
Comparison of Traditional Compression Methods of
Different Datasets for Cloud Storage Systems

Klen, Deni

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Rijeka, Faculty of Engineering / Sveučilište u Rijeci, Tehnički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:190:611761

Rights / Prava: Attribution 4.0 International / Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2024-05-09

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of
Engineering

https://urn.nsk.hr/urn:nbn:hr:190:611761
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://repository.riteh.uniri.hr
https://repository.riteh.uniri.hr
https://zir.nsk.hr/islandora/object/riteh:3806
https://www.unirepository.svkri.uniri.hr/islandora/object/riteh:3806
https://dabar.srce.hr/islandora/object/riteh:3806

SVEUČILIŠTE U RIJECI
TEHNIČKI FAKULTET
Diplomski studij računarstva

Diplomski rad

Usporedba metoda kompresije različitih
skupova podataka za sustave pohrane u
oblaku / Comparison of Compression

Methods of Different Datasets for Cloud
Storage Systems

Rijeka, srpanj 2023. Deni Klen
0069085590

SVEUČILIŠTE U RIJECI
TEHNIČKI FAKULTET
Diplomski studij računarstva

Diplomski rad

Usporedba metoda kompresije različitih
skupova podataka za sustave pohrane u
oblaku / Comparison of Compression

Methods of Different Datasets for Cloud
Storage Systems

Mentor: izv. prof. dr. sc. Jonatan Lerga

Rijeka, srpanj 2023. Deni Klen
0069085590

Izjava o samostalnoj izradi rada

Izjavljujem da sam samostalno izradio ovaj rad.

Rijeka, srpanj 2023. _______________
Deni Klen

iv

Zahvala

Zahvaljujem svojem mentoru izv.prof.dr.sc. Jonatanu Lergi na prenesenom znanju,
podršci, mentorstvu te poticanju samostalnog rada tijekom implementacije i izrade
diplomskog rada. Također, zahvaljujem svojoj obitelji i prijateljima te kolegama i
kolegicama na podršci, razumijevanju te strpljenju tijekom studiranja.

v

Usporedba tradicionalnih metoda kompresije
različitih skupova podataka za susatave pohrane

u oblaku

Deni Klen

1 Sažetak
Kako se naša ovisnost o elektroničkim medijima eksponencijalno povećava svake
godine s napredovanjem digitalnog doba, tako se značajno povećava i potreba
za pohranjivanjem golemih količina podataka u digitalnom dobu kojem živimo.
Stvaranjem, obrađivanjem i razmjenjivanjem sve veće količine podataka, rješenja
za pohranu postaju sve važnija. Ovo ne vrijedi samo za pohranu osobnih
datoteka, već i za tvrtke i organizacije koje trebaju pohraniti velike količine
podataka za razne svrhe, poput analize, istraživanja i razvoja. Stoga se u
ovom radu posvećujemo usporedbama metoda kompresije. Kompresija je pro-
ces smanjivanja veličine podataka. Glavni cilj je postići što veći omjer kom-
presije, dok se istovremeno zadržavaju bitne informacije podataka. Algoritmi
kompresije mogu se podijeliti u dvije vrste: (1) bez gubitaka i (2) s gubitkom.
Iako su njihova imena opisna, kod kompresije bez gubitaka podataka izlazni po-
daci moraju biti isti kao i originalni. Kompresija s gubitcima, s druge strane,
uklanja nepotrebne bitove, smanjujući veličinu datoteke. Komprimirana da-
toteka ne može se pretvoriti natrag u izvornu datoteku, zbog gubitka dijela
informacija tijekom kompresije. Uspoređena su tri načina kompresije bez gu-
bitaka te je implementiran autoenkoder kao način kompresije s gubitcima. Un-
utar metodologije pojedinačno smo objasnili svaku od metoda kompresije i nji-
hovu implementaciju: (1) Huffmanova metoda temelji se na frekvenciji ulaznih
parametara te postiže efektivnu kompresiju zamjenom originalnih znakova s
novo generiranim kodovima. Znakovi češćeg ponavljanja zamijenjeni su kraćim
kodom dok su rjeđe ponavljajući znakovi reprezentirani dužim kodom. (2)
Lempel-Ziv-Welch radi temeljem izgradnje rječnika u koji se iterativno dodaju
znakovi. Kompresija se ostvaruje smanjenjem duljine koda za česte uzorke
znakova. (3) Aritmetičko kodiranje temelji se na izračunu matematičke vjerojat-
nosti za kodiranje ulaznih simbola, svaki se simbol zamjenjuje brojčanom vrijed-
nošću koja predstavlja vjerojatnost pojavljivanja tog simbola. Također, opisan
je i autoenkoder kao vrsta neuronske mreže koji se sastoji od dva glavna dijela
enkodera i dekodera. Enkoder je odgovoran za smanjivanje dimenzije ulaznih
podataka, dok je dekoder odgovoran za vraćanje dimenzije podataka što bliže

1

originalnom. Autoenkoderi se mogu primjenjivati u različite svrhe, poput rekon-
strukcije podataka, izvlačenje značajki te generiranje novih podataka. Unutar
ovog rada autoenkoder je korišten kao kompresijski autoenkoder. U sljedećem
poglavlju opisani su korišteni setovi podataka te način evaluiranja dobivenih
rezultata. Setovi su dohvaćeni sa stranice Kaggle, te su ručno evaluirani i
pripremljeni kako bi testiranje obuhvatilo što veće razlike unutar ispitivanja.
Evaluacija je odrađena ručno usporedbom vremena potrebnih za kompresiju
analiziranih podataka, dekompresiju i potrebno vrijeme učenja i usporedbom
omjera postotka kompresije. Slijedi prikaz rezultata gdje je moguće vidjeti i
zaključiti sljedeće. Svaka metoda kompresije ima svoje prednosti i nedostatke
ovisno o setu podataka i načinu korištenja. Kod kompresije malih setova, na-
jbolji rezultat ostvaruje aritmetičko kodiranje s visokim postotkom kompresije
od 70 posto i prihvatljivim troškom računanja. Ako je potrebna velika brzina
izvođenja, ostale dvije metode pokazale su se kao bolje rješenje. LZW algoritam
pokazao se kao najbrže rješenje s nešto lošijom kompresijom, ali je stoga prim-
jenjiv u kompresiji u realnom vremenu, dok se Huffmanov algoritam pokazao
kao nisko troškovni, s dobrom kompresijom, odlično primjenjiv u datotekama
poput ZIP ili GZIP kompresije. Kod autoenkodera je prikazano da rezultati
uvelike ovise o količini treniranja i načinu implementacije autoenkodera. Pri-
likom korištenja više slojeva ili veće gustoće slojeva rezultati će sadržavati manje
gubitke i obrnuto. Zaključno, prikazano je da izbor algoritma uvelike ovisi o za-
htjevima aplikacije. Budući rad mogao bi uključivati istraživanje algoritama
čak i za veće skupove podataka, hardverske implementacije ovih algoritama ili
implementacije za različite slučajeve upotrebe.

2

Comparison of Compression Methods on Different
Data Sets for Cloud Storage Systems

Deni Klen∗, Jonatan Lerga∗†
∗ Department of Computer Engineering, Faculty of Engineering, University of Rijeka, Rijeka, Croatia

† Center for Artificial Intelligence and Cybersecurity, University of Rijeka, Rijeka, Croatia
jlerga@riteh.hr

Abstract—The paper provides a comparison of compression
methods such as Lempel-Ziv-Welch, Huffman, and arithmetic
coding applied to different large datasets. Validation is done
based on various metrics such as execution time, compression
ratio, and information loss in the data when the data differs
before and after compression. A machine learning model is
also developed based on an autoencoder model. LZW produced
results of about 30 percent median compression ratio for all
text records and a median of 70 percent for image records. In
addition, Huffman coding produced a compression rate of about
40 percent median for text data and a median of 55 percent
for image data. Finally, arithmetic coding yielded results of 70
percent median for text compression and 55 percent median
for image data compression. The time required was lowest for
LZW, followed by Huffman, and worst for arithmetic coding.
In addition, autoencoders depend heavily on the encoder and
decoder settings, with the best results obtained with a loss of up
to 0.0093 per 100 pixels for 8000000 density level setup and 0.094
for 300000 density levels setup.

I. INTRODUCTION
As our dependence on electronic media increases signifi-

cantly each year with the advancement of the digital age, so
does the need to store these vast amounts of data. As more
and more data is created, processed and exchanged digitally,
storage solutions become increasingly important. This is not
only true for personal file storage, but also for businesses and
organizations that need to store large amounts of data for var-
ious purposes such as analysis, research and development[2].
Therefore, it is crucial to invest in efficient data compression
techniques to keep up with the ever-increasing demand for data
processing and transfer. So what exactly is data compression?
Data compression is an encoding technique used to transfer
data from one representation to another, resulting in a reduc-
tion in file or data size. In other words, the number of bits
needed to represent and store the data is reduced. However,
from an information-theoretic point-of-view, the main goal is
to minimize the amount of data to be transmitted or stored
[3]. Compression algorithms can be divided into two types:
(1) lossless and (2) lossy. Although their names are more or
less self-explanatory, no data loss occurs with lossless data
compression. The compression is performed by the file with a
smaller number of bits without losing any information. Lossy
compression, on the other hand, removes the unnecessary
data, reducing the size of the file [4]. The compressed file
cannot be converted back to the original file, but rather to its
approximation, because some of the information is lost during

compression [5]. In this paper, we briefly explain the operation
of some well-known lossless compression algorithms such
as Lempel-Ziv-Welch, Huffman [6] and arithmetic coding.
Then, they are compared, based on their compression ratio,
compression and decompression speed, and the number of
errors and mistakes. Moreover, a machine learning model
based on auto-encoders is developed to use decided algorithm
to compress the data with best compression results and as
low as possible loss of data while maintaining low cost. The
rest of the paper is organized as follows: Section II discusses
traditional and modern compression algorithms, Section III
explains and collects information about the database used and
compares the algorithms based on their performance on the
database. Section V concludes the paper with a summary and
suggestions for future work.

II. METHODOLOGY
In this section, we briefly review selected compression

algorithms used in our analysis and explain our autoencoder
model.

A. Huffman compression

Huffman coding is a traditional compression algorithm
based on the frequency of characters, such that the character
with the highest frequency gets the shortest binary code. The
algorithm was first proposed by David A. Huffman in 1952 and
has since become a staple for data compression applications
[7]. It is a widely used and implemented algorithm because
it is fast, requires little computational power, and provides
good to very good compression ratios. Although the Huffman
algorithm provides good compression rates in most cases, each
symbol must be represented with at least one binary code, so
it requires more space than some other algorithms.

The Huffman coding algorithm goes through the data and
creates a frequency table. It then recursively removes the
last symbol from the table and merges it with the second
most frequent symbol until only one node remains. At the
end of the recursion, a tree is available from which an
adaptive Huffman code can be generated for the given data
set. Once the tree is built, starting with the root, the one
branch is assigned a 0 and the other branch is assigned a
1. As the tree is traversed, each symbol is assigned a code
value, that is replaced during encoding or decoding. Also,
to produce compressed output, each symbol in the original

Fig. 1. Flowchart of Huffman algorithm taken from [8]

code is replaced with the corresponding value from the tree.
To decompress the Huffman encoding, each Huffman symbol
must be replaced with the original symbol, as shown in Figure
1.

1) Implementation: To implement and compress or decom-
press files with the Huffman algorithm library dahuffman [9]
is needed Ṫo install it we use the command

p i p i n s t a l l dahuffman

Furthermore, implementing it is as followed for encoding
decoding, and training set

from dahuffman import HuffmanCodec
codec = HuffmanCodec . f r o m d a t a \

(t r a i n f i l e)
e n c o d e d d a t a = codec . encode (i n p u t f i l e)
d e c o d e d d a t a = codec . decode (e n c o d e d f i l e)

B. Lempel-Ziv-Welch compression

The algorithm Lempel–Ziv–Welch, hence the name, was
developed in 1984 by A. Lempel, J. Ziv, and T. Welch.
The algorithm is widely used especially for GIF, PDF or
TIFF formats. It uses a code table to represent a sequence
of repeating bytes, allowing good compression rates to be
achieved without data loss. Although compression rates can
generally be high, the effectiveness depends heavily on the
characteristics of the data to be compressed [10].

One of the advantages of LZW is its simplicity of im-
plementation. In addition, its performance is not hardware-
heavy, which makes it a popular choice for various use cases.
However, it should be noted that LZW is not the most efficient
compression method for short and diverse data.

Nevertheless, it is widely used due to its versatility, ease of
implementation and lossless data compression.

The algorithm works with an empty dictionary that is tra-
versed from left to right in the original data to find sequences

that are not in it. If the sequence is not in the dictionary, it
is added with a representative code. To compress the file, we
traverse the data and replace the longest repeating sequence
with its code. Decompressing the file is done by searching
backwards for the codes in the dictionary.

1) Implementation: To implement and compress or decom-
press files with the Lempel–Ziv–Welch algorithm library lzw-
python [11] is needed. Implementation is as followed

import lzw
e n c o d e d d a t a = lzw . compress (f)
d e c o d e d d a t a = lzw . decompress

(e n c o d e d f i l e)

Inside the compress function is also dictionary creation so a
separate function call is not needed.

C. Arithmetic coding

Arithmetic coding is a lossless data compression technique
that was first introduced in 1976 and has become very popular
due to its high compression ratios, lossless capabilities, and
wide range of applications. Due to its adaptability, it can
result in more compact compressed data compared to other
algorithms. Arithmetic coding is well suited for small data
sets, but requires more computational effort than the previously
mentioned methods. As with Huffman coding, arithmetic cod-
ing requires the probability distribution of the input symbols
to be known in advance [12].

The basic idea of arithmetic coding is to divide the unit
interval into subintervals, each of which represents a particular
letter. The smaller the subinterval, the more bits are needed
to distinguish it from other subintervals. The idea of replacing
each input symbol with a codeword is bypassed. Instead, a
stream of input symbols is encoded with a single fraction, a
number between 0 and 1, as compressed output[13].

1) Implementation: To implement and compress or de-
compress files with the arithmetic coding algorithm library
arithmetic-compressor[14] is needed. Implementation is as
followed

from a r i t h m e t i c c o m p r e s s o r
import AECompressor

from a r i t h m e t i c c o m p r e s s o r . models
import MultiPPM , S t a t i c M o d e l

model = MultiPPM (a l l c h a r s , models =3)
codec ae = AECompressor (model)
compressed = c o d e r . compress (d a t a)
decoded = c o d e r . decompress (da t a ,

o r i g i n a l l e n g t h)

D. Autoencoders

Autoencoders are a special type of neural network that
are trained to transfer given inputs to their outputs without
explicit supervision. As such, they have found applications in
areas such as image recognition, natural language processing,
and anomaly detection [15]. In addition, autoencoding is a
data compression algorithm in which the compression and

decompression functions are learned automatically, are lossy,
and are data specific. Data specific means that they can only
work with the data for which they have been trained. Lossy
means that the output is degraded compared to the original,
and automatically learned means that it is easy to train them.
Autoencoders have the advantage of being able to learn data
representations that capture the most important features and
patterns of the input data. This enables efficient data compres-
sion and reconstruction, making autoencoders a valuable tool
for tasks such as data dimensionality reduction, data denoising,
and generating synthetic data [16]. Their ability to adapt to the
specific characteristics of the data on which they are trained
also makes them highly flexible and applicable to a wide
range of domains and problem types. The architecture of an
autoencoder consists of the original input, the encoder, the
compressed representation, the decoder, and the reconstructed
input[17].

Fig. 2. Autoencoder shema

Encoder and decoder are parametric functions (usually
neural networks) that can be optimized to work best in our
case. The encoder’s job is to accept the original data, which
may have two or more dimensions, and create a single 1D
vector. The encoder progressively reduces the dimensionality
of the input by passing the data through a series of layers. The
decoder receives the encoded representation and is tasked with
reconstructing the original image with the highest possible
quality from a single 1D vector using the data learned from the
compressed representation. During training, the autoencoder
tries to minimize the reconstruction error. To achieve this, the
autoencoder learns important features of the data.

1) Implementation: Our autoencoder will be based on the
Keras library [17]. For successful creation of an encoder and
decoder, we need to have the same output size as the input
size, so based on the database prepared for the encoder, the
shape size will be set to 4096 (64x64) and 4 layers: a dense
layer with 500 neurons, LeakyReLU 1, another dense layer
with 4 neurons and another LeakyReLU layer.

x = t e n s o r f l o w . k e r a s . l a y e r s .
I n p u t (shape = (4 0 9 6) ,

name=” e n c o d e r i n p u t ”)

e n c o d e r d e n s e l a y e r 1 = t e n s o r f l o w . k e r a s .
l a y e r s . Dense (u n i t s =500 ,

name=” e n c o d e r d e n s e 1 ”) (x)

1leakyReLU - Leaky version of a Rectified Linear Unit. It allows a small
gradient when the unit is not active

e n c o d e r a c t i v l a y e r 1 = t e n s o r f l o w . k e r a s .
l a y e r s . LeakyReLU (name=

” e n c o d e r l e a k y r e l u 1 ”)
(e n c o d e r d e n s e l a y e r 1)

e n c o d e r d e n s e l a y e r 2 = t e n s o r f l o w . k e r a s .
l a y e r s . Dense (u n i t s =4 ,

name=” e n c o d e r d e n s e 2 ”)
(e n c o d e r a c t i v l a y e r 1)

e n c o d e r o u t p u t = t e n s o r f l o w . k e r a s .
l a y e r s . LeakyReLU
(name=” e n c o d e r o u t p u t ”)
(e n c o d e r d e n s e l a y e r 2)

The decoder must be similar to the encoder but reversed. So
first we need to take the 4-element layer and convert it to the
500-element layer and then to the full size. The finished code
looks like this.

d e c o d e r i n p u t = t e n s o r f l o w . k e r a s . l a y e r s .
I n p u t (shape = (4) ,

name=” d e c o d e r i n p u t ”)

d e c o d e r d e n s e l a y e r 1 = t e n s o r f l o w . k e r a s .
l a y e r s . Dense (u n i t s =500 ,

name=” d e c o d e r d e n s e 1 ”)
(d e c o d e r i n p u t)

d e c o d e r a c t i v l a y e r 1 = t e n s o r f l o w . k e r a s .
l a y e r s . LeakyReLU (

name=” d e c o d e r l e a k y r e l u 1 ”)
(d e c o d e r d e n s e l a y e r 1)

d e c o d e r d e n s e l a y e r 2 = t e n s o r f l o w . k e r a s .
l a y e r s . Dense (u n i t s =4096 ,

name=” d e c o d e r d e n s e 2 ”)
(d e c o d e r a c t i v l a y e r 1)

d e c o d e r o u t p u t = t e n s o r f l o w . k e r a s .
l a y e r s . LeakyReLU (

name=” d e c o d e r o u t p u t ”)
(d e c o d e r d e n s e l a y e r 2)

When both the decoder and encoder are set and ready, we need
to implement them inside the autoencoder.

a e i n p u t = t e n s o r f l o w . k e r a s . l a y e r s .
I n p u t (shape = (4 0 9 6) , name=” AE input ”)

a e e n c o d e r o u t p u t = e n c o d e r (a e i n p u t)
a e d e c o d e r o u t p u t = d e c o d e r

(a e e n c o d e r o u t p u t)

Training and prediction are performed on the data sets dis-
cussed in the next chapter, and the evaluation of the results in
the chapter after next.

E. Other methods

For the evaluation, which will be discussed later, we wrote
our own methods that go through the entire folder we want to
evaluate and take each file and run it through all the methods.
Each method then has its own timer that records the time for

the encoding and decoding process. This time does not include
the time it takes to read or write. We have also separated out
the time needed for training so that we can include that time
as well. Once all that is done, we need a function to compare
original files and compressed files. This is accomplished with
the Python library os[18].

III. CASE STUDY
In this section, we will discuss the datasets used in this work

and evaluate the thoughts and processes.

A. Data Sets

For successful implementation and evaluation of the results,
we need to prepare data sets [19]. We decided to divide
the datasets into two main groups: (1) compression datasets,
(2) autoencoder datasets. Compression datasets are used for
comparison and evaluation of lossless compression methods.
Compression methods are usually applied to different file
types, but for this work, we chose to apply and evaluate
them to text and image files (more specifically, for the .txt
and .tif formats). These formats were chosen because they
contain unformatted objects with no special styling, com-
pression methods, formatting, etc. Both datasets are divided
into three groups. The text files are divided by context type.
The first dataset contains 35 speeches by Donald Trump, the
more versatile dataset in which words and characters are not
often repeated. The second dataset contains song lyrics, in
which words and characters are simpler and are often repeated.
It contains 49 artists and all song lyrics from their music
bibliography. The last dataset is a large file of movie scripts
and books from which the movies were transcribed. Again,
each file in this group is very space intensive, ranging from
15 MB to 100 MB. The image dataset is also divided into
three groups, by size: small - up to 15 MB, medium - from
15 to 100 MB, and large data over 100 MB. The first two
datasets are based on a size score and the third on a context
score, where each image is a copy of the same original
grayscale image, but has repeating pixels at different locations
in the image so we can see how pixel placement affects time
and compression ratios. The second large dataset is used for
training and evaluating auto-encoders. This dataset is divided
into three groups. Training, testing, and validation datasets.
The training dataset accounts for 80 % of the total dataset,
while the test and validation datasets each contain 10 %.
All datasets were found and downloaded from kaggle [20].
The second dataset we used is the MINST dataset created
by Keras [21], which contains 60000 28x28 grayscale images
divided into training and test groups. We then processed them
manually and selected the most suitable options for our work.

B. Evaluation

The evaluation of our work includes the computation and
implementation of all algorithms, as well as analysis of the
results and drawing a conclusion from them. All implemented
algorithms were executed on a platform whose specification
is shown in Table 1. The results of the executed compression

methods are stored in separate Excel and CSV tables, which
are divided into data sets. To evaluate the lossless compression
methods, the following data are stored: the original file size,
the training or learning time of the encoder, the encoding
time, the decoding time, and the compression ratio for each
method. The compression ratio is the percentage difference
of the file change between two files. To evaluate the work
of auto-encoders, we want to save time for training an epoch
and evaluate the difference between the pixels in the original
image and the final image. The evaluation is done by changing
the learning parameters of the autoencoder and the layers that
form the encoder and decoder. Also, the number of epochs is
changed. We also want to evaluate the loss of the predicted
data from epoch to epoch. The results of the evaluated work
will be discussed in the next chapters.

TABLE I
SPECIFICATION OF THE PLATFORM THAT HAS BEEN USED FOR THE

EXECUTION OF THE PROGRAMS

RAM DDR4 - 16GB
Processor type Ryzen 7 5800H

Number of cores of processor 16
Processor clock speed 3.2GHz

Operating system Windows 11 Pro - 64 bit

IV. RESULTS
In this section, we review the raw results, divided and

explained among the corresponding input databases, and show
some selected results from each database that best describe the
progress.

A. .txt

First of all, by looking through all the records, we can find
and extract recurring patterns. Lempel–Ziv–Welch algorithm
had a compression reduction of about 24 to 35 percent and a
time rate that slowly increased with file size. In addition, the
Huffman algorithm’s compression size results were slightly
better, ranging from 40 to 50 percent in reduced size of
compressed data, but the combined time was about twice as
long as the LZW algorithm. Last but not least, the arithmetic
algorithm showed the best compression rates in the 70 to 75
percent range, but with a much larger time overhead than the
previous two algorithms. Now let us take a closer look at the
individual data sets:

1) First dataset: In the first data set, the results follow
the pattern described earlier. The best compression ratio is
obtained with the arithmetic coding and the best time with the
Lempel–Ziv–Welch method. If we take a closer look at the
results, we can see that the compression methods have almost
the same efficiency for the same method over the whole data,
as shown in table II. The time cost, on the other hand, is
slightly larger than it may be expected on the arithmetic side.
For the first two methods, Huffman and LZW, it increases
slowly, while the time required for arithmetic coding increases
in a much steeper curve, as shown in Table III.

TABLE II
COMPRESSION RATES DATASET 1

Original size LZW Huffman Arithmetic
14616 25.81 44.27 71.87
34486 26.98 43.86 71.99
49162 26.34 43.48 71.84
64560 26.47 43.20 71.78
78192 26.20 43.77 72.04
95916 26.47 43.39 71.88

TABLE III
COMBINED TIME NEEDED FOR COMPRESSION AND DECOMPRESSION

DATASET 1

Original size/B LZW/s Huffman/s Arithmetic/s
14616 0.016 0.020 14.806
34486 0.031 0.058 35.335
49162 0.047 0.062 51.567
64560 0.066 0.068 66.736
78192 0.081 0.103 81.177
95916 0.099 0.121 109.430

2) Second dataset: The results of the second dataset show
us that the compression ratio is consistent, but there is one
important thing to mention. Files that contain more word
repetitions and a larger number of the same characters have
a slightly better compression rate than others. This is the
expected result since all algorithms work with repeating char-
acters and patterns within the compression code. For example,
in the data shown in Table IV, it can be seen that the
penultimate file has better compression than the others, even
though it requires more memory. The time required for com-
pression and decompression follows the previous conclusions
and grows with file size, as shown in table V, but with the
same execution options as described before. As can be seen,
larger files with more repetitions in their content require more
time than files with the same file size but whose content is
more versatile. This difference is particularly evident in the
arithmetic encoding of inputs five and six, where file number
six takes less time than file five despite its larger size.

TABLE IV
COMPRESSION RATES DATASET 2

Original size LZW Huffman Arithmetic
77505 30.99 42.68 71.76
113457 30.17 42.85 71.83
143729 30.84 42.93 71.91
170292 22.73 41.63 71.68
210141 28.85 41.96 71.43
257379 27.26 45.34 72.20
322587 25.85 42.67 71.64

3) Third dataset: On the third data set, we again see that the
results are as for the previous groups. The file compression for
each of them falls within the range described, as shown in the
VI table, but the time consumption here is worth mentioning.
As we can see with arithmetic coding, the time almost doubles
for each increase in file size, while the other two methods don’t
have such a steep curve, as shown in table VII.

TABLE V
COMBINED TIME NEEDED FOR COMPRESSION AND DECOMPRESSION

DATASET 2

Original size / B LZW / s Huffman / s Arithmetic / s
77505 0.068 0.100 78.469
113457 0.105 0.145 124.278
143729 0.133 0.186 159.343
170292 0.163 0.219 192.796
210141 0.202 0.293 252.443
257379 0.240 0.323 250.621
322587 0.312 0.419 422.772

TABLE VI
COMPRESSION RATES DATASET 3

Original size LZW Huffman Arithmetic
9675152 24.83 42.34 70.80
23031328 25.00 42.39 70.63
25906340 24.94 45.63 72.50
38342761 24.54 43.51 72.27
45944328 25.17 45.10 72.17

TABLE VII
COMBINED TIME NEEDED FOR COMPRESSION AND DECOMPRESSION

DATASET 3

Original size LZW / s Huffman / s Arithmetic / s
9675152 9.581 12.867 15127.286
23031328 22.539 29.193 30520.398
25906340 26.838 31.632 38791.480
38342761 38.045 51.684 48729.519
45944328 50.155 58.953 76512.883

B. .tif

As for the image datasets, the patterns were indeed highly
dependent on the pixel groups of the particular image. For
example, images containing only grayscale pixels achieved
the best compression results with the arithmetic coding, while
the other two datasets achieved the best results with the
Huffman compression algorithm. The best results are ob-
tained with arithmetic compression in case of this dataset.
The compression ratios are given individually since we do
not have a general pattern, while for the temporal results
Lempel–Ziv–Welch is far better than the other two algorithms,
followed by Huffman, and the worst result for time consump-
tion is arithmetic coding. Let us now consider the individual
results.

1) First dataset: The first dataset consisted of colour im-
ages up to 15 MB, and the size results were as follows: The
best compression rate is achieved with Huffman in the range of
80 to 90 percent, followed by Lempel–Ziv–Welch ranging in
the same range but with lower rates, and finally arithmetic
coding in the range of 50 to 51 percent. As can be seen
from the VIII and IX tables, the best time for compression
and decompression is by far on the side of LZW. Moreover,
we can conclude from the results that the best algorithm
for this dataset was Lempel–Ziv–Welch, although the overall
compression ratio is lower than Huffman’s due to better time
consumption. It is also worth noting that the compression rate
did not change dramatically over this period, but we could see

TABLE VIII
COMPRESSION RATES IMAGE DATASET 1

Original size LZW Huffman Arithmetic
6356928 90.18 91.22 50.45
7733184 88.03 89.29 50.35
8847296 86.27 87.74 50.30
9633729 85.07 86.64 50.25
10354688 83.94 85.63 50.22
11042816 82.87 84.68 50.21

a pattern where the compression decreases slightly as the file
size increases, as shown in Table IX.

TABLE IX
COMBINED TIME NEEDED FOR COMPRESSION AND DECOMPRESSION

IMAGE DATASET 2

Original size LZW / s Huffman / s Arithmetic / s
6356928 8.610 13.123 464.758
7733184 10.595 15.122 576.795
8847296 11.929 17.947 648.519
9633729 13.354 19.494 709.357
10354688 14.381 20.957 757.654
11042816 15.450 22.986 816.332

2) Second dataset: The second dataset consisted of color
images ranging in size from 15 MB to 40 MB and yielded
the following results: The highest compression rates were
obtained with Huffman, although not as consistently. While
Huffman and LZW both ranged from 25 MB to 65 MB, image
compression was highly context dependent, while arithmetic
coding had a consistent rate of about 50 percent, as seen
in Table X. Considering the time required to compress and

TABLE X
COMPRESSION RATES IMAGE DATASET 2

Original size LZW Huffman Arithmetic
17945404 58.40 62.88 50.24
18405661 57.32 61.94 50.27
20163380 53.33 58.42 50.39
25500362 40.94 47.59 50.58
35719284 17.58 27.51 51.22

decompress the data, the Lempel–Ziv–Welch algorithm was
also best in this case. Although the compression ratio is
slightly lower than Huffman’s, it is much faster, as can be
seen in Table XI.

TABLE XI
COMBINED TIME NEEDED FOR COMPRESSION AND DECOMPRESSION

IMAGE DATASET 2

Original size LZW / s Huffman / s Arithmetic /s
17945404 25.120 36.907 1296.596
18405661 24.639 36.028 1325.421
20163380 28.896 41.286 1445.024
25500362 35.510 52.115 1885.728
35719284 50.906 72.136 2533.473

3) Thrid dataset: The third dataset was the largest among
them and contained 10 grayscale files created from the original
grayscale image, but with different pixels. The goal of this

dataset was to find out if the repetition of pixels could improve
the compression ratio of images. The first image had the
most pixel variations and then slowly decreased. Taking this
into account, we can see the following results. The best
compression rates can be seen for arithmetic coding with about
77 percent, followed by Lempel–Ziv–Welch with compression
rates of about 73 percent and lasty Huffman with about 54
percent, as can be seen in the table XII. Looking at time,
LZW has the best time consumption of all three algorithms,
followed by Huffman and lastly arithmetic coding, as seen in
table XIII.

TABLE XII
COMPRESSION RATES IMAGE DATASET 3

Original file size LZW Huffman Arithmetic
149334502 73.66 53.56 77.24
149334502 73.60 53.58 77.25
149334502 73.38 53.59 77.25
149334502 73.37 53.60 77.26
149334502 73.47 53.87 77.40
149334502 73.73 53.93 77.43
149334502 73.89 54.06 77.50
149334502 73.91 53.99 77.47
149334502 73.65 53.79 77.37
149334502 73.41 53.71 77.31

TABLE XIII
COMBINED TIME NEEDED FOR COMPRESSION AND DECOMPRESSION

IMAGE DATASET 3

Original file size LZW / s Huffman / s Arithmetic / s
149334502 74.318 172.287 10178.523
149334502 67.645 172.536 10134.959
149334502 63.539 155.998 12190.427
149334502 65.051 164.515 9316.795
149334502 64.110 162.338 9545.117
149334502 63.832 161.969 9753.392
149334502 65.085 165.141 13631.715
149334502 70.668 168.742 9803.332
149334502 74.851 177.857 9694.130
149334502 66.087 162.031 10059.035

C. Autoencoder

Autoencoder compression was evaluated with two datasets:
(1) the MNIST Keras dataset and (2) our own prepared dataset
containing the 64 x 64 color images. Both datasets were
divided into a training dataset and a test dataset. Then, the
performance of the coders and decoders was trained and
evaluated. The coding model consisted of four layers whose
density, quality and speed of compression were evaluated.
When a higher density was used, the results were closer to the
original. It can also be seen that when 200 and 2 density layers
were used, there were 157402 trainable parameters compared
to the 402520 trainable parameters in Figure 3 for parameters
500 and 20. The decoder is a reciprocal representation of the
encoder model and consists of four equal layers, but in reverse
order, so that we can convert a low-dimensional output into
a high-dimensional one, where the density layer must be the
same as the encoding layer. According to the two cases above,

Fig. 3. Autoencoder model

the decoder has 158184 transferable parameters for the first
case and 403284 trainable parameters for the second case.
Merging the encoder and decoder results in an autoencoder
with just over 300000 trainable parameters for the first case
and over 800000 parameters for the second case. We proceed
with training the data sets. To train the autoencoder, an epoch
number is needed. The higher the epoch number, the lower
the image loss. An epoch number of 10 leads to completely
unpredictable results because not enough training was done,
while a higher epoch number leads to results that are closer to
the original image. Now for the numbers. For density layers
500 and 20, we evaluated the results of 3 epochs: (1) epoch
30, where the final prediction was a loss of 0.0102 and an
image difference of 0.0093; (2) epoch 100, where the initial
loss was 0.0285, the final loss was 0.089, and the actual loss
was 0.0083; (3) epoch 250, where the initial loss was predicted
to be 0.0293. Examination of the results shows that the loss
prediction for the layer slows down from 200 epochs and
decreases only by 0.0001 from 200 to 250 epochs. Although
the best compression and decompression results are obtained
with this high number of epochs, as can be seen in Figure
4. The training time for each epoch at this setting is 3 to 4
seconds, and the time needed to compress and decompress
the entire image set is around 2 seconds per image. Below we
tested with density layers 200 and 2 with the same 3 epochs
and the results were as expected, so we will focus only on
epoch 250 to describe it in detail. The compression loss was
5 times greater than with the higher density layers, as you can
see in the image 5.

For our own dataset, the results were similar. Although the
start and target planes were 64x64 and 4096 pixels respec-
tively, we were able to use an even higher density. This is
exactly what we were aiming for. The learning step from one
epoch to the next was about 0.0003, and the time required for
one epoch was about 10 seconds. The actual compression loss
was about 0.094 and the calculated one was about 0.087. In
summary, the preference of our autoencoder depends heavily
on what data and what types of layers and algorithms are used
to encode and decode the data. More layers do not always

Fig. 4. Autoencoder results for higher density

Fig. 5. Autoencoder results for lower density

mean a better result. Although compression of about 3 to 4
percent with autoencoders is not as valuable as other types
of compression, it can be useful and perhaps improved in the
future.

V. DISCUSSION

In this work, we aimed to test and compare standard lossless
compression methods such as Huffman coding, arithmetic
coding, and Lempel–Ziv–Welch coding, and to implement an
autoencoder method and evaluate its results. After analyzing
the compression rates and speed, including: (1) training time,
if necessary, (2) encoding time, and (3) decoding time. Each
of the algorithms has its advantages and disadvantages and we
will discuss each of them in separate sections.

a) text & images: Arithmetic coding has been shown
to give the best result for both text and image datasets for
different sizes as shown in pictures 6 and 7, but this per-
formance is not without cost. For some large files, arithmetic

Fig. 6. Compression rate for images

Fig. 7. Compression rate for text

coding takes up to 100 times longer than other two algorithms,
and for images, it can take even longer, and for that reason
results for arithmetic coding time shown on plots are divided
by 100. This means that the high compression ratio of the

Fig. 8. Encoding times for images

arithmetic algorithm is not free. Considering this, arithmetic
coding is well suited for small jobs where compression is more
important than execution speed, or for jobs running on small
microcontrollers where the data is no larger than 100 KB but
compression is still important. Arithmetic coding is followed
by Huffman coding, which offers the best of both worlds. It
keeps time and processing power low while providing medium
to high compression ratios as shown in images 8 and 9. This
makes it the best overall candidate and is therefore mostly used
in compression programs such as 7zip or in dictionary-based
compression. Last but not least, we have Lempel–Ziv–Welch

Fig. 9. Decoding times for images

with its high speed shown at pictures 10 and 11 and sufficient
compression ratios that make it suitable for compression where
data input speed is important. LZW is used, for example, in
fax transmission where the speed of encoding and decoding is
important while saving space in the transmission bandwidth.

Fig. 10. Encoding times for text

Fig. 11. Decoding times for text

b) Autoencoder: Autoencoders, by their nature, can be
used in a variety of domains, such as anomaly detection, noise
reduction, image restoration, feature learning, and generative
modeling. In this work, however, the focus is on image
compression. They are used for lossy image compression. The
evaluation of the results shows that they have significantly
reduced the dimensionality of the image, which leads to
compression. The good execution time and fast learning time
make them useful in some cases. In addition, the compu-

tational efficiency of the autoencoder was remarkable as it
provided fast encoding and decoding of the images. This
makes it a suitable approach for real-time image compression
applications where both storage space and processing time
are critical factors. Although there are already compression
techniques that have a higher compression ratio with less data
loss, autoencoders should be used in some other cases for the
time being.

VI. CONCLUSION

In conclusion, this work compared three lossless compres-
sion algorithms: (1) Lempel–Ziv–Welch, Huffman coding, and
arithmetic coding, and the implementation of a lossy autoen-
coder whose purpose is data compression. LZW compres-
sion provides a good balance between time and compression
rates, making it a widely used algorithm. Huffman coding
provides good compression rates with sufficient computation
time. Arithmetic coding achieves the highest compression rates
in most cases but with the slowest times. To add to what
has already been said, all three compression methods are
commonly used, and none is generally better than the other
for all datasets. Each method has proven its superiority in
some cases. For real-time data compression, LZW is best,
while for compression where time is not an issue, arithmetic
coding is the best choice. For the compression of images and
other media, Huffman has shown that excellent compression
results can be achieved with a slightly longer execution time
and slightly higher computational cost, which is why it is
used in programs such as ZIP, GZIP, etc. In addition to these
traditional compression methods, this study also introduced
the concept of autoencoders. Autoencoders are neural network
based models that provide a different approach to compression.
They are applicable in scenarios where unsupervised learning,
dimensionality reduction, and generative modelling are benefi-
cial. Overall, this work provided insight into the differences in
using different compression methods. The choice of algorithm
depends heavily on the requirements of the application. Fu-
ture work could include exploring algorithms even for larger
datasets, hardware implementations of these algorithms, or
implementing different use cases of autoencoders.

ACKNOWLEDGMENT

This work was supported by the EU Horizon 2020 project
INNO2MARE (”Strengthening the capacity for excellence of

Slovenian and Croatian innovation ecosystems to support the
digital and green transitions of maritime regions”) under the
number 101087348, and University of Rijeka projects uniri-
tehnic-18-17 and uniri-tehnic-18-15.

REFERENCES

[1] Modern lossless compression techniques: Review, comparison and
analysis — ieeexplore.ieee.org. https://ieeexplore.ieee.org/abstract/
document/8117850. [Accessed 30-Jun-2023].

[2] Senthil Shanmugasundaram and Robert Lourdusamy. A comparative
study of text compression algorithms. International Journal of Wisdom
Based Computing, 1(3):68–76, 2011.

[3] Debra A. Lelewer and Daniel S. Hirschberg. Data compression. ACM
Comput. Surv., 19(3):261–296, sep 1987.

[4] SR Kodituwakku and US Amarasinghe. Comparison of lossless data
compression algorithms for text data. Indian journal of computer science
and engineering, 1(4):416–425, 2010.

[5] Apoorv Gupta, Aman Bansal, and Vidhi Khanduja. Modern lossless
compression techniques: Review, comparison and analysis. In 2017
Second International Conference on Electrical, Computer and Commu-
nication Technologies (ICECCT), pages 1–8, 2017.

[6] David Salomon and Giovanni Motta. Data Compression: The Complete
Reference. Springer Science & Business Media, 2007.

[7] Donald E Knuth. Dynamic huffman coding. Journal of algorithms,
6(2):163–180, 1985.

[8] Alistair Moffat. Huffman coding. ACM Computing Surveys (CSUR),
52(4):1–35, 2019.

[9] dahuffman — pypi.org. https://pypi.org/project/dahuffman/. [Accessed
30-Jun-2023].

[10] Mark R Nelson. Lzw data compression. Dr. Dobb’s Journal, 14(10):29–
36, 1989.

[11] GitHub - joeatwork/python-lzw: LZW compression in pure python —
github.com. https://github.com/joeatwork/python-lzw. [Accessed 24-
Jun-2023].

[12] Jorma Rissanen and Glen G Langdon. Arithmetic coding. IBM Journal
of research and development, 23(2):149–162, 1979.

[13] Khalid Sayood. Chapter 4 - arithmetic coding. In Khalid Sayood,
editor, Introduction to Data Compression (Fifth Edition), The Morgan
Kaufmann Series in Multimedia Information and Systems, pages 89–
130. Morgan Kaufmann, fifth edition edition, 2018.

[14] arithmetic-compressor — pypi.org. https://pypi.org/project/arithmetic-
compressor/. [Accessed 24-Jun-2023].

[15] Introduction to autoencoders. — jeremyjordan.me. https:
//www.jeremyjordan.me/autoencoders/. [Accessed 23-Jun-2023].

[16] Joseph Rocca. Understanding Variational Autoencoders (VAEs) —
towardsdatascience.com. https://towardsdatascience.com/understanding-
variational-autoencoders-vaes-f70510919f73. [Accessed 11-Jun-2023].

[17] Building Autoencoders in Keras — blog.keras.io. https://blog.keras.io/
building-autoencoders-in-keras.html. [Accessed 24-Jun-2023].

[18] os — Miscellaneous operating system interfaces — docs.python.org.
https://docs.python.org/3/library/os.html. [Accessed 22-Jun-2023].

[19] Preparing Your Dataset for Machine Learning: 10 Basic Techniques
That Make Your Data Better — altexsoft.com. [Accessed 15-Jun-2023].

[20] Kaggle: Your Machine Learning and Data Science Community —
kaggle.com. https://www.kaggle.com/. [Accessed 24-Jun-2023].

[21] Keras Team. Keras documentation: MNIST digits classification dataset
— keras.io. https://keras.io/api/datasets/mnist/. [Accessed 10-Jun-2023].

https://ieeexplore.ieee.org/abstract/document/8117850
https://ieeexplore.ieee.org/abstract/document/8117850
https://pypi.org/project/dahuffman/
https://github.com/joeatwork/python-lzw
https://pypi.org/project/arithmetic-compressor/
https://pypi.org/project/arithmetic-compressor/
https://www.jeremyjordan.me/autoencoders/
https://www.jeremyjordan.me/autoencoders/
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://docs.python.org/3/library/os.html
https://www.kaggle.com/
https://keras.io/api/datasets/mnist/

	INTRODUCTION
	METHODOLOGY
	Huffman compression
	Implementation

	Lempel-Ziv-Welch compression
	Implementation

	Arithmetic coding
	Implementation

	Autoencoders
	Implementation

	Other methods

	CASE STUDY
	Data Sets
	Evaluation

	RESULTS
	.txt
	First dataset
	Second dataset
	Third dataset

	.tif
	First dataset
	Second dataset
	Thrid dataset

	Autoencoder

	DISCUSSION
	Conclusion
	References

