365 14 8 7 5 229 16 7 9 3 392 22 <td< td=""><td>590</td><td>54</td><td>19</td><td>26</td><td>18</td></td<>	590	54	19	26	18
4335194042 576 54 18 36 36 440 10 13 30 5 545 13 22 1 10 227 21 10 12 3 35 13 22 1 10 41 103 73 144 27 539 105 74 146 29 196 25 7 16 60 39 23 8 16 3 413 14 17 100 101 39 23 8 16 3 162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 6 15 8 11 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3	580	54	18	30	30
370 34 18 30 36 440 10 13 30 5 545 13 22 1 10 227 21 10 12 3 35 13 22 1 10 41 103 73 144 27 539 105 74 146 29 196 25 7 16 7 119 7 16 60 58 413 14 17 100 101 39 23 8 16 3 162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 411 6 222 25 2 35 3 57 14 13 10 11 603 16 7 9 3 392 22 5 21 5 229 16 7 9 3 392 22 5 21 5 136 15 10	400	5	19	40	42
44010133055451322110227211012335132211041103731442753910574146291962571671197166058413141710010139238163162609146200329225421183171310598541228164433598945196598171421154172242138017972523151311114391774162222523535714131011603161321255204402847961581136514875229167933922252151361510503701296144914950161101202<	576	54	18	36	36
345 13 22 1 10 227 21 10 12 3 35 13 22 1 100 41 103 73 144 27 539 105 74 146 29 196 25 7 16 7 119 7 16 60 58 413 14 17 100 101 39 23 8 16 3 162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 100 11 603 16 13 2 1 255 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 <	440	10	13	30	5
227 21 10 12 3 35 13 22 1 10 41 103 73 144 27 539 105 74 146 29 196 25 7 16 7 119 7 16 60 58 413 14 17 100 101 39 23 8 16 3 162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 9 7 2 533 15 13 11 11 439 17 7 41 6 22 <	545	13	22	1	10
35 13 22 1 10 41 103 73 144 27 539 105 74 146 29 196 25 7 16 7 119 7 16 60 58 413 14 17 100 101 39 23 8 16 3 162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 161 10 12 0 1 449 14 9 <	227	21	10	12	3
41 103 73 144 27 539 105 74 146 29 196 25 7 16 7 119 7 16 60 58 413 14 17 100 101 39 23 8 16 3 162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 136 15 10 5 0 144 9 5 0 11 449 14 9 <t< td=""><td>35</td><td>13</td><td>22</td><td>1</td><td>10</td></t<>	35	13	22	1	10
539 105 74 146 29 196 25 7 16 7 119 7 16 60 58 413 14 17 100 101 39 23 8 16 3 162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 400 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 370 12 9 6 1 449 14 9 5 0 161 10 12 0 1 4449 14 9	41	103	73	144	27
196 25 7 16 7 119 7 16 60 58 413 14 17 100 101 39 23 8 16 3 162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 370 12 9 6 1 449 14 9 5 0 161 10 12 0 1 418 10 12 1 3	539	105	74	146	29
1197166058 413 1417100101 39 238163 162 609146200 329 225421 183 171310598 541 228164 433 598945196 598 171421 154 1722421 380 17972 523 15131111 439 177416 222 252353 57 14131011 603 161321 225 2044028 479 615811 365 14875 229 16793 370 12961 449 14950 161 101202 434 101201 418 101213	196	25	7	16	7
413 14 17 100 101 39 23 8 16 3 162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 400 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 370 12 9 6 1 449 14 9 5 0 161 10 12 0 1 418 10 12 1 3	119	7	16	60	58
39 23 8 16 3 162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 370 12 9 6 1 449 14 9 5 0 161 10 12 0 1 418 10 12 1 3	413	14	17	100	101
162 60 91 46 200 329 2 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 370 12 9 6 1 449 14 9 5 0 161 10 12 0 1 418 10 12 1 3	39	23	8	16	3
3292 25 4 21 183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 370 12 9 6 1 449 14 9 5 0 161 10 12 0 1 418 10 12 1 3	162	60	91	46	200
183 17 13 105 98 541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 370 12 9 6 1 449 14 9 5 0 161 10 12 0 1 418 10 12 1 3	329	2	25	4	21
541 22 8 16 4 433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 170 12 9 6 1 449 14 9 5 0 161 10 12 0 1 418 10 12 1 3 588 12 10 2 0	183	17	13	105	98
433 59 89 45 196 598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 370 12 9 6 1 449 14 9 5 0 161 10 12 0 1 418 10 12 1 3 588 12 10 2 0	541	22	8	16	4
598 17 14 2 1 154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 370 12 9 6 1 449 14 9 5 0 161 10 12 0 1 418 10 12 1 3	433	59	89	45	196
154 17 2 24 21 380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 370 12 9 6 1 449 14 9 5 0 161 10 12 0 1 418 10 12 1 3 588 12 10 2 0	598	17	14	2	1
380 17 9 7 2 523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 370 12 9 6 1 449 14 9 5 0 161 10 12 0 1 418 10 12 1 3 588 12 10 2 0	154	17	2	24	21
523 15 13 11 11 439 17 7 41 6 222 25 2 35 3 57 14 13 10 11 603 16 13 2 1 225 20 4 40 28 479 6 15 8 11 365 14 8 7 5 229 16 7 9 3 392 22 5 21 5 136 15 10 5 0 370 12 9 6 1 449 14 9 5 0 161 10 12 0 1 418 10 12 0 1 418 10 12 1 3 588 12 10 2 0	380	17	9	7	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	523	15	13	11	11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	439	17	7	41	6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	222	25	2	35	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	57	14	13	10	11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	603	16	13	2	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	225	20	4	40	28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	479	6	15	8	11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	365	14	8	7	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	229	16	7	9	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	392	22	5	21	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	136	15	10	5	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	370	12	9	6	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	449	14	9	5	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	161	10	12	0	2
418 10 12 0 1 588 12 10 2 0 178 10 12 1 3	434	10	12	0	
10 12 1 3 588 12 10 2 0 178 10 12 1 3	418	10	12	1	3
178 10 12 1 3	588	10	10	2	0
	178	10	12	1	3

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
585	11	10	1	1
597	11	9	1	1
586	11	9	2	1
592	11	9	1	1
296	73	53	141	15
270	15	0	8	3
159	5	14	17	23
591	10	8	2	0
368	8	8	4	3
321	74	56	141	11
372	15	0	37	24
608	10	7	2	1
278	10	7	0	1
225	15	0	2	4
610	10	0	2	1
1(2	10	10	126	1
163	5	10	126	132
197	1/	6	1/	16
589	8	1	1	0
609	8	6	2	1
262	6	7	4	3
587	8	6	2	1
596	8	6	1	0
432	4	8	130	135
338	8	2	3	1
376	11	0	7	4
604	8	5	2	1
349	7	3	9	7
359	2	9	2	7
367	12	4	12	4
582	7	5	2	1
584	6	5	1	0
231	10	0	5	3
259	7	2	4	1
172	5	5	26	25
248	6	3	13	11
269	10	2	7	3
219	7	2	5	1
593	6	5	1	0
169	4	4	59	59
374	8	0	7	0
423	7	1	26	20
180	3	5	132	133
381	10	4	7	1
211	13	7	24	7
223	6	2	8	5
238	0	7	12	20
242	5	2	7	6
426	7	1	59	53
221	5	2	3	1
221	1	5	4	10
416	1	6	130	135
254	1	1	17	155
2/12		1	17	13
227	4	2	47	4/ 2
557	4	2	4	2
DODATAK D

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Combined Element stresses

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
358	2	3	4	3
361	3	3	7	6
336	3	2	5	3
429	5	1	95	91
241	4	0	23	18
260	3	2	3	0
362	2	2	2	1
236	2	2	10	9
366	4	1	4	2
339	3	2	11	11
257	2	2	8	9
346	3	1	4	3
261	3	1	2	0
340	2	2	10	11
268	6	3	7	3
239	1	2	14	14
235	2	2	4	4
251	2	1	27	26
258	2	2	9	9
590	2	2	1	0
355	2	1	7	6
252	2	2	12	11
345	2	1	16	16
583	2	2	1	0
356	3	1	9	4
594	2	1	1	0
595	2	1	1	0
255	1	1	13	14
334	1	1	2	2
341	1	1	11	12
298	70	68	217	80
250	1	1	6	6
319	67	64	215	85
342	1	1	12	12
347	1	1	1	1
256	1	1	13	14
166	1	1	92	91
263	1	0	2	2
105	12	11	64	42
129	35	34	208	138
141	39	39	119	41

DODATAK D

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Okvir boka garažnog prostora i nadgrađe

Abbreviations

Principal stresses:

- σ_{Nx} : Axial stress (N_x/A_x)
- τ_{Mx} : Torsional stress (M_x/W_x)
- $\tau_{Qy}\!\!:\qquad \text{Shear stress in local y-direction }(Q_y\!/A_y)$
- $\tau_{Qz} \text{:} \qquad \text{Shear stress in local z-direction } (Q_z/A_z)$
- $\sigma_{My} {:} \qquad \text{Bending stress about local y-axis } (M_y/W_y)$
- $\sigma_{Mz} {:} \qquad \text{Bending stress about local z-axis} \ (M_z/W_z)$

Stress combinations:

 $\begin{array}{l} \sigma_{Ny}(min): Normal stress in local xz-plane, max of (\sigma_{Nx} + \sigma_{My\,(min)}) \\ \sigma_{Ny}(max): Normal stress in local xz-plane, max of (\sigma_{Nx} + \sigma_{My\,(max)}) \\ \sigma_{Nz}(min): Normal stress in local xy-plane, max of (\sigma_{Nx} + \sigma_{Mz\,(min)}) \\ \sigma_{Nz}(max): Normal stress in local xy-plane, max of (\sigma_{Nx} + \sigma_{Mz\,(max)}) \end{array}$

Where:

- A_x: Axial area (total profile area)
- A_y: Shear area in local y-direction ($I_z t_p / S_z$)
- A_z: Shear area in local z-direction $(I_y t_p / S_y)$
- W_x: Torsion section modulus
- Wy: Minimum section modulus about local y-axis
- W_z: Minimum section modulus about local z-axis
- N_x: Axial force
- Q_y: Shear force in local y-direction
- Q_z: Shear force in local z-direction
- M_x: Torsional moment
- M_y: Bending moment about local y-axis
- M_z: Bending moment about local z-axis
- $S_{y},\,S_{z}{:}\,-1^{st}$ area moment about y- and z- axis respectively
- t_p: profile thickness value depending on profile type

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Naprezanje strukture dna uslijed dokovanja

Beam	Beam Name	Start Node	End Node	Elastic Length [mm]	Mass [kg]	Profile	Angle [deg]	Rigid Start [mm]	Rigid End [mm]	Hinged at Start	Hinged at End	Non Linearities
1		1	2	4209,3	1003	6	0,0	0	0			
2		2	3	2407,5	627	10	0,0	0	0			
3		5	4	2407,5	627	10	0,0	0	0			
4		1	5	4209,3	1003	6	0,0	0	0			

Beam information, sorted by Beam in Ascending order

Beam information:	
Beam:	Beam identification number
Beam Name:	User's beam identification
Start/End Node:	Node numbers for the start and end nodes respectively
Elastic length:	Elastic length of beam, excluding possible rigid ends
Mass:	Mass of the elastic length of beam
Profile:	Profile identification number
Angle:	Angle between the profile's z-axis and the plane through the beam and the global Z-axis. Positive for
	clockwise rotation when seen in positive local x-direction.
Rigid Start/End:	Length of possible rigid part of the beam at the start and end ends respectively
Hinged at Start/End:	Possibly defined hinge at the start and end nodes respectively, where hinges are defined as:
dX, dY, dZ:	Hinged with respect to translation in the global X-, Y-, and Z-direction respectively
rX, rY, rZ:	Hinged with respect to rotation about the global X-, Y-, and Z-axis respectively
Non Linearities:	Possibly specified non-linear properties for the beam. For definition see figure below.

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Naprezanje strukture dna uslijed dokovanja

Node No	Name	X [mm]	Y [mm]	Z [mm]	Boundary Conditions					
110		[]	[]	[]	X transl	Y transl	Z transl	X rot	Y rot	Z rot
1		0	0	0						
2	L7	0	4200	280						
3	L11	0	6600	470	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed
4	L-11	0	-6600	470	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed
5	L-7	0	-4200	280						

Node information, sorted by Node in Ascending order

4	5	 1	 	 2	 8	
Z			·			
· •		 				

Node No: Name: X, Y, Z: X transl, Y transl, Z transl: X rot, Y rot, Zrot:	Node identification number User's node identification Node coordinates in the global coordinate system Boundary conditions w.r.t. translation along the global axes Boundary conditions w.r.t. rotation about the global axes
Where:	
Free:	The node is free
Fixed:	The node is fixed
FD:	The node has a prescribed displacement or rotation
Spring:	The node is supported by a spring

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Naprezanje strukture dna uslijed dokovanja

Profiles used in the model

Profiles

Profile	Profile Name	Туре	Material	Ignore S. C.	Shear factor fy	Shear factor fz	Profile parameters
6	Dno L0-L7	92	1 VL-NS Mild Steel		1,00	1,00	Upper Flange Width=1760 [mm], Upper Flange Thickness=7 [mm], Web Height between flanges=1919 [mm], Web Thickness=2.16 [mm], Lower Flange Width=1760 [mm], Lower Flange Thickness=8 [mm], Radius, web & flanges=0 [mm], Radius, flange corner=0 [mm], FlipY=True
10	Dno L7-L11	92	1 VL-NS Mild Steel		1,00	1,00	Upper Flange Width=1760 [mm], Upper Flange Thickness=7 [mm], Web Height between flanges=1919 [mm], Web Thickness=3.655 [mm], Lower Flange Width=1760 [mm], Lower Flange Thickness=8 [mm], Radius, web & flanges=0 [mm], Radius, flange corner=0 [mm], FlipY=True

Profile properties

Profile		Axial			Local x-z plane				Local x-y plane				Shear Centre	
	Ax [mm ²]	Wx [mm ³]	Ix [mm⁴]	Az [mm ²]	Wy _t [mm ³]	Wy _b [mm ³]	Iy [mm⁴]	Ay [mm ²]	Wz+ [mm³]	Wz- [mm ³]	Iz [mm⁴]	e _y [mm]	e _z [mm]	
6	30545	63506	5,0805e+05	4059	28157435	25115408	2,5673e+10	17600	7744002	7744002	6,8147e+09	0	8,748	
10	33414	66604	5,3283e+05	6762	28979905	26106826	2,6562e+10	17600	7744009	7744009	6,8147e+09	0	13,53	

Materials

Material	Material Name	E [N/mm²]	Density [kg/m³]	Poisson	Thermal Coefficient [mm/mm/C]	Yield Stress [N/mm²]	Ultimate Strength [N/mm ²]
1	VL-NS Mild Steel	210000	7800,0	0,30	1,26e-05	235	400

Profiles:	
Profile:	Profile identification number
Profile Name:	User's profile identification
Type:	Profile type
Material:	Material identification
Ignore S.C.:	If ticked "X", then the program ignores the possible shear centre offset for the profile.
Shear factors fy, fz:	The shear factor may be < 1.0 for beams with large cut-outs. The factors affect the beam stiffness but
	not the computed shear stress.
Profile parameters:	Input parameters defining the profile.
Profile properties:	
Profile:	Profile identification number
Ax:	Axial area (total profile area)
Wx:	Torsion section modulus
Ix:	Torsional moment of inertia
Az:	Shear area in local z-direction ($I_y t_p / S_y$)
Wyt:	Section modulus about local y-axis at top of profile
Wy _b :	Section modulus about local y-axis at bottom of profile
Iy:	Moment of inertia about local y-axis
Ay:	Shear area in local y-direction ($I_z t_p / S_z$)
Wz+:	Section modulus about local z-axis on positive y-side of profile
Wz-:	Section modulus about local z-axis on negative y-side of profile
Iz:	Moment of inertia about local z-axis
	Note: $Wz_t = Wz_b = Wz_{min}$ for all profile types except I - types

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata

Naprezanje strukture dna uslijed dokovanja

Shear centre distance from vertical neutral axis Shear centre distance from horizontal neutral axis Shear factor in local y-direction Shear factor in local z-direction Note: The shear factor is used for shear stiffness of beam, but not for calculation of shear stress
1 st area moment about y- and z- axis respectively
value for profile thickness depending on profile type
Material identification
User's material identification
Young's Modulus
Density
Poisson's ratio for transverse contraction
Coefficient of thermal expansion
Nominal yield stress
Nominal ultimate tensile strength

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Naprezanje strukture dna uslijed dokovanja

Load case No 1 Opterećenje uslijed dokovanja

Node Loads in global coordinate system, sorted by Node in Ascending order

	Px	Ру	Pz	Mx	My	Mz
	[N]	[N]	[N]	[Nmm]	[Nmm]	[Nmm]
1	0	0	637650	0	0	0

Node No:			Ν	ode	iden	tific	ation	num	ber			
D	D	D	3.7	1	1	1.	1 1	1 37	* 7	1 77	1.	

- Px, Py, Pz: Node load in global X-, Y-, and Z- direction
- Mx, My, Mz: Node moment about global X-, Y-, and Z- axis (positive for right-handed screw)

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Naprezanje strukture dna uslijed dokovanja

Load case No 1 Opterećenje uslijed dokovanja

Beam Stresses, values, sorted by Tau-Qz in Descending order

Beam No.	σ _{Nx} [N/mm²]	τ _{Qy} [N/mm²]	τ _{Qz} [N/mm²]	τ _{Mx} [N/mm²]	თ _{My} [N/mm²]	σ _{Mz} [N/mm²]
1	14	0	72	0	38	0
4	14	0	72	0	38	0
2	13	0	42	0	37	0
3	13	0	42	0	37	0

Combined Element stresses

Beam No.	σ _{Ny} (min) [N/mm²]	σ _{Ny} (max) [N/mm²]	σ _{Nz} (min) [N/mm²]	σ _{Nz} (max) [N/mm²]
1	52	19	14	14
4	52	19	14	14
2	46	24	13	13
3	46	24	13	13

Abbreviations

Principal stresses:

- σ_{Nx} : Axial stress (N_x/A_x)
- τ_{Mx} : Torsional stress (M_x/W_x)
- τ_{Qy} : Shear stress in local y-direction (Q_y/A_y)
- $\tau_{Qz} \text{:} \qquad \text{Shear stress in local z-direction } (Q_z\!/A_z)$
- σ_{My} : Bending stress about local y-axis (M_y/W_y)
- σ_{Mz} : Bending stress about local z-axis (M_z/W_z)

Stress combinations:

$$\begin{split} &\sigma_{Ny}(min): \text{Normal stress in local xz-plane, max of } (\sigma_{Nx} + \sigma_{My\,(min)}) \\ &\sigma_{Ny}(max): \text{Normal stress in local xz-plane, max of } (\sigma_{Nx} + \sigma_{My\,(max)}) \\ &\sigma_{Nz}(min): \text{Normal stress in local xy-plane, max of } (\sigma_{Nx} + \sigma_{Mz\,(min)}) \\ &\sigma_{Nz}(max): \text{Normal stress in local xy-plane, max of } (\sigma_{Nx} + \sigma_{Mz\,(max)}) \end{split}$$

Where:

- A_x: Axial area (total profile area)
- $A_y\!\!:\qquad \text{Shear area in local y-direction (} I_z \, t_p \, / \, S_z \,)$
- Az: Shear area in local z-direction ($I_y t_p / S_y$)
- W_x: Torsion section modulus
- Wy: Minimum section modulus about local y-axis
- W_z: Minimum section modulus about local z-axis
- N_x: Axial force
- Qy: Shear force in local y-direction
- Q_z: Shear force in local z-direction
- M_x: Torsional moment
- M_y: Bending moment about local y-axis
- M_z: Bending moment about local z-axis
- S_y, S_z : 1st area moment about y- and z- axis respectively
- t_p: profile thickness value depending on profile type

Proračun i provjera strukturnih elemenata primjenom DNV 3D-Beam programskog alata Naprezanje strukture dna uslijed dokovanja

Load case No 1 Opterećenje uslijed dokovanja

Effective Stress, values, sorted by SigEff in Descending order

Beam No.	G eff [N/mm²]	Usage	x-pos [mm]	y-pos [mm]	z-pos [mm]	σ _{Nx} [N/mm ²]	σ _{My} [N/mm ²]	σ _{Mz} [N/mm ²]	TMx [N/mm ²]	τ _{Qy} [N/mm²]	TQz [N/mm²]
1	125	0,53	0	0	1015	14	38	0	0	0	66
4	125	0,53	0	0	1015	14	38	0	0	0	66
3	80	0,34	2407,5	0	912,6	13	33	0	0	0	38
2	80	0,34	2407,5	0	912,6	13	33	0	0	0	38

Abbreviations

 $\sigma_{eff}: \qquad \text{Effective stress according to von Mises, } \sigma_{eff} = \sqrt{\left(\sigma_{Nx} + \sigma_{My} + \sigma_{Mz}\right)^2 + 3\left(|\tau_{Mx}| + |\tau_{Qy} + \tau_{Qz}|\right)^2}$

Usage: Usage factor = $\sigma_{eff} / (\sigma_{yield} / \gamma_M)$

 $\sigma_{\text{yield}} = \text{specified yield stress}$

 γ_M = material factor = 1.0 unless otherwise specified

Position of stress point where σ_{eff} is computed:

- x-pos: Distance from start of beam
- y-pos: y-coordinate on profile
- z-pos: z-coordinate on profile

Stresses at the stress point:

- σ_{Nx} : Axial stress
- $\sigma_{My}\!\!:\qquad \text{Bending stress about local y-axis}$
- σ_{Mz} : Bending stress about local z-axis
- $\tau_{Mx} : \qquad \text{Torsional stress}$
- $\tau_{Qy} : \qquad \text{Shear stress in local y-direction}$
- τ_{Qz} : Shear stress in local z-direction

Profile types for which von Mises stress is com Location of stress points.