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1. Introduction 

This thesis addresses the numerical modeling and optimization of self-supporting steel 

structures used for belt conveyors in ore transportation. The central aim is to develop a Python-

based tool that seamlessly integrates with SAP2000 for finite element analysis. This tool 

automates the process of model definition, encompassing constraints, loads, and load 

combinations, through Python-driven commands. 

The tool's user interface, designed to meet company requirements, operates via Excel. Users 

input all necessary model parameters and initialize the tool, which can be configured to either 

perform a structural analysis or proceed with further optimization. 

The automation of model definition and analysis substantially reduces the time required by 

engineers, thereby enhancing efficiency, while the optimization process is geared towards 

identifying cost-effective solutions that adhere to all specified constraints and industry 

standards. 

The integration of advanced software tools with engineering methodologies addresses complex 

challenges in mining operations, leading to more reliable and cost-effective outcomes. The 

standardization capabilities of this tool also contribute to improved safety, reduced material 

waste, and enhanced sustainability, marking a significant advancement toward the industry's 

economic and environmental objectives. 
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2. Overview of components and methodologies 

This chapter provides a comprehensive overview of the essential components and 

methodologies involved in the numerical modeling and optimization of self-supporting steel 

structures. It begins with a detailed explanation of belt conveyors, followed by an introduction 

to the Finite Element Method (FEM) as a crucial tool for analyzing the structural integrity of 

the system. The chapter then explores the use of the genetic algorithm (GA) for optimizing the 

design. Finally, the chapter explores how parametrization is used to integrate all the previously 

discussed segments of the project. 

2.1. Belt conveyors 

Belt conveyors are continuous material handling systems characterized by belts reinforced with 

synthetic fabrics or steel cables, covered by rubber or synthetic materials. 

These belts are supported by either straight or trough-shaped idlers [1]. Primarily used for 

onsite material transportation, belt conveyors ensure a continuous flow of material between 

operations without additional delays caused by loading or unloading. As the annual volume of 

material increases, the cost per ton of conveyor usage decreases, making them a cost-effective 

solution for material handling [2]. 

 

Figure 2.1. Components of a belt conveyor 

In a standard belt conveyor system, material is loaded onto the belt at the feeding point using 

a feed chute, ensuring even distribution and minimal spillage. The material is then conveyed 

along the top run of the belt, which is supported by corresponding idlers. As the belt progresses, 
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it transitions from a flat to a trough configuration to accommodate bulk material, before 

returning to a flat profile at the discharge point, where the material exits the system. The head 

pulley drives the belt and maintains the required tension, while the tail pulley assists in 

redirecting the belt and applying additional tension.  

There are countless types of belt conveyors based on various factors. The design process begins 

with an analysis of the service requirements and the identification of the principal data 

characterizing the specific application. Workflow is illustrated in the figure below: 

 

Figure 2.2. Typical design workflow for a belt conveyor system [1] 

Belt conveyors are capable of transporting a wide range of materials, each with distinct 

properties that influence conveyor design [2]. One important factor is the angle of repose, 𝛽R 

(Figure 2.3a), which is the acute angle that the surface of a normal, freely formed pile of 

material makes with the horizontal. Another critical factor is the angle of surcharge, 𝛽S (Figure 

2.3b), which refers to the angle that the surface of the material makes relative to the horizontal 

while the material is resting on a moving conveyor belt. 

 

Figure 2.3. (a) Angle of repose in belt conveyor system and (b) Angle of surcharge in belt 

conveyor system 
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The flowability is determined by various material characteristics, including the size and shape 

of fine particles and lumps, material density, roughness or smoothness of the surface of the 

material particles, the proportion of fines and lumps, moisture content, and potential 

mechanical, chemical, or temperature effects of the material [1, 2]. 

Once the material to be conveyed is identified, along with its properties, the flow rate is 

calculated. Each conveyor is designed to handle a specific quantity of material within a given 

time frame, expressed as mass flow in tons per hour:  

 𝑄m [t/h] (2.1) 

Using the bulk density of the material 𝜌 in t/𝑚3, the mass flow can be converted in volume 

flow 𝑄v as follows:  

 𝑄v =
𝑄m

𝜌
 [m3/h]  (2.2) 

Belt conveyors generally have a relatively low flight load and can be adapted to various routing 

configurations. This flexibility greatly influences the modeling of the steel structure supporting 

the conveyor. The travel path (Figure 2.4) can be adjusted with extended route lengths, allowing 

for the use of convex and concave vertical curves to avoid straight line constraint. This enables 

the conveyor to be aligned with the most economical profile alignment. 

 

Figure 2.4. Belt conveyor routings [2] 

The primary goal in selecting the type of belt conveyor is to ensure smooth and faultless 

transport of material without any roll-off or spillage. This guarantees a reliable flow of material. 

The critical conveying gradient angle, 𝛿CR, typically falls between 15° and 20°. When 

exceeding these critical values, specialized conveyors are required instead of standard belt 

conveyors without surface partitioning. 
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Figure 2.5. Standard belt conveyor 

Belt widths, denoted as B in Figure 2.6, are selected based on applicable standards, such as 

those set by the Storage Equipment Manufacturers Association (SEMA), the International 

Organization for Standardization (ISO), the Deutsches Institut für Normung (DIN), or the 

Conveyor Equipment Manufacturers Association (CEMA). These standards provide guidance 

for the design process. The appropriate width is determined by factors like the size of lumps, 

the ratio of lumps to fines, and the material's angle of repose [1, 2].  

Belt speed depends largely on the characteristics of the material being conveyed, the desired 

capacity, and the belt tension. For powdery materials, lower speeds are necessary to minimize 

dusting, particularly at loading and discharge points. Fragile materials also require reduced 

speeds to prevent degradation as the material moves over the idlers. Heavy, sharp-edged 

materials should be transported at moderate speeds.  

Any difference in the forward velocity between the material being loaded and the receiving 

conveyor belt must be minimized to avoid turbulence. Additionally, vertical velocity during 

loading must be absorbed to prevent further disturbances in the material flow.  

 

Figure 2.6. Section view of a belt conveyor [1] 
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The conveyor’s belt is subjected to significant strain due to the impact of the material handled 

at the feeding point of the belt. This impact is quantified by the drop energy 𝐸f, calculated as: 

 𝐸f = 𝑚k ∙ 𝐾f ∙ 𝑔 ∙ ℎf [Nm]  (2.3) 

where, 𝑚k is the mass of a cubic lump with edge length k, 𝐾f is the shape factor for lumps of 

different shapes, ℎf  is the height of free fall and g is the gravitational constant. All these values 

are selected from defined tables. 

The belt conveyor support system is made of idlers designed to match the working conditions 

and required conveying capacity, with standardized lengths and diameters. Depending on the 

type and bulkiness of the material being conveyed, either a flat belt (Figure 2.7a) or a troughed 

belt is selected. Troughing, depending on the material demands, speed, and capacity, can vary 

between V-trough (Figure 2.7b), 3-part (Figure 2.7c), or 5-part configurations (Figure 2.7d). 

 

Figure 2.7. Flat and troughed belt configurations for idler systems: (a) Flat belt, (b) V-

trough, (c) 3-part trough, (d) 5-part trough 

Based on the selected troughing design and the previously selected belt width B, the standard 

idler tube length l is determined from the corresponding tables. Next, the idler diameter 𝐷R is 

selected, ensuring that 𝐷R  is chosen to avoid an excessively high number of revolutions 

resulting from the belt speed. The idler speed is then calculated as: 

 𝑛R =
𝑣

𝜋
∙
60

𝐷R
 [min−1]  (2.4) 

Finally, the conveying capacity can be determined, which depends on the filling cross-section 

area A (as shown in Figure 2.6) and the conveying speed v. The theoretical volume capacity is 

calculated as: 

 𝑄v,th = 𝐴 ∙ 𝑣 ∙ 3600 [
𝑚3

𝑠
] (2.5) 
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Based on the previously selected configuration of the support system, the calculation of the 

filling cross-section area A can vary according to the rule shown in Eq.2.6. The corresponding 

types of cross-sections are illustrated in Figure 2.9:  

 

Figure 2.8. Types of cross-sections for different belt conveyor configurations: (a) Flat 

configuration, (b) Square trough, (c) V-trough, (d) 3-part trough, (e) 5-part trough 

 

{
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𝑏2
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2
∙ sin λ + (

𝑙 + (𝑏 − 𝑙) ∙ cos λ

2
)

2

∙ tan β , 3 − 𝑝𝑎𝑟𝑡

𝐴 = (𝑙1 + 𝑙2 ∙ cos λ1) ∙ 𝑙2 ∙ sin λ1 , 3 − 𝑝𝑎𝑟𝑡

+ [𝑙1 + 2𝑙2 ∙ cos λ1 + (
𝑏 − 𝑙1 − 2𝑙2

2
) ∙ cos λ2] ∙

(𝑏 − 𝑙1 − 2𝑙2) ∙ sin λ2
2

            , 𝑑

+ [
𝑙1
2
+ 𝑙2 ∙ cos λ1 + (

𝑏 − 𝑙1 − 2𝑙2
2

) ∙ cos λ2] ∙ tan β , 5 − 𝑝𝑎𝑟𝑡

(2.6) 

Where b is the effective belt width, calculated using the rule demonstrated in Eq.2.7.  

 𝑏 = {
0.9 ∙ 𝐵 − 50, 𝐵 ≤ 2000

𝐵 − 250, 𝐵 > 2000
 (2.7) 

All dimensions in the Eq.2.7 are in millimeters. 

The theoretical volume capacity 𝑄v,th is multiplied by the bulk density 𝜌 to obtain the 

theoretical capacity 𝑄m,th: 
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 𝑄m,th = 𝑄v,th ∙ 𝜌 [
t

h
] (2.8) 

Given a defined feeding rate 𝜌1, the effective conveying capacity is: 

 𝑄v,eff = 𝐴 ∙ 𝑣 ∙ 3600 [
m3

s
]  (2.9) 

or 

 𝑄m,eff = 𝑄v,eff ∙ 𝜌1  [
t

h
]  (2.10) 

2.2. Finite element method 

The finite element method (FEM) is a numerical method used for solving engineering and 

mathematical physics problems by providing approximate solutions through the discretization 

of a continuum into a finite number of smaller, interconnected units known as finite elements 

[3].   

Each finite element in the discretized continuum is interconnected with others either directly 

or indirectly through shared interfaces such as nodes, boundary lines, or surfaces. By applying 

known stress-strain relationships for the material, the behavior at each node is calculated based 

on the properties of the surrounding elements. The overall system is solved by combining the 

equations derived from each node. 

There are various types of elements, including one-, two-, and three-dimensional elements. 

This thesis specifically addresses one-dimensional elements, commonly referred to as line 

elements. Line elements are represented by line segments connecting two nodes with a cross-

sectional area ACS. Figure 2.9 illustrates typical line element with cross-sectional area: Figure 

2.9a shows a line element E1 created by connecting two nodes, ID1 and ID2, while Figure 2.9b 

displays the cross-sectional area of corresponding line element.  
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Figure 2.9. Line element with cross-sectional area in finite element analysis: (a) Line element 

E1 with nodes ID1 and ID2, (b) Cross-sectional area of the line element 

The finite element method involves two primary approaches: the force method and the 

displacement (or stiffness) method. The displacement method focuses on determining the 

displacements of the nodes as the unknowns. This problem is formulated through a matrix 

equation:  

 

{
 
 

 
 
𝑓1
𝑓2
𝑓3
⋮
𝑓n}
 
 

 
 

=

[
 
 
 
 
𝑘11 𝑘12 𝑘13 … 𝑘1n
𝑘21 𝑘22 𝑘23 … 𝑘2n
𝑘31 𝑘32 𝑘33 … 𝑘3n
⋮ ⬚ ⬚ ⬚ ⋮
𝑘n1 ⬚ ⬚ … 𝑘nn]

 
 
 
 

{
 
 

 
 
𝑑1
𝑑2
𝑑
⋮
𝑑n}
 
 

 
 

  (2.11) 

This can be compactly written as: 

 {𝑓} = [𝑘]{𝑑}  (2.12) 

where {𝑓} is the vector of element nodal forces, [𝑘] is the element stiffness matrix and {𝑑} is 

the vector of unknown generalized displacements. The individual nodal equilibrium equations 

for each element are then assembled into global nodal equilibrium equations: 

 {𝐹} = [𝐾]{𝑑}  (2.13) 

Here, {𝐹} represents the vector of global nodal forces, [𝐾] is the global stiffness matrix for the 

structure, and {𝑑} is the vector of known and unknown structure nodal degrees of freedom or 

generalized displacements. The determinant of the global stiffness matrix [𝐾] is initially 

singular, with a determinant of zero. To resolve this, appropriate boundary conditions must be 

applied, ensuring that [𝐾] becomes non-singular and thus solvable matrix. 



10 

This thesis focuses on a structure composed of n different beams arranged in three-dimensional 

space, where each beam can undergo displacements and rotations along all three axes. 

Therefore, the behavior of each beam must be described both in its local coordinate system and 

in the global coordinate system representing the entire structure.  

A transformation matrix is used to obtain the general stiffness matrix for a beam element 

positioned in three-dimensional space. For the nth beam, as shown in Figure 2.10., the 

coordinates of  𝐼𝐷1 are 𝑥1, 𝑦1 and 𝑧1, while the coordinates of 𝐼𝐷2 are 𝑥2, 𝑦2 and 𝑧2. The angles 

𝜃x, 𝜃y and 𝜃z are measured from the global x, y and z axis, respectively, to the local 𝑥̂ axis, 

which is directed along the beam from node 𝐼𝐷1 to node 𝐼𝐷2.   

The main target of the transformation is to solve the following equation: 

 𝒅̂ = 𝑻∗𝒅 (2.14) 

where 𝑻∗ represents the transformation matrix, which has to be defined. The transformation 

matrix enables the local displacement matrix 𝒅̂ to be expressed in terms of the displacement 

components in the global coordinate system. 

To solve this equation and determine the required transformation, the derivation of 𝑻∗ begins 

by expressing 𝒅̂ = 𝒅 in three dimensions as: 

 𝑑̂x𝒊̂ + 𝑑̂x𝒋̂ + 𝑑̂x𝒌̂ = 𝑑x𝒊 + 𝑑x𝒋 + 𝑑x𝒌 (2.15) 

where 𝒊̂, 𝒋,̂ 𝒌̂ are unit vectors associated with the local 𝑥̂, 𝑦̂, 𝑧̂ axes, respectively, and i, j, k are 

the unit vectors associated with the global x, y, z axes. Taking the dot product of Eq.2.15 with 

𝒊̂: 

 𝑑̂x + 0 + 0 = 𝑑x(𝒊̂ ∙ 𝒊) + 𝑑x(𝒊̂ ∙ 𝒋) + 𝑑x(𝒊̂ ∙ 𝒌) (2.16) 

and using the definition of the dot product: 

 𝒊̂ ∙ 𝒊 =
𝑥2−𝑥1

𝐿E1
= 𝐶x (2.17) 

 𝒊̂ ∙ 𝒋 =
𝑦2−𝑦1

𝐿E1
= 𝐶y (2.18) 

 𝒊̂ ∙ 𝒌 =
𝑧2−𝑧1

𝐿E1
= 𝐶z (2.19) 

where 𝐿E1 represents the total length of element E1, calculated as 𝐿E1 =

 √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 and 𝐶x, 𝐶y, and 𝐶z represent the projections of 𝒊̂ on i, 
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j, and k, respectively, calculated as 𝐶x = cos(𝜃x), 𝐶y = cos(𝜃y) and 𝐶z = cos(𝜃z). Now, the 

𝑑̂x can be expressed as: 

 𝑑̂x = 𝐶x𝑑x + 𝐶y𝑑y + 𝐶z𝑑z (2.20) 

For a vector in space directed along the 𝑥̂ axis, Eq.2.20 gives the components of that vector in 

the global x, y, and z directions. Using such approach, the transformation equation 𝒅̂ = 𝑻∗𝒅 

can be written explicitly as: 

 {
𝑑̂1x
𝑑̂2x

} = [
𝐶x 𝐶y 𝐶z 0 0 0

0 0 0 𝐶x 𝐶y 𝐶z
]

{
  
 

  
 
𝑑1x
𝑑1y
𝑑1z
𝑑2x
𝑑2y
𝑑2z}

  
 

  
 

 (2.21) 

Thus, the transformation matrix 𝑻∗ is: 

 𝑻∗ = [
𝐶x 𝐶y 𝐶z 0 0 0

0 0 0 𝐶x 𝐶y 𝐶z
] (2.22) 

The global stiffness matrix for an element, referred to the global axes, is given by:  

 𝒌 = 𝑻T𝒌̂ 𝑻  (2.23) 

For this case, T is replaced by 𝑻∗, and the global stiffness matrix 𝒌 is obtained using the 

equation 𝒌 = (𝑻∗)T𝒌̂ 𝑻∗ as follows: 

 𝒌 =

[
 
 
 
 
 
𝐶x 0
𝐶y 0

𝐶z 0
0 𝐶x
0 𝐶y
0 𝐶z]

 
 
 
 
 

𝐴CS𝐸

𝐿E1
[
1 −1
1 1

] [
𝐶x 𝐶y 𝐶z 0 0 0

0 0 0 𝐶x 𝐶y 𝐶z
] (2.24) 

When calculated, the global coordinate element stiffness matrix 𝒌 is equal to: 

 𝒌 =
𝐴CS𝐸

𝐿E1

[
 
 
 
 
 
 
 
𝐶x
2 𝐶x𝐶y 𝐶x𝐶z −𝐶x

2 −𝐶x𝐶y −𝐶x𝐶z

⬚ 𝐶y
2 𝐶y𝐶z −𝐶x𝐶y −𝐶y

2 −𝐶y𝐶z

⬚ ⬚ 𝐶z
2 −𝐶x𝐶z −𝐶y𝐶z 0

⬚ ⬚ ⬚ 𝐶x
2 𝐶x𝐶y 𝐶x

⬚ ⬚ ⬚ ⬚ 𝐶y
2 𝐶y

𝑆𝑦𝑚𝑚. ⬚ ⬚ ⬚ ⬚ 𝐶z
2 ]
 
 
 
 
 
 
 

 (2.25) 
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The final structure is composed of N different beams (n = 1, 2, …, N), where nth beam is 

defined by two adjacent points i and j. For the nth beam, the stiffness matrix 𝒌n is calculated 

using the beam’s length 𝐿n, modulus of elasticity 𝐸n, and cross-sectional area 𝐴CS
n , as well as 

the positions of the ith and jth points. Depending on the boundary conidiations, certain elements 

of the displacement vector 𝒅n may be set to zero. 

Once the stiffness matrix 𝒌n for the last element (n = N) is calculated, the total stiffness matrix 

[𝐾] for the structure is assembled, along with the nodal force matrix {𝐹}, as follows: 

 [𝐾] = ∑ 𝒌nN
n=1  (2.26) 

 {𝐹} = ∑ 𝒇nN
n=1  (2.27) 

By solving the matrix equation {𝐹} = [𝐾]{𝑑}, the displacements for the structure are 

determined. Once the displacements are known, the stress for each element n, described by the 

ith and jth nodes, is calculated using: 

 𝝈n =
𝐸n

𝐿n
[−𝐶x

n −𝐶y
n −𝐶z

n 𝐶x
n 𝐶y

n 𝐶z
n]

{
  
 

  
 
𝑑ix
𝑑iy
𝑑iz
𝑑jx
𝑑jy
𝑑jz}
  
 

  
 

 (2.28) 

Once Eq.2.28 is solved, the stress 𝜎n for the nth element is calculated.  

2.3. Optimization algorithm 

An optimization algorithm is used to incrementally improve the design until further 

improvement is not possible, or until the budgeted time or cost is reached. A generalized 

optimization problem contains multiple components, starting with the definition of the 

objective function: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑓m(𝒙)  (2.29) 

Here, 𝑓𝑚 represents the mth objective function that needs to be minimized. Any optimization 

problem can be either a single-objective (where m = 1) or a multi-objective problem with M 

numbers of objectives (m = 1, ..., M). The vector 𝒙 from Eq.2.29 represents a design vector 

containing values corresponding to different design variables: 

 𝒙 =  [𝑥D,1, 𝑥D,2, . . . , 𝑥D,n] (2.30) 
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where 𝑥𝐷,𝑖 denotes the ith design variable. Defined design vector consists of n different design 

variables. Each variable in the design vector is adjusted by the algorithm to minimize the 

objective function 𝑓𝑚 within the given search space  𝛺: 

 𝒙 ∈  Ω  (2.31) 

The search space 𝛺 can consist of real numbers (𝛺 ⊂ ℝ), natural numbers  

(𝛺 ⊂ 𝑁), or categories. These search spaces are unlimited. However, due to limitations 

imposed by time or cost, the search space can also be constrained, where the ith design variable 

falls within the corresponding bounded space: 

 𝑥D,i ∈ ⟨𝑥D,i
L , 𝑥D,i

U ⟩ (2.32) 

where 𝑥D,i
L  and 𝑥D,i

U  represent the lower and upper bounds, respectively, for the ith design 

variable. Therefore, the total search space for n design variables is the product of all individual 

variable ranges: 

 Ω = ∏ ⟨𝑥D,i
L , 𝑥D,i

U ⟩ n
i=1  (2.33) 

An optimization problem may also have constraints. A constraint is a condition represented as: 

 𝑔j(𝒙) (2.34) 

where 𝑔𝑗represents the jth constraint. An optimization problem can have J constraints (j = 1, 

…, J), which significantly increase the complexity of the problem. No matter how optimal the 

solution is, it is rejected if even a single constraint is violated. Constraints are typically 

expressed as ≤, ≥, or =. In cases involving strict inequalities (< or >), the feasible set does not 

include the constraint boundary. 

The goal of optimization is to identify the best system design while adhering to a set of 

constraints. 

2.3.1. Genetic algorithm  

The genetic algorithm (GA) mimics the process of natural evolution, embodied by random 

selection and the survival of the fittest. The concept of genetics is based on the idea that genes 

within an individual's DNA define their traits and attributes [4]. 

Genes are functions within DNA and chromosomes are sequences of genes that collectively 

define a particular trait. A chromosome is represented as: 
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 𝐶i,j = (𝐺1,j, 𝐺2,j, . . . , 𝐺n,j) (2.35) 

where 𝐶i,j represents the ith chromosome of the jth type, made of n different jth type genes 𝐺n,j. 

For instance, focusing only on an individual’s height, Table 2.1 illustrates how the ith height 

chromosome can be formulated [4]. 

Table 2.1. Representation of height chromosome with gene attributes 

Gene Attributes Type jth Gene Chromosome 

Tall Height d𝐺1,height = 𝑇𝑎𝑙𝑙 

𝐶i,height 

Tall Height d𝐺2,height = 𝑇𝑎𝑙𝑙 

Short Height d𝐺3,height = 𝑆ℎ𝑜𝑟𝑡 

Short Height d𝐺4,height = 𝑆ℎ𝑜𝑟𝑡 

… … ... 

Short Height d𝐺n,height = 𝑆ℎ𝑜𝑟𝑡 

 

After applying Eq.2.35, the ith height chromosome 𝐶i,height is represented as 𝐶i,height =

(𝑇𝑎𝑙𝑙, 𝑇𝑎𝑙𝑙, 𝑆ℎ𝑜𝑟𝑡, 𝑆ℎ𝑜𝑟𝑡, . . . , 𝑆ℎ𝑜𝑟𝑡). This chromosome can also be encoded as a binary 

string, similar to how DNA is represented. A binary string of length n, depicted in Figure 2.10., 

corresponds to [5]. 

 

Figure 2.10. Binary string representation of a chromosome 

The sampling method defines a random initial population by creating m different individual 

samples 𝐶i,j, which collectively form a defined population P: 

 𝑃 = (𝐶1,j, 𝐶2,j, . . . , 𝐶1,m) (2.36) 

A visualization of this rule is provided in Figure 2.11. 
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Figure 2.11. Visualization of the initial population formation 

After the population has been formed, a selection process begins in which the algorithm selects 

chromosomes to serve as parents for the next generation. Given a population P with m 

chromosomes, the selection method produces a list of m parental pairs for the m children of the 

next generation. The selected pair may contain duplicates which can be eliminated by the 

algorithm. 

For this thesis, tournament selection (Figure 2.12) is employed. The tournament selection 

process starts with a population P consisting of m chromosomes. Out of these m chromosomes, 

only k are randomly chosen to participate in the tournament. The fittest chromosome among 

these k participants is selected to proceed to the next stage of the algorithm, which is the 

crossover stage.  

 

Figure 2.12. Tournament selection process for genetic algorithms 

During this stage, the chromosomes of the selected parents are combined to produce children. 

In a single-point crossover, the first portion of parent A’s chromosome forms the first portion 

of the child’s chromosome, while the remaining portion of parent B’s chromosome completes 

the child’s chromosome. The crossover point, where the transition from one parent's 

chromosome to the other's occurs, is determined uniformly at random. 
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Figure 2.13. Single-point crossover in genetic algorithms 

After the child's chromosomes are created from the crossover of parents, they enter the 

mutation stage (Figure 2.14). During mutation, each bit in a binary-valued chromosome has a 

small probability of being flipped, as determined by a defined mutation rate. The primary 

purpose of mutation is to introduce new traits spontaneously, allowing the genetic algorithm to 

explore a broader search space and discover potentially better solutions. 

 

Figure 2.14. Mutation process in genetic algorithms 

Genetic algorithms utilize evolutionary principles to explore complex solution spaces, 

including selection, crossover, and mutation. This method is particularly effective in scenarios 

where traditional optimization techniques struggle with non-linear, high-dimensional, or poorly 

understood problem landscapes. By encouraging diversity through mutation and crossover, 

genetic algorithms can escape local optima and offer solutions across a wide range of 

applications. The flexibility of this approach makes it suitable for solving problems that require 

balancing exploration with exploitation of the search space. 

2.4. Parametrization 

To enable changes to any segment of the analysis, various parameterizations must be 

performed. These parameterizations can involve aspects such as geometry, material properties, 

loads, and other factors. Parameterization is achieved by creating a series of functions that take 

specific parameters, enabling them to easily apply the necessary changes.  

The typical application of parametrization is illustrated in Figure 2.15, with Figure 2.15a 

showing the processes used for modifying and creating the model. Alternatively, Figure 2.15b 

demonstrates how optimization stage can be implemented. After the analysis is complete, the 
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extracted values enter the optimization process as design variables, which are then optimized. 

These design variables, along with non-optimized inputs, are then fed back into the 

parameterization functions, where the model is redefined with new inputs.  

 

Figure 2.15. Application of parametrization in model modification and optimization: (a) 

Processes for modifying and creating the model, (b) Optimization using extracted values  
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3. Model definition 

In the following section, a detailed description is provided of all the necessary steps for 

parameterizing the model. This includes defining all the nodes and calculating their 

coordinates, initializing nodes within SAP2000, and connecting the nodes to create frames. 

Furthermore, boundary conditions and connections will be described, along with the methods 

used for modeling them. Finally, actions and action combinations according to the Eurocode 

will be defined, which will be automatically generated for the model. 

3.1. Geometry 

Within the Excel file, the user defines a series of points by entering measured coordinates. 

Before inputting the data, the user has measured the point’s coordinates in an AutoCAD 

drawing. The defined inputs consist of n points with their corresponding coordinates: 

 𝑃t,i = (𝑦t,i, 𝑧t,i) (3.1) 

where 𝑃t,i represents the ith point of type t, and (𝑦t,i, 𝑧t,i) denote the point’s y and z coordinates 

within the global coordinate system. Table 3.1 shows an example of the defined input made up 

from n points. As illustrated in Table 3.1, there are three types of points created by the user. 𝑃S,i 

denotes the global start point of the structure, while 𝑃E,i represent the global end point. Both 

are unique (i =1), meaning there can only be one start point and one end point. Conversely, 𝑃C,i 

in Table 3.1 represents the ith connection point. Unlike start and end points, there can be either 

a single connection point (i = 1) or multiple m connection points  

(i = 1, …, m). 

Table 3.1. Example of defined points and their types 

Points Type Quantity 

𝑃S,i  Start Point i = 1 

𝑃C,i  Connection Point 

i = (1, ..., m) ... ... 

𝑃C,i  Connection Point 

𝑃E,i  End Point i = 1 

 

The points are then used within the tool to form the required vectors: 
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 𝑽IP =

[
 
 
 
 
𝑃S,1
𝑃C,1
. . .
𝑃C,m
𝑃E,1 ]

 
 
 
 

; 𝑽CP =

[
 
 
 
 
𝑃C,1
𝑃C,2
. . .

𝑃C,m−1
𝑃C,m ]

 
 
 
 

; 𝑽SE = [
𝑃S,1
𝑃E,1

] (3.2) 

Here, 𝑽IP represents a vector containing all initial points (IP), while 𝑽CP includes only the 

connection points (CP). Lastly, 𝑽SE is composed solely of the start-end points (SE). These 

vectors serve various functions within the tool. 

Connection points indicate where two galleries converge, as shown in Figure 3.1a. Therefore, 

𝑃C,i cannot be part of vectors or groups representing isolated galleries, because the properties, 

releases, and other parameters differ. Additionally, 𝑃C,i also marks a point where angle of a 

single gallery changes. 

 

Figure 3.1. a) Connection between adjacent galleries, b) Detail view of connections between 

adjacent galleries with required dimensions 

According to the detail shown in Figure 3.1b, it is necessary to model offset points that are 0.25 

m away from the 𝑃C,i in both directions along the y-axis and are located on the line connecting 

two adjacent points from 𝑽IP. These offset points are defined as: 

 𝑃NO,i = (𝑦NO,i, 𝑧NO,i) (3.3) 

 𝑃PO,i = (𝑦PO,i, 𝑧PO,i)  (3.4) 

where 𝑃NO,i represents the offset point positioned from the 𝑃C,i in the negative y direction of 

the global coordinate system (Negative Offset), while 𝑃PO,i represents the offset point 

positioned from the 𝑃C,i in the positive y direction of the global coordinate system (Positive 

Offset). In Eq.3.3, (𝑦NO,i, 𝑧NO,i) represent the coordinates of 𝑃NO,i, while (𝑦PO,i, 𝑧PO,i) in Eq.3.4 
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represent the coordinates of 𝑃PO,i. The calculations for 𝑃NO,i and 𝑃PO,i are provided in Eq.3.5 

and Eq.3.6, respectively. The coordinates are given by:  

 (𝑦NO,i, 𝑧NO,i) = (𝑦i+1
NO − 𝑦SV,i

NO , 𝑧i+1
NO − 𝑧SV,i

NO )  (3.5) 

 (𝑦PO,i, 𝑧PO,i) = (𝑦i
PO + 𝑦SV,i

PO , 𝑦i
PO + 𝑦SV,i

PO )  (3.6) 

Here, starting from 𝑃NO,i, (𝑦i+1
NO , 𝑧𝑖+1

NO) represent the y and z coordinates of the ith point in the 

newly created vector 𝑽NO = [

𝑃S,1
. . .
𝑃C,m

], which excludes the last value from 𝑽IP because a Negative 

Offset point is not required between 𝑃C,m and 𝑃E,1. Conversely, (𝑦i
PO, 𝑧i

PO) represent y and z 

coordinate for the 𝑃PO,i, selected from the new vector 𝑽PO = [

𝑃C,1
. . .
𝑃E,1

]  , which excludes the first 

value from 𝑽IP since Positive Offset point is not needed between 𝑃S,1 and 𝑃C,1. Furthermore, 

the coordinates (𝑦SV,i
NO , 𝑧SV,i

NO ) are obtained from the Negative Offset scaled vector (SV), 

calculated in Eq.3.7, while (𝑦SV,i
PO , 𝑧SV,i

PO ) are derived from Positive Offset scaled vector, as 

calculated in Eq.3.8. The vectors are defined as follows: 

 𝑃𝑖+1
NO𝑃𝑖

NO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
′

= 𝑢NO⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ 𝑘  (3.7) 

 𝑃𝑖
PO𝑃𝑖+1

PO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
′

= 𝑢PO⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ 𝑘   (3.8) 

Here,  𝑃𝑖+1
NO𝑃𝑖

NO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
′

 represents the ith Negative Offset scaled vector between two adjacent points 

selected from 𝑽𝑁𝑂. The scale factor 𝑘 multiples the ith Negative Offset unit vector 𝑢NO⃗⃗ ⃗⃗ ⃗⃗  ⃗, which 

is calculated as 𝑢NO⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝑃i+1
NO𝑃i

NO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝑃i+1
NO𝑃i

NO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
, where 𝑃i+1

NO𝑃i
NO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the Negative Offset direction vector 

between two adjacent points, calculated in Eq.3.9, and ‖𝑃i+1
NO𝑃i

NO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ is the Negative Offset 

normalized vector between corresponding points, as calculated in Eq.3.10. Similarly, 𝑢PO⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

represents the Positive Offset unit vector, calculated as 𝑢PO⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝑃i
PO𝑃i+1

PO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝑃i
PO𝑃i+1

PO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
, where Pi

POPi+1
PO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the 

Positive Offset direction vector between two adjacent points, calculated in Eq.3.11, and 

‖𝑃i
PO𝑃i+1

PO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ is the Positive Offset normalized vector between corresponding points, as calculated 

from Eq.3.12. The scale factor k, which is 0.25 m, is equal to required distance from the offset 

point and is same for both calculations. 

 𝑃i+1
NO𝑃i

NO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑦i+1
NO − 𝑦i

NO, 𝑧i+1
NO − 𝑧i

NO) (3.9) 
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 ‖𝑃i+1
NO𝑃i

NO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = √(𝑦i+1
NO − 𝑦i

NO)
2
+ (𝑧i+1

NO − 𝑧i
NO)

2
  (3.10) 

 𝑃i
PO𝑃i+1

PO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑦i
PO − 𝑦i+1

PO , 𝑧i
PO − 𝑧i+1

PO )  (3.11) 

 ‖𝑃i
PO𝑃i+1

PO⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ = √(𝑦i
PO − 𝑦i+1

PO )
2
+ (𝑧i

PO − 𝑧i+1
PO )

2
 (3.12) 

The calculated points are used to form a newly required vector: 

 𝑽SEO =

[
 
 
 
 
 
 
 
𝑃S,1
𝑃NO,i
𝑃PO,i
. . .

𝑃NO,m
𝑃PO,m
𝑃E,1 ]

 
 
 
 
 
 
 

 (3.13) 

where 𝑽SEO is a vector composed of start – end points (𝑃S,1, 𝑃E,1) and m different Positive and 

Negative Offset points (𝑃NO,m, 𝑃PO,m). Table 3.2 illustrates how pairs of points are initialized 

for further calculations within the defined tool. 

Table 3.2. Initialization of point pairs for gallery segments 

jth Pair 𝑃GS 𝑃ES Quantity 

(𝑃GS, 𝑃ES)j 𝑃S,1 𝑃NO,i 

j = 1, ..., J 

(𝑃GS, 𝑃ES)j 𝑃PO,i 𝑃NO,i+1 

... ... ... 

(𝑃GS, 𝑃ES)j 𝑃PO,m−1  𝑃NO,m 

(𝑃GS, 𝑃ES)j 𝑃PO,m 𝑃E,1 

 

Here, 𝑃GS represents an individual gallery start (GS) point with coordinates (𝑦GS, 𝑧GS)j, and 

𝑃ES represents an individual gallery end (GE) point with coordinates (𝑦ES, 𝑧ES)j. The jth gallery 

is described by the corresponding jth pair (𝑃GS, 𝑃ES)j , as depicted in Figure 3.5.  
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Figure 3.2. Points of the jth gallery 

The jth gallery consists of M different interior points (IN): 

 (𝑃IN,m)j = (𝑦IN,m, 𝑧IN,m)j (3.14) 

where (𝑃IN,m)j represents the mth interior point of the corresponding jth gallery, as illustrated 

by Figure 3.2. The jth gallery has M individual interior points (m = 1, …, M). In Eq.3.14, 

(𝑦IN,m)j denotes the y-coordinate of the mth interior point, while (𝑧IN,m)j  represent the z-

coordinate of the mth interior point from the common jth gallery. The coordinates are 

determined by:  

 (𝑦,i)j =
(𝑦i−1 + ∆𝑦m)j (3.15) 

 (𝑧,i)j =
(𝑧i−1 + ∆𝑧m)j (3.16) 

where (𝑦i−1)j  and (𝑧i−1)j represent the y and z coordinates of the previous point in the jth 

gallery, respectively. The displacements (∆𝑦m)j and (∆𝑧m)j, calculated from Eq.3.17 and 

Eq.3.18, describe how much the current point (i) has moved from the previous point (i-1) within 

the jth gallery.  

 (∆𝑦m)j = (𝑐𝑜𝑠𝜃 ∙ 𝐿rel.)j (3.17) 

 (∆𝑧m)j = (𝑠𝑖𝑛𝜃 ∙ 𝐿rel.)j (3.18) 

where 𝜃 is the angle of the jth gallery, calculated using the coordinates of the start and end 

points of the jth gallery, (𝑃GS, 𝑃ES)j, as follows: (𝜃)j = 𝑡𝑎𝑛 (
𝑧ES−𝑧GS

𝑦ES−𝑦GS
)
j
. 𝐿rel. from Eq.3.19 is 

determined based on the following rule: 
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 (𝐿rel.)j =

{
 

 
(𝐿red.)j, 𝑖 ≤

𝑛red.

2

LFS,
𝑛red.

2
≤ 𝑖 ≤

𝑛red.

2
+ (𝑛FS)j

(𝐿red.)j,
𝑛red.

2
+ (nFS)j ≤ 𝑖 ≤ 𝑛

 (3.19) 

Here, (𝐿rel.)j represents the relative (rel.) length of the jth gallery, which can be either 𝐿FS or 

(𝐿red.)j depending on the condition. 𝐿FS is the full-sized (FS) allowed distance between two 

adjacent interior points of the jth gallery, specified by the user in Excel and is same for all 

galleries, hence no j index is needed. In contrast, (𝐿red.)j represents reduced (red.) length 

calculated within the tool, given by (𝐿red.)j =
1

2
(𝐿2 −

(𝑛FS)j

2
) for the jth gallery, to respect the 

design rules specified by the structure designer. Here, (𝑛FS)j represents the number of possible 

𝐿FS segments that can be used within the jth gallery, calculated as 𝐿FS = (⌊
𝐿2

𝐿FS
⌋ − 1) ∙ 2 where 

L2, in both equations, represent half the length of the jth gallery, calculated as  

𝐿2 =
1

2
(√(𝑦ES − 𝑦GS)2 + (𝑧ES − 𝑧GS)2). On the other hand, 𝑛red. represents the number of 

possible (𝐿red.)j values for a single gallery. The 𝑛red. has a fixed value of  𝑛red.= 4, which is 

why, like 𝐿FS, it does not have a j index. The sum of two numbers gives the value of n which 

is calculated as 𝑀 = ∑ 𝑛t
FS
t=red. .  

The calculated points are used to form a new matrix: 

 𝑴BP =

[
 
 
 
 
 
(𝑃GS)j (𝑃GS)j+1 … (𝑃GS)J

(𝑃IN,m)j (𝑃IN,m)j+1 … (𝑃IN,m)J
⋮ ⋮ … ⋮

(𝑃IN,M)j (𝑃IN,M)j+1 … (𝑃IN,M)J
(𝑃ES)j (𝑃ES)j+1 … (𝑃ES)J ]

 
 
 
 
 

 (3.20) 

where 𝑴BP represents the matrix containing the jth gallery bottom points (BP), starting from 

jth gallery start point (𝑃GS)j, progressing through M total interior points (𝑃IN,M)j and ending 

with jth gallery end point  (𝑃ES)j. The matrix 𝑴BP has a total of J columns (j = 1, …, J), where 

each column represents the points of a specific jth gallery, containing a total of I points.  

The current calculation was performed in two-dimensional y-z space. To fully define each point 

in three-dimensional space, it is necessary to add an x coordinate to each point from 𝑴BP and 

create n new matrices, each representing a corresponding part of the gallery. 

Dimension A represents the width of the belt conveyor, including all necessary supporting 

elements, while dimension B refers to the width of the walkway between the belt conveyor and 
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the outer edge of the gallery. Half the width of the belt  𝐴2 =
𝐴

2
  is added to each point from the 

𝑴BP, resulting in a new matrix 𝑴PBW, which represents the positive belt width points (PBW). 

Conversely, adding negative 𝐴2 creates the matrix 𝑴NBW, which represents the negative belt 

width points (NBW). To define the outer part of the galleries, (𝐴2 + 𝐵) is added to 𝑴BP, 

creating an outer positive points (OP) matrix 𝑴OP, while subtracting (𝐴2 + 𝐵) forms an outer 

negative points (ON) matrix 𝑴ON. Additionally, 𝑴0 matrix is created by adding an x-coordinate 

of 0 to the corresponding points.  

Matrices are transmitted from Python to SAP2000 to generate points within the software, where 

each point is uniquely identified by an associated ID. These IDs represent the points with their 

respective coordinates and are returned to Python, where they are organized into matrices, as 

shown in Eq.3.21: 

 

𝑴PBW
ID = [

(𝐼𝐷i)j … (𝐼𝐷i)J
⋮ ⋱ ⋮

(𝐼𝐷I)j … (𝐼𝐷I)J

] ;𝑴NBW
ID = [

(𝐼𝐷i)j … (𝐼𝐷i)J
⋮ ⋱ ⋮

(𝐼𝐷I)j … (𝐼𝐷I)J

] ; 

                               𝑴OP
ID = [

(𝐼𝐷i)j … (𝐼𝐷i)J
⋮ ⋱ ⋮

(𝐼𝐷I)j … (𝐼𝐷I)J

] ;  𝑴ON
ID = [

(𝐼𝐷i)j … (𝐼𝐷i)J
⋮ ⋱ ⋮

(𝐼𝐷I)j … (𝐼𝐷I)J

]  (3.21) 

These matrices correspond to 𝑴PBW, 𝑴NBW, 𝑴OP, 𝑴ON, but are now described solely by their 

unique point IDs, while maintaining the same structure as before. Each matrix contains a total 

of J columns (j = 1, …, J), representing a total number of galleries, where each jth column 

contains a unique number of rows (i = 1, …, I), with I representing the total number of IDs for 

the corresponding jth gallery. 

For future reference, this procedure will be described by the function in Eq.3.22: 

 𝑴n
ID = 𝑓ID(𝑴n)  (3.22) 

where 𝑓𝐼𝐷 is the function required for generating points with corresponding IDs in SAP2000. It 

uses the initially established coordinates stored in 𝑴n and retrieves the corresponding 

coordinates in 𝑴n
ID. 

In SAP2000, each element is defined by two unique IDs. Figure 3.3 illustrates this concept: 

Figure 3.3a shows two initial IDs, while Figure 3.3b demonstrates how these IDs are connected 

to form a frame.   
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Figure 3.3. Mapping of unique IDs to form a frame in SAP2000: (a) Initial IDs and (b) ID 

connections 

If this approach of connecting two points is automated within a loop, multiple frames can be 

generated by providing an appropriate ID matrix as input. As the loop iterates through the 

matrix or matrices, it selects a pair of IDs and sends them to SAP2000, where the corresponding 

frames are created. This automated process enables the efficient generation of numerous frames 

without any manual intervention. 

The first function required for the automated generation of frame by linking two selected IDs 

is defined in Eq.3.23:  

 𝑓L(𝑴n
ID)  (3.23) 

where 𝑓L establishes connections between points in the longitudinal (L) direction. It does this 

by using the current (i) and next (i+1) elements from the jth row of the nth input matrix 𝑴n
ID. 

This approach ensures that features are not created between galleries where none should exist. 

As previously discussed, connections are only formed within regions between galleries. 

The next function necessary for automated generation of frames in either transversal or vertical 

direction is given in Eq.3.24: 

 𝑓VT(𝑴n
ID,𝑴m

ID)  (3.24) 

Here, 𝑓VT creates connections between IDs in the vertical (V) or transversal (T) directions, 

depending on the input matrices. It does this by utilizing the current (i) ID from the jth row of 

the nth input matrix 𝑴n
ID and the current (i) ID from the jth row of the mth input matrix 𝑴m

ID. 

The third function, defined in Eq.3.25, is essential for creating X-bracing within the structure: 
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 𝑓XB(𝑴n
ID,𝑴m

ID)  (3.25) 

The function 𝑓XB constructs X-bracing (XB) by connecting the current (i) ID from the jth row 

of the nth 𝑀n
ID to the next (i+1) ID from the jth row of the mth matrix 𝑴m

ID within one loop. It 

then crates the other diagonal of X-bracing by connecting the current (i) ID from the jth row of 

the mth matrix 𝑴m
ID to the next (i+1) ID from the jth row of the nth matrix 𝑴n

ID. 

The fourth function, required for forming vertical angle bracing across the structure, is 

presented in Eq.3.26: 

 𝑓VAB(𝑴n
ID,𝑴m

ID)  (3.26) 

The function 𝑓VAB creates vertical angle bracing between the lower and upper flanges of the 

gallery. The final required design is illustrated in b) Figure 3.4. To adjust the angle at the middle 

of the jth gallery, a dimension d is calculated using the formula 𝑑 = ⌊
𝐼+1

2
⌋, where I denotes the 

number of IDs in the jth gallery. 

In the kth step of the iteration for the jth gallery, the function 𝑓VAB creates the initial angle 

bracing by connectiong the (k+1) ID from 𝑴n
ID with the (k) ID from  𝑴m

ID. For the opposite 

angle bracing, it connects the (k+d) ID from 𝑴n
ID with the (k+1+d) ID from 𝑴m

ID. This process 

is repeated K times (k = 0, …, K) for the jth gallery. Figure 3.4 illustrates the procedure: Figure 

3.4a shows the first step of the iteration, while Figure 3.4b displays the final design achieved 

after K iterations for the jth gallery. This process is repeated for all J galleries stored in the 

columns of 𝑴n
ID and 𝑴m

ID. 

 

Figure 3.4. Vertical angle bracing process for galleries: (a) Initial iteration step and (b) 

Final design after K iterations 
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The next function, demonstrated in Eq.3.27, is required for creating inverted V bracing (IVB), 

which is primarily used for trestles: 

 𝑓IVB(𝑴n
ID,𝑴m

ID, 𝑴p
ID)  (3.27) 

Here, the function 𝑓IVB constructs required bracing by connecting the current (i) ID from the 

jth row of 𝑴p
ID with the corresponding (i+1) IDs from the jth rows of both 𝑴n

ID and 𝑴m
ID. 

With all the necessary functions now defined, the next step is to detail how these functions are 

implemented to achieve the desired structural configurations.  

Primary beams are constructed for the section of the gallery supporting the belt conveyors using 

𝑓L(𝑴PBW) and 𝑓L(𝑴NBW). Additionally, 𝑓L(𝑴OP) and 𝑓L(𝑴ON) are employed to create the 

primary beams that define the edges of the gallery. To ensure structural stability, secondary 

beams are added to connect the outer parts of the gallery using 𝑓VT(𝑴OP,𝑴ON). X-bracing is 

created between the belt conveyor and edge of the gallery where walkway arrives, using 

𝑓XB(𝑴PBW,𝑴OP) for the positive x-axis and 𝑓XB(𝑴NBW,𝑴ON) for the negative x-axis. 

This concludes the design of the bottom part of the gallery. The next section focuses on the 

upper part of the gallery and the roof. Figure 3.5 illustrates the target design and the required 

perpendicular alignment of the upper points to the bottom points. It shows an A-A section of a 

single gallery, where 𝐻g,int denotes the initial height of the gallery, 𝐸 represents the height of 

the raised heel, and 𝛽 is the roof angle. These values must be provided by the user via Excel. 

 

Figure 3.5. Representation of various height inputs 

In the tool, inputs shown in Figure 3.5. are used to determine the distances of the required 

points from the reference bottom point: 
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 𝐻B = 𝐻g,int  (3.28) 

 𝐻RHE = 𝐻g,int  +  𝐸   (3.29) 

 𝐻P = 𝐻g,int +  𝐸 + tan 𝛽 ∙ (𝐴2 + 𝐵)  (3.30) 

where, 𝐻B represents the base gallery height, 𝐻RHE represents the raised heel end point (RHE) 

and 𝐻P denotes the roof’s peak point (P). 

Given that the calculation process is identical for all upper points, it can be streamlined using 

a function, as defined in Eq.3.31: 

 𝑓UP(𝑴n, 𝐻n)   (3.31) 

In this equation, 𝑓UP represents the function that generates the upper points (UP). Here, 𝑴n  

denotes the nth input matrix, while 𝐻n specifies the perpendicular distance from the upper 

points to the corresponding bottom points. The function operates on the previously established 

nth matrix, which consists of J rows, with each jth row representing a single gallery described 

by a total of I points. The output of 𝑓UP is a new matrix, identical in shape to the original 𝑴n, 

but containing only the calculated upper points, as shown in Eq.3.32. 

 𝑴n,up =

[
 
 
 
 
 
 
 (𝑃i,up)j

(𝑃i,up)j+1
… (𝐼𝑃i,upi

)
J

(𝑃i+1,up)j
(𝑃i+1,up)j+1

… (𝑃i+1,up)

(𝑃i+2,up) (𝑃i+2,up)j+1
… (𝑃i+2,up)

⋮ ⋮ ⋮ ⋮
(𝑃I,up)j

(𝑃I,up)j+1
… (𝑃I,up)J ]

 
 
 
 
 
 
 

   (3.32) 

Where (𝑃i,up)j
 represents the ith upper point in the jth gallery, its coordinates are calculated 

using Eq.3.33: 

 (𝑃i,up)j
= (𝑃i)j + 𝐻n ∙ 𝑢⊥,i⃗⃗ ⃗⃗ ⃗⃗     (3.33) 

Here, (𝑃i)j is the corresponding point in the matrix 𝑴n, while 𝑢⊥,i⃗⃗ ⃗⃗ ⃗⃗   represent the perpendicular 

unit vector required to describe the direction between (𝑃i,up)j
 and (𝑃i)j. The coordinates of the 

perpendicular unit vector 𝑢⊥,i⃗⃗ ⃗⃗ ⃗⃗   are given in Eq.3.34-36: 

 𝑥⊥,i = 𝑥U,i   (3.34) 

 𝑦⊥,i = −𝑧U,i   (3.35) 
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 𝑧⊥,i = 𝑦U,i   (3.36) 

where (𝑥, 𝑦, 𝑧)U,I are the coordinates of the unit vector 𝑢i⃗⃗  ⃗ calculated from (𝑃i+1)j to (𝑃i)j using 

𝑢i⃗⃗  ⃗ =
(𝑃i+1𝑃i)j⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖(𝑃i+1𝑃i)j⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
, where (𝑃i+1𝑃i)j⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   represent the direction vector calculated as (𝑃i+1𝑃i)j⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

(𝑥i+1 − 𝑥i, 𝑦i+1 − 𝑦i, 𝑧i+1 − 𝑧i)J, while ‖(𝑃i+1𝑃i)j⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ represent normalized vector calculated as 

‖(𝑃i+1𝑃i)j⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = √(𝑥i+1 − 𝑥i)J
2 + (𝑦i+1 − 𝑦i)J

2 + (𝑧i+1 − 𝑧i)J
2. 

By using 𝑓UP(𝑴n, 𝐻n), multiple points are created. For instance, the upper part of the gallery 

is defined with 𝑴OUP = 𝑓UP(𝑴OP , 𝐻g,int) for the outer upper positive (OUP) points and 

𝑴OUN = 𝑓UP(𝑴ON, 𝐻g,int) for the  outer upper negative (OUN) points. In this process, 𝑴OUP  

is derived by applying 𝑓UP to the initial lower set of points stored in 𝑴OP, using 𝐻g,int to scale 

the perpendicular unit vectors 𝑢⊥,i⃗⃗ ⃗⃗ ⃗⃗  . The raised heel points are characterized by the dimensions 

E, corresponding to the total height 𝐻𝑅𝐻𝐸. Using 𝑓UP(𝑴OP, 𝐻RHE), matrices 𝑴PRHE and 𝑴NRHE 

are formed, representing the positive and negative raised heel end points, respectively. The 

final upper points are required to define the roof’s peak, where 𝑴P  represents the roof’s peak 

points and is formed by using the 𝑓UP(𝑴0 , 𝐻P). Coordinates for all points are then created in 

SAP2000 using the function 𝑓ID, and retrieved back to Python as  𝑴OUP
ID , 𝑴OUP

ID , 𝑴PRHE
ID , 

𝑴NRHE
ID , 𝑴P

ID. 

Once the points are defined, they are used to create the necessary gallery features. Columns are 

defined by 𝑓VT(𝑴OP,𝑴OUP) and 𝑓VT(𝑴ON,𝑴OUN). Vertical angle bracings are defined by 

𝑓VAB(𝑴OP,𝑴OUP) and 𝑓VAB(𝑴ON,𝑴𝑂𝑈𝑁). Longitudinal beams at the height 𝐻𝐵 are defined 

by 𝑓L(𝑴OUP) and 𝑓L(𝑴OUN), with additional X-bracing at the same height created using 

𝑓XB(𝑴OUP,𝑴OUN). The energy heel is created using 𝑓VT(𝑴OUP,𝑴PRHE) and 

𝑓VT(𝑴OUN,𝑴NRHE). Lastly, the roof rafters are defined by 𝑓VT(𝑴PRHE,𝑴P) and 

𝑓VT(𝑴NRHE,𝑴P).  

To fully define the roof structure, purlins need to be created by calculating the points necessary 

for their definition. Each ith roof section consists of three distinct purlin points on each side of 

the x-axis, making a total of six purlin points per section, as shown in Figure 3.6. 
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Figure 3.6. Peak and purlin points 

The points 𝑃NRHE,i, 𝑃P,i and 𝑃PRHE,i are the ith points from the jth gallery, stored in the 

previously defined matrices 𝑴NRHE,i, 𝑴P,i and 𝑴PRHE,i. The remaining points shown in the 

figure need to be calculated. First, the ith negative lower purlin point 𝑃NLP,i is located 0.1 m 

from 𝑃NRHE,i along the line connecting 𝑃NRHE,i and 𝑃P,i, with its coordinates determined by 

𝑃NLP,i = 𝑃NRHE,i + 0.1 ∙
𝑃NRHE,i𝑃P,i⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖𝑃NRHE,i𝑃P,i⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖
. Next, ith negative middle purlin point 𝑃NMP,i is found by 

averaging the coordinates of 𝑃NRHE,i and 𝑃P,i using 𝑃NMP,i =
1

2
(𝑥NRHE,i + 𝑥P,i, 𝑦NRHE,i +

𝑦P,i, 𝑧NRHE,i + 𝑧P,i). The final point, 𝑃NUP,i, is located 0.1 m from 𝑃P,i along the line connecting 

𝑃P,i and 𝑃NRHE,i. Its coordinates are calculated similarly to 𝑃NLP,i, where 𝑃NUP,i is now equal to 

𝑃P,i  + 0.1 ∙
𝑃p,i𝑃NRHE,i⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖𝑃p,i𝑃NRHE,i⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖
. The same calculations are repeated for the positive side, yielding the 

coordinates for the positive lower purlin point 𝑃PLP,i, positive middle purlin point 𝑃PMP,i and 

positive upper purlin point 𝑃PUP,i. The points are stored in the corresponding matrices 𝑴NLP,i, 

𝑴NMP,i, 𝑴NUP,i, 𝑴PLP,i, 𝑴PMP,i, 𝑴PUP,i which are then sent to SAP2000 using 𝑓ID and retrieved 

back into Python as 𝑴NLP,i
ID , 𝑴NMP,i

ID , 𝑴NUP,i
ID , 𝑴PLP,i

ID , 𝑴PMP,i
ID , 𝑴PUP,i

ID . The purlins are formed 

using 𝑓L(𝑴NLP,i
ID ), 𝑓L(𝑴NMP,i

ID ), 𝑓L(𝑴NUP,i
ID ), 𝑓L(𝑴PLP,i

ID ), 𝑓L(𝑴PMP,i
ID ) and 𝑓L(𝑴PUP,i

ID ). The X-

bracing for the roof is created using 𝑓XB(𝑴NLP,i
ID ,𝑴NMP,i

ID ), 𝑓XB(𝑴NMP,i
ID ,𝑴NUP,i

ID ), 

𝑓XB(𝑴PLP,i
ID ,𝑴PMP,i

ID ) and 𝑓XB(𝑴PMP,i
ID ,𝑴PUP,i

ID ). 
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Figure 3.7. Defined structure of single gallery 

This concludes the creation of the gallery section of the structure (Figure 3.7). The next step 

involves modeling the trestles that support the galleries at defined heights. Trestles are essential 

structural elements that provide vertical and lateral support to the galleries, ensuring stability 

and effective load distribution across the entire structure. 

The structure is built from a total of J galleries, with trestles positioned between each pair of 

adjacent galleries. There are two main types of trestles: the pinned support trestle and the fixed 

point trestle.  

The points for the pinned support trestle are symmetrical, enabling the calculations to be carried 

out only for the positive x-axis. Once calculated, the x-coordinate can be adjusted—either 

replaced by zero for middle points or multiplied by -1 for points on the negative x-axis.  

The start-end points for the jth pinned support trestle are initialized from the corresponding 

first point stored in the jth column of 𝑴OP,TR, excluding the first and last column of 𝑴OP. 

These points are calculated as follows: 

 (𝑃PSTS)j = (𝑥i, 𝑦i, 𝑧i − 0.5)j   (3.37) 

 (𝑃PSTE)j = (𝑥i, 𝑦i, 0.7)j   (3.38) 

Here, (𝑃PSTS)j represent the pinned support trestle start point, located 0.5 m below the ith point 

of the jth column of 𝑴OP,TR. The point (𝑃PSTE)j represents the pinned support trestle end point, 

positioned 0.7 m away from the ground. These distances are chosen due to the connection 

details that will be modeled later. 

The calculated points are used to determine the available height of trestle, once the required 

connection is excluded from the available space: 
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 𝐻A = 𝑧PSTS,j − 𝑧PSTS,j (3.39) 

where 𝐻A represents the available height, calculated as a difference between the z-coordinates 

of the start-end points. On the other hand, 𝐻MA represents the maximum allowed height 

between two secondary beams within a single trestle. The ratio between two values (Eq.3.40) 

determines the number of height segments 𝐻MA that can be used within a single gallery trestle: 

 𝑛MA = ⌊
𝐻A

𝐻MA
⌋ − 1  (3.40) 

where 𝑛MA represents the number of 𝐻MA height segments between adjecant secondary beams 

within a single trestle. The value of 𝑛MA also determines the subtype of the pinned support 

trestle, represented by the nth type T, as shown below: 

 {

𝑇1, 𝑛MA > 0 𝑎𝑛𝑑 𝐻A < 15 𝑚 
𝑇2, 𝑛MA > 0 𝑎𝑛𝑑 𝐻A > 15 𝑚
𝑇3, 𝑛MA = 0
𝑇4, 𝑛MA < 0

 (3.41) 

For a 𝑇1 pinned support trestle, the points for the trestle secondary beams are placed offset 

from the previous point, as presented in Eq.3.42: 

 (𝑃TSB,i)j =
(𝑥i−1, 𝑦i−1, 𝑧i−1 − 𝐻MA ∙ 𝑛MA)j (3.42) 

Once (𝑃TSB,I)j is calculated, the remaining distance 𝐻R between the trestle secondary beams 

(𝑃TSB,I)j and trestle end point (𝑃TSB,I)j is measured. Half of this distance is used to calculate 

the last trestle secondary beams point (𝑃TSB,I+1)j coordinates. 

The calculated points are stored in the corresponding matrix representing representing the jth 

T1 pinned support trestle. 

 (𝑴T1,P)j =

[
 
 
 
 
 
 
 
(𝑃PSTS)j

(𝑃TSB,i)j
…

(𝑃TSB,I)j

(𝑃TSB,I+1)j
(𝑃PSTE)j ]

 
 
 
 
 
 
 

 (3.43) 

As previously mentioned, the calculations were performed just for the positive side of  the x-

axis. Once completed, the x-coordinate of each point are modified. For the middle points, the 

x-coordinate is set to zero, forming the matrix (𝑴T1,M)j. For the negative x-axis points, the x-
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coordinate is multiplied by -1, creating the matrix (𝑴T1,N)j. Using the function 𝑓ID, the points 

from these matrices are sent to SAP2000 and retrieved back into Python as corresponding 

(𝑴T1,P
ID )

j
, (𝑴T1,m

ID )
j
, (𝑴T1,N

ID )
j
. The trestle’s columns are then formed using 𝑓L ((𝑴T1,P

ID )
j
), 

utilizing a point selection pattern from 𝑓L, even tough the columns may not necessarily be 

formed in longitudinal directions. Secondary beams are formed using 

𝑓VT ((𝑴T1,P
ID )

j
, (𝑴T1,N

ID )
j
), and the inverted vertical bracing is constructed with 

𝑓IVB ((𝑴T1,P
ID )

j
, (𝑴T1,M

ID )
j
, (𝑴T1,N

ID )
j
). 

For a 𝑇2 type trestle, the columns are designed at an angle 𝛼TR. In order to achive the required 

design, for every positive and negative point, except the starting point, the value 𝑥α =

tan(𝛼TR) ∙ 𝐻i is added to the existing x-coordinate, where 𝐻i represents the height from the 

current point (i) to the previous point (i-1). In the case of 𝑇3 type trestles, a single secondary 

beam point (𝑃TSB,i)j is located halfway between (𝑃PSTS)j and (𝑃PSTE)j. For 𝑇4 type trestles, 

there are no secondary beam points (𝑃TSB,i)j, and the features are created using only (𝑃PSTS)j 

and (𝑃PSTE)j. For each trestle type, the process of creating matrices, initializing points in 

SAP2000, retrieving IDs, and connecting them to form structural features follows the same 

procedure as for T1. 

The start-end points of the fixed point trestle are calculated similarly, using the previously 

demonstrated approach for calculating point coordinates when an angle is defined.  In this case, 

the point 𝑃LRTS is located 0.5 m away from the first point of the Jth column of 𝑴OP, while the 

end points 𝑃LRTE1 and 𝑃LRTE2 are positioned 0.7 m above the ground at a closing angle of 𝜃TR. 

These points are connected to form columns, and the end points are connected to form the 

secondary beams. The same initialization process is repeated for the opposite side, with an X-

bracing placed between the two outer frames.  

3.2. Connections and restraints 

Connections and restraints are crucial to ensure the stability, proper load distribution, and 

overall structural integrity of the belt conveyor system. 

The first connection that needs to be modeled creates a link between galleries and technological 

towers, using sliding and shear key connections. The sliding connection is initialized by 

defining six key points: two starting points from previously created connections, and four offset 
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points derived by modifying the z-coordinates. The starting points were previously created in 

SAP2000 and are located in the first rows of the first columns of 𝑴OP
ID  for the positive sliding 

connection point (𝑃PSCP) and 𝑴ON
ID  for negative sliding connection points (𝑃NSCP). The 

coordinates for these points are saved correspondingly in 𝑴OP as 𝐼𝐷PSCP and in 𝑴ON as 𝐼𝐷NSCP. 

Next, four offset points are generated by reducing the z-coordinate of 𝑃PSCP and 𝑃NSCP by 0.25 

m, resulting in 𝑃PSCP,Z1 and 𝑃NSCP,Z1, and then by 0.5 m, creating 𝑃PSCP,Z2 and 𝑃NSCP,Z2. These 

points are then created in SAP2000, with their IDs retrieved as 𝐼𝐷PSCP,Z1, 𝐼𝐷NSCP,Z1, 𝐼𝐷PSCP,Z2 

and 𝐼𝐷NSCP,Z2. Frames are then connected, forming the required connection with the modified 

rigid frames, which have zero mass and weight, but increased cross-section and shear area 

compared to standard frames. Finally, the restraint blocking translation in z direction is applied 

at 𝐼𝐷PSCP,Z2 and 𝐼𝐷NSCP,Z2 to control the movement the sliding connection.  

Next, the shear key connection between the galleries and technological towers needs to be 

modeled. First, the midpoint between 𝑃PSCP and 𝑃NSCP is determined and calculated as 

𝑃MSKCP =
𝑃PSCP+𝑃NSCP

2
. This midpoint is then used as a reference for creating the shear key 

offset point 𝑃MSKCP,Z2, which is obtained by subtracting 0.5 m from the z-coordinate of 𝑃MSKCP. 

Both points, 𝑃MSKCP and 𝑃MSKCP,Z2, are created in SAP2000, with their IDs retrieved as 

𝐼𝐷MSKCP and 𝐼𝐷MSKCP,Z2. These points are then connected, and finally, a restrain is applied to 

𝐼𝐷MSKCP,Z2, disabling translation in the x and z directions, to fully model the required shear key 

connection. 

Instanced process is then repeated for the end of structure using the last points stored in the last 

columns of 𝑴OP
ID  and 𝑴ON

ID , with coordinates stored in 𝑴OP and 𝑴ON.  

 

Figure 3.8. Defined constraints at the start of the structure 
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The second required connection is established between two adjacent galleries and consists of 

both pinned base plate and shear key connections. First, the pinned base plate connection is 

modeled by initializing points originally stored in 𝑽CP with added x-coordinates: (𝐴2 + 𝐵) for 

𝑽CPP and –(𝐴2 + 𝐵) for 𝑽CPN. These points are then created in SAP2000 and retrieved with 

their IDs as 𝑽CPP
ID  and 𝑽CPN

ID . To establish the pinned base plate connection for the  nth 

connection between the current (j) and the next (j+1) gallery, the last ID from the current 

gallery is connected to the ith ID from 𝑽CPP
ID , and the ith ID from 𝑽CPP

ID  is then connected to the 

first ID of the next gallery. For connections involving positive x-coordinates the instanced 

gallery is 𝑴OP
ID , and for negative x-coordinates, 𝑴ON

ID  and 𝑽CPN
ID  are used. All frames are 

connected using rigid elements. To create the pinned connection, an end release is assigned to 

the first frame in the direction of the material flow. 

The shear key connection is established by first initializing the required points using the 

previously defined unit vector approach. These points are used to create frames that represent 

the shear key. To accurately model the shear key's properties, a transversal link is added 

between the frames, which restricts movement in specific directions (e.g., translation in certain 

axes). This setup effectively simulates the behavior of the shear key within the structure, 

ensuring it can transfer shear forces while limiting unwanted translations. 

To create connections between trestles and galleries, the same approach and connection method 

used for adjacent galleries is applied here.  

The final connection between adjacent galleries and between galleries and trestles is illustrated 

in Figure 3.9. 

 

Figure 3.9. Defined connection in-between adjacent galleries 
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The final required connections for the structure are those between the ends of the trestles and 

the ground. According to the rules specified in Eq.3.41, the last point of each trestle is used as 

the initial point. A corresponding ground point is then determined by keeping the same 

coordinates but setting the z-coordinate to zero, representing the ground level. These points are 

connected with rigid frames, and a pinned support is applied at the end of the frames to anchor 

the structure to the ground. 

 

Figure 3.10. Trestle to ground connection with restraints 

3.3. Actions 

Structures are subjected to several types of actions, which vary in magnitude and can occur in 

different combinations. EN 1991 defines different actions that must be considered when 

designing a structure.  These defined actions are then combined with corresponding partial 

factors, depending on whether the checks are done due to safety or serviceability of the 

structure.  

An action refers to anything that could induce stress or deformation in a structure. This includes 

forces, moments, temperature variations, and other influences that impact the integrity of the 

structure. [6] 
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Figure 3.11. Definition of action [6] 

A single action within a combination of actions is defined as: 

 𝐹d = 𝛾f ∙ 𝐹rep (3.44) 

where the 𝛾f represents the partial factor for actions, accounting for the possibility of 

unfavourable deviations from the representive values, and 𝐹rep represents the value of the 

action calculated as: 

 𝐹rep = ψ ∙ 𝐹k (3.45) 

Here, 𝐹k is the characteristic value of the action, and ψ is the combination factor selected from 

tables based on the action type, the definition of combination and other relevant factors. 

Substituting 𝐹rep back into Eq.3.44 above, the design value 𝐹d becomes: 

 𝐹d = 𝛾f ∙ ψ ∙ 𝐹k (3.46) 

The use of partial factors for actions 𝛾f encposes the possibility of unfavourable devations in 

the action values and potential uncertentines in modeling the effect of these actions. 

EN 1991 specifies the characteristic values of actions across different parts of the code, 

classifying them into different types: permanent load (G), variable action (Q), accidental 

actions (A).  

3.3.1. Permanent actions 

Permanent actions are those with limited variation in magnitude over time. These actions 

mainly involve the self-weight of structural and non-structural elements within the structure. 

In this case, the self-weight of the structure is automatically calculated by the SAP2000. To 
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account for additional segments of the structure like plates and bolts, a contingency of 20% has 

been considered. 

Additionally, the self-weight of non-structural elements is taken into account. In this context, 

the non-structural elements include the cladding on lateral walls, which refers to the corrugated 

metal sheets used as external wall coverings; louvers and girts; roofing, where the self-weight 

of roof panels forms a significant part of the load; and the grating on truss beams, which 

consists of metal grids used as flooring on the bottom of the truss beams. 

In addition to these structural and non-structural elements, permanent imposed loads also arise 

from the equipment housed within the structure. For this specific structure, these loads are due 

to the belt conveyors and associated components, including the belt itself, the belt frame, 

pulleys, rollers, motors, gearboxes, and piping. The combined weight of these components is 

applied as a line load distributed along the galleries supporting the belt conveyor system. This 

line load represents the continuous action exerted by the equipment on the structure. 

3.3.2. Variable actions 

Unlike permanent actions, variable actions change over time. These actions are defined in 

various parts of EN 1991. 

Variable imposed loads generally arise from the usage of the building and can be classified as 

uniformly distributed loads 𝑞k [kN/m2], line loads 𝑞k  [kN/m] or concentrated loads 𝑄k [kN].  

For instance, personnel standing on the walkways between belt conveyors and the edge of the 

gallery impose a variable uniformly distributed load on the walkways. Additionally, the 

material being conveyed on the belt conveyors exerts a variable imposed line load on the 

stringers of the gallery. 

Moreover, the belt conveyor system within the gallery generates belt forces during operation 

and start-up conditions. These forces, calculated for both operational and start-up scenarios, 

are applied to the gallery as distributed forces. 

Other variable actions include dust and snow loads. Dust load 𝐷s represents the amount of dust 

that settles on surfaces as a consequence of material being conveyed. It is calculated as: 

 𝐷s = 𝜌 ∙ 𝑑s (3.47) 

where 𝜌 is the bulk density, and 𝑑s is the thickness of the dust layer. 
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Snow loads, on the other hand, represent the weight of snow on flat or inclined surfaces and 

are calculated according to EN 1991-1-3 for persistent and transient design situations. The 

snow load 𝑠 is determined using the formula: 

 𝑠 = 𝜇i ∙ 𝐶e ∙ 𝐶t ∙ 𝑠k (3.48) 

where 𝜇𝑖 is the snow load shape coefficient based on the roof’s geometry (mono-pitch, duo-

pitch, or multi-span), 𝐶e is the exposure coefficient (typically taken as 1 unless otherwise 

specified for different topographies), 𝐶t is the thermal coefficient accounting for the snow load 

reduction on roofs with high thermal transmittance, and 𝑠k is the characteristic value for snow 

load on the ground as specified in the National Annexes. 

According to EN 1991-1-5, thermal loads caused by climatic or operational temperature 

changes are calculated by considering uniform temperature components ∆𝑇u, which represent 

the difference between the average temperature of an element 𝑇 and its initial temperature 𝑇0 

for different season. For the summer conditions, the uniform temperature differencial is 

calculated as: 

 ∆𝑇u,summer = 𝑇summer − 𝑇0 (3.49) 

where 𝑇summer is calculated as 𝑇summer =
1

2
∙ (𝑇1+𝑇out,summer). Here, 𝑇1 is the average 

internal temperature within the structure, and 𝑇out,summer is the outside temperature during 

summer, calculates as 𝑇out,summer = 𝑇max + 𝑇4 where 𝑇max is the maximum air temperature in 

the shade, and 𝑇4 is the temperature defined in National Annexes based on the surface color.  

For winter conditions, the uniform temperature differential is calculated as: 

 ∆𝑇u,winter = 𝑇winter − 𝑇0 (3.50) 

where 𝑇winter is calculated as 𝑇winter =
1

2
∙ (𝑇2+𝑇out,winter). In this case,  𝑇2 represents the 

average internal temperature within the structure during winter, and 𝑇out,winter corresponds to 

the minimum shade air temperature 𝑇min.  

In addition to thermal loads, wind loads are defined according to EN 1991-1-4. Wind is 

characterized as moving air with a density of 1.25 𝑘𝑔/𝑚3 and variable velocity and direction. 

To model wind loads, EN 1991-1-4 specifies that the analysis should be based on the basic 

wind speed 𝑣b,0, which is the average wind velocity that is statistically exceeded once every 

fifty years. This value represents the characteristic 10-minute mean wind velocity measured at 
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a height of 10 meters above ground level in an open area, as specified in the National Annexes 

of different countries. 

Wind is influenced by the ground, with its effects varying based on the roughness of the terrain 

and the height above ground. To account for this, the mean wind velocity 𝑣m(𝑧) is defined as 

a function of height z with influence of terrain: 

 𝑣m(𝑧) = 𝑐r(𝑧) ∙ 𝑐0(𝑧) ∙ 𝑣b (3.51) 

Here, 𝑣b represents the basic wind velocity at a height of 10 m, calculated using Eq.3.52: 

 𝑣b = 𝑣b,0 ∙ 𝑐dir ∙ 𝑐season (3.52) 

In this equation, 𝑣b,0 is the basic wind speed, 𝑐dir is the directional factor, and 𝑐season is the 

seasonal factor. The roughness factor 𝑐r(𝑧) from Eq.3.53, which accounts for terrain, is 

determined by the following rule: 

 𝑐r(𝑧) = {
𝑘r ∙ 𝑙𝑛 (

𝑧

𝑧0
) , 𝑧min < 𝑧 < 𝑧max

𝑐r(𝑧min), 𝑧 < 𝑧min
  (3.53) 

In this formula, 𝑧0 is the roughness length, and 𝑧min is the minimum height, both of which are 

selected as tabular data. 𝑧max = 200 𝑚 is the maximum height, which is also the calibrated 

height according to EN 1991-1-4. The terrain factor 𝑘r from Eq.3.54 is calculated as: 

 𝑘r = 0.19 (
𝑧0

0.05
)
0.07

  (3.54) 

The orography factor 𝑐0(𝑧) from Eq.3.51 accounts for the influence of hills and cliffs. If the 

average slope is less then 3°, the effects of orography are typically negligible and can be 

neglected. For slopes above 3°, the determination of the orography factor requires a specific 

procedure, which may be specified in the National Annexes.  

With the basic wind velocity fully defined the basic wind pressure 𝑞b is calculated using the 

air density 𝜌: 

 𝑞b =
1

2
𝜌 ∙ 𝑣b

2  (3.55) 

The peak velocity pressure 𝑞p(𝑧) at height 𝑧 is then calculated as: 

 𝑞p(𝑧) = (1 + 7 ∙ 𝑙v(𝑧)) ∙
1

2
∙ 𝜌 ∙ 𝑣m

2 (𝑧) = 𝑐e(𝑧) ∙ 𝑞b  (3.56) 

Here, 𝑙v(𝑧) represents the turbulence intensity at height z, determined by the rule: 
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 𝑙v(𝑧) = {

𝜎v

𝑣m(𝑧)
=

𝑘l

𝑐o(𝑧)∙ln(
𝑧

𝑧0
)
, 𝑧min ≤ 𝑧 ≤ 𝑧max

𝑙v(𝑧min), 𝑧 ≤ 𝑧min

  (3.57) 

In the context of Eq.3.58, 𝜎v is the standard deviation of the turbulent component of wind 

velocity, calculated as: 

 𝜎v = 𝑘r ∙ 𝑣b ∙ 𝑘l  (3.58) 

where the 𝑘l represents the turbulence factor used in both the turbulence intensity (Eq.3.57) 

and standard deviation calculations (Eq.3.58). 

With both peak and basic velocity pressure calculated, their ratio can be used to express the 

exposure factor 𝑐e(𝑧) as: 

 𝑐e(𝑧) =
𝑞p(𝑧)

𝑞𝑏
  (3.59) 

This factor helps in determining the effect of wind exposure on the structure. The final wind 

pressure applied to the structure must account for both external and internal pressures, using 

corresponding pressure coefficients. 

 

Figure 3.12. External and internal wind pressure calculations for structural design [6] 

The external wind pressure 𝑤e is calculated as: 

 𝑤e = 𝑐pe ∙ 𝑞p(𝑧e)   (3.60) 

Here, 𝑞p(𝑧e) represents the peak velocity pressure at the reference height 𝑧e, which is the height 

used for calculating the external wind pressure. 

The external pressure coefficient 𝑐pe from Eq.3.60 is selected from tables and corresponds to 

different zones illustrated in Figure 3.13. 
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Figure 3.13. Wind pressure coefficient zones for external pressures [6] 

Similarly, the internal wind pressure 𝑤i is calculated as: 

 𝑤i = 𝑐pi ∙ 𝑞p(𝑧i)  (3.61) 

In this equation, 𝑞p(𝑧i) represents the peak velocity pressure at the reference height 𝑧i for 

internal pressure calculations. The internal pressure coefficient 𝑐pi is determined based on the 

area of openings in the structure. It is calculated as either 𝑐pi = 0.75 ∙ 𝑐pe or 𝑐pi = 0.9 ∙ 𝑐pe, 

depending on the ratio of the area of the opening in the dominant face to the area of the openings 

in the remaining faces.  

3.3.3. Accidental action 

In the context of this case, accidental actions are considered solely due to earthquakes. 

According to EN-1998-1, seismic action is denoted as 𝐴ed and refer to the forces and effects 

induced by earthquakes that must be considered in the structural design of the building. The 

seismic action 𝐴ed is calculated using the formula: 

 𝐴ed = 𝐴ek ∙ 𝛾1 (3.62) 

Where 𝐴ek represents the characteristic value of the seismic action, and 𝛾1 is the importance 

factor selected from tables based on the consequances of structural failure. 

In seismic design, buildings are classified into different importance classes based on their 

function and occupancy, which determines the seismic actions considered. Importance Class II 

is the reference case, applying to ordinary buildings where the importance factor is 𝛾1 = 1.0, 

representing standard seismic considerations. Importance Class III includes buildings with 

large human occupancy or those housing unique and valuable contents, such as museums or 

archives, necessitating a higher importance factor due to their critical role and the significance 
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of their contents. Importance Class IV encompasses buildings crucial for civil protection after 

an earthquake, such as those essential for rescue operations and medical treatment of the 

injured, which are assigned an elevated importance factor to ensure they remain operational 

during and after a seismic event. Conversely, Importance Class I is designated for buildings of 

low economic importance with minimal and infrequent human occupancy, resulting in a lower 

importance factor that reflects their reduced criticality in the event of an earthquake. 

To accurately model seismic actions, it is essential to conduct appropriate investigations to 

identify the ground conditions, as specified by tabular data. In brief, these conditions are 

categorized as follows: Type A ground is rock-like geological formations; Type B includes very 

dense sand or gravel; Type C refers to deep deposits of dense or medium-dense sand or gravel; 

and Type D represents deposits of loose to medium cohesionless soil.  

The horizontal seismic action is characterized by two orthogonal components, which are 

assumed to be independent and represented by the same response spectrum. For these 

horizontal components, the elastic response spectrum 𝑆e(𝑇) is defined by following rule: 

 𝑆e(𝑇) =

{
 
 

 
 𝑎g ∙ 𝑆 ∙ [1 +

𝑇

𝑇B
∙ (𝜂 ∙ 2.5 − 1)] , 0 ≤ 𝑇 ≤ 𝑇B

𝑎g ∙ 𝑆 ∙ 𝜂 ∙ 2.5, 𝑇B ≤ 𝑇 ≤ 𝑇C

𝑎g ∙ 𝑆 ∙ 𝜂 ∙ 2.5 [
𝑇C

𝑇
 ] , 𝑇C ≤ 𝑇 ≤ 𝑇D

𝑎g ∙ 𝑆 ∙ 𝜂 ∙ 2.5 [
𝑇C𝑇D

𝑇2
 ] , 𝑇D ≤ 𝑇 ≤ 4𝑠

 (3.63) 

In this equation, 𝑆e(𝑇) represents the elastic response spectrum, which describes the maximum 

expected response of a structure with a single degree of freedom subjected to seismic action. 

The variable T is the vibration period of the structure. The design ground acceleration on type 

A ground is denoted by 𝑎g, calculated as 1.0×AgR, where AgR is the reference peak ground 

acceleration. The soil factor S adjusts the spectrum based on the type of ground the structure is 

built on, while η is the damping correction factor, typically taken as 1 for 5% viscous damping. 

The constants 𝑇B, 𝑇C, and 𝑇D define specific periods within the response spectrum that 

correspond to different ranges of structural response: 𝑇B marks the lower limit of the constant 

spectral acceleration branch, 𝑇C the upper limit, and 𝑇D the beginning of the constant 

displacement response range. These parameters are typically obtained from tabular data based 

on the spectrum type, ground conditions, and soil factor S. After accounting for all relevant 

parameters, the resulting response spectrum is illustrated in the figure below:  
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Figure 3.14. Elastic response spectrum for seismic action based on ground conditions 

According to Eurocode 8, the internal effects of seismic action must account for the masses 

associated with all gravity loads, which are defined as: 

 ∑𝐺k,j + ∑ψE,i ∙ 𝑄k,i (3.64) 

These terms collectively represent the seismic mass of the structure, a crucial factor for 

accurately determining the dynamic response under seismic conditions. Here, ψE,i denotes the 

combination coefficient for the ith variable action 𝑄k,i. These coefficients are used to account 

for the likelihood that the variable loads 𝑄k,i may not be fully present throughout the structure 

during an earthquake. 

Once the seismic mass and response spectrum are defined, the horizontal components of the 

seismic action must be defined as: 

 𝐸Edx  =  𝑆x(𝑇) ∙ 𝑚x ∙ g  (3.65) 

 𝐸Edy  =  𝑆y(𝑇) ∙ 𝑚y ∙ g  (3.66) 

In these equations, 𝐸Edx and 𝐸Edy represent the action effects due to seismic action applied 

along the chosen horizontal x and orthogonal y axes of the structure, respectively.  

The terms 𝑆x(𝑇) and 𝑆y(𝑇) represent the spectral accelerations in units of gravitational 

acceleration (g), indicating the peak acceleration expected from the seismic event. The 

parameters 𝑚x and 𝑚y are the effective seismic masses in the x and y directions. Both the 

spectral accelerations and effective masses are assigned by SAP2000 based on the structural 

model and input data for the response spectrum. Since spectral accelerations are given in units 

of g, they must be converted to 𝑚/𝑠2 by multiplying defined values by the gravitational 

constant.  
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In accordance with EN 1998-1, the horizontal components of seismic action should be 

considered simultaneously. For this analysis, eight different combinations are defined to 

represent various seismic actions: 

 𝐸1  =  𝐸x + 0.3𝐸y  (3.67) 

 𝐸2  =  𝐸x − 0.3𝐸y (3.68) 

 𝐸3  =  −𝐸x + 0.3𝐸y  (3.69) 

 𝐸4  =  −𝐸x − 0.3𝐸y   (3.70) 

 𝐸5  =  𝐸y + 0.3𝐸x  (3.71) 

 𝐸6  =  𝐸y − 0.3𝐸x  (3.72) 

 𝐸7  =  −𝐸y + 0.3𝐸x  (3.73) 

 𝐸8  =  −𝐸𝑦 − 0.3𝐸x  (3.74) 

 

Figure 3.15. Seismic action combinations for horizontal components of seismic effects 

3.4. Combinations of actions 

Combinations of actions are defined for both the ultimate limit state and the serviceability limit 

state. These combinations are expressed as the sum of different design values of actions 𝐹d for 

different scenarios: 

 ∑𝐹d (3.75) 
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The ultimate limit states address potential structural failures or collapses that could 

compromise the safety of people and the integrity of the structure. These states consider 

scenarios such as the loss of equilibrium, failure due to excessive deformation or instability, 

and failure caused by fatigue or other time-dependent effects. 

In contrast, serviceability limit states focus on structure's performance under normal 

conditions, including user comfort and the building's appearance. These states can be classified 

as either reversible or irreversible, depending on whether the effects of the actions persist after 

they are removed. Key concerns in serviceability limit states include deformations that affect 

the building's appearance or function, vibrations that cause discomfort or reduce structural 

effectiveness, and damage that could impact the building's appearance, durability, or 

functionality. 

Combinations of actions can include permanent (G), variable (Q), and accidental (A) actions. 

These actions are associated with corresponding partial factors 𝛾 or combination factors 𝛹. 

The factors for different actions are selected from defined tables. When combination factors 

appear with different variable actions, they are used as follows: 𝛹0,j𝑄k,j is used for ultimate 

limit states and irreversible serviceability limit states, 𝛹1,j𝑄k,j is used for ultimate states 

involving accidental actions and reversible serviceability limit states, 𝛹2,j𝑄k,j is used for 

ultimate limit states involving accidental actions and for long-term effects calculations. 

For the purposes of the thesis, the first defined combination of actions is for the ultimate limit 

state in persistent and transient design situations. This combination is expressed as: 

 ∑𝐹d = ∑ 𝛾G,i𝐺k,i + 𝛾Q,1𝑄k,1 + ∑ 𝛾Q,j𝛹0,j𝑄k,j  + (𝛾P𝑃k)j>1i  (3.76) 

Here, the combination of actions is determined by summing the permanent actions (∑ 𝛾G,i𝐺k,ii ), 

where 𝐺k,i represents the ith permanent action, multiplied by the corresponding partial factor 

𝛾G,i selected based on how the permanent action affects the combination of actions. A single 

governing variable action (𝛾Q,1𝑄k,1) is added to the permanent actions, where 𝛾Q,1 represents 

the partial factor for the variable action. The remaining variable actions (∑ 𝛾Q,j𝛹0,j𝑄k,jj>1 ) are 

included in the combination as the sum of variable actions multiplied by the partial factor 𝛾Q,j 

and the combination factor 𝛹0,j. To fully define the combination of actions, other variable 

actions are used as the governing variable, while the initial governing variable becomes part of 

the sum. The term (𝛾P𝑃k) is included to account for peak actions, which are not defined for the 

current case but could be included if necessary.  
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Next, the combination of actions for the ultimate limit state with the purpose of accidental 

design situations is considered. This combination is important for ensuring the resilience of 

structures under unexpected or extreme events. It is expressed as: 

 ∑𝐹d = ∑ 𝐺k,i + 𝛾Q,1𝑄k,1 + ∑ 𝛹2,j𝑄k,j + 𝑇j>1𝑖  (3.77) 

In this equation, T represents the variable thermal actions, which are not included in other 

variable actions. As before, to fully define the combination, the governing variable action is 

rotated, now excluding T from the list of variable actions. 

For the serviceability limit state, according to EN 1990, the characteristic combination of 

actions is defined as: 

 ∑𝐹d = ∑ 𝐺k,i + 𝑄k,1 + ∑ 𝛹0,j𝑄k,j + (𝑃k)j>1i   (3.78) 

Here, the part representing the permanent actions includes only the permanent actions 𝐺k,i, 

without any partial factors. This is because, in serviceability limit states, the focus is on the 

structure's performance under normal conditions, where the full characteristic value of the 

actions is considered without amplification by partial factors. The variable actions are again 

represented by the governing action and the remaining actions. The combination is fully 

defined when each possible governing action is used from the set of variable actions. 

Finally, the combination of actions required for seismic design situations is defined as: 

 ∑𝐹d = ∑ 𝐺k,i + 𝐴Ed + ∑ 𝛹2,j𝑄k,j + (𝑃k)ji    (3.79) 

In this expression, 𝐴Ed represents the seismic action in an ultimate limit state. This term is 

crucial for accounting for the effects of seismic events on the structure, ensuring that it can 

withstand such forces in accordance with the design criteria for safety and stability. 
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4. Analysis and optimization 

The final section of the thesis demonstrates the application of the developed Python-based tool, 

exploring its capabilities and various approaches for finding optimal solutions. It highlights 

how the tool can be used to effectively address complex problems and optimize processes, 

showcasing its versatility and practical utility. 

4.1. Standardized steel structures supporting belt conveyors 

Using the previously defined model and parametric definitions, it is now possible to efficiently 

standardize and test various models. Figure 4.1. illustrates the progression of standardized belt 

width: BW650 (belt width of 650 mm), BW800, BW1000, BW1200, and BW1400. Overall 

geometric data is generated by the user in Excel and is then used in Python as an input to the 

parametric functions. Such an approach eliminates the need for manual modeling and reduces 

the time spent on repetitive tasks and eliminates the possibility of human error. 

 

Figure 4.1. Standardized steel structures supporting belt conveyors 

In addition to standardization for different belt widths, the parametric definition enables the 

creation of an unlimited variety of conveyors by specifying different lengths and heights 

through coordinate data, as shown in Figure 4.2. This approach allows for the design of models 

that meet various requirements for conveyor length and elevation.  
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Figure 4.2. Demonstration of steel structures supporting belt conveyors with expanded length 

and height 

4.2. Steel check according to Eurocode 

Inside SAP2000 it is possible to check assigned sections according to Eurocode which involves 

calculating various values to verify sections under defined actions. The most relevant metric 

used for upcoming optimization is the demand/capacity ratio (D/C), which compares the 

applied load (demand) to a section’s load-carrying capacity.  

 

Figure 4.3. D/C ratio calculated for every frame of the steel structure 
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4.2.1. Trial and error approach for finding sections to pass steel check 

The trial-and-error approach for identifying frame sections that meet the steel check criteria, 

based on the D/C ratio calculated by SAP2000, is illustrated in the flow diagram shown in 

Figure 4.4. Each frame in the model is assigned to a corresponding group of elements within 

SAP2000. For instance, frames representing the columns of trestles are categorized into their 

specific group. This grouping method is applied to all other frames as well. Each group is 

then assigned a specific type of section, which could be a wide section, a channel, or double 

channel sections. 

Within the Python script, a database of all possible sections for each type is defined. During 

the first iteration of the section-finding function, the first section from the list is assigned to the 

corresponding groups based on the type of section that can be applied to that group. The model, 

now defined with these sections, is then sent to SAP2000 along with the defined actions and 

combinations of actions. SAP2000 automatically calculates the D/C ratio for the sections. If 

the D/C ratio exceeds 1, it indicates that the frame has failed the check. The function is set up 

so that if a single frame within a group fails the check, the entire group is considered to have 

failed. If every member of a group passes the check, the group and its respective frames are 

stored in a verified group list. If not, the process enters the next iteration of the section-finding 

function, where the next possible section from the list is applied to the group that failed the 

check in the previous run. This process is repeated until all groups successfully pass the check. 

 

Figure 4.4. Flow diagram of the trial-and-error function created for finding sections of 

frames that pass the steel check 
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4.3.  Analysis of the reference case 

The reference case is fully defined with all geometric data, groups, sections, materials, 

restraints, actions, and combinations of actions. All these elements are assigned using Excel 

input, which is processed by the corresponding functions in a Python script. Geometric data is 

assigned as previously explained. Load action values are automatically applied to specific 

frames or areas, requiring the user only to define the value, thereby minimizing time and effort. 

The combinations of actions are automatically assigned based on predefined equations, with 

the Python tool generating all possible scenarios and rotations of governing actions for each 

case.  

Given the infinite number of possibilities and configurations, the following analysis focuses on 

the 153rd ultimate limit state (ULS) combination of actions. This combination encompasses all 

permanent actions, while using the variable belt force actions as the single governing variable 

action and considering all other variable actions as the sum. 

This specific combination of actions serves as a benchmark for the upcoming optimization. 

The ultimate limit state represents the maximum load-bearing capacity or failure condition, and 

it will be used as the critical state for further analysis and optimization.  

Furthermore, the instance analysis is conducted for the BW650 model. The defined model first 

enters the section-finding function, where, after the required number of iterations, every 

member and group successfully pass the steel check based on the demand-to-capacity (D/C) 

ratio, as illustrated in Figure 4.5. 

 

Figure 4.5. D/C ratio for BW650 model before optimization 
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Based on the selected sections and applied actions, the total displacement of the structure is 

illustrated in Figure 4.6. As observed, the critical areas of displacement are approximately in 

the middle between the start and the end of a single gallery, which is expected due to the 

bending moments being most pronounced in these regions. This occurs because the structure 

is subjected to maximum flexural stresses in these spans, where the load distribution and the 

absence of intermediate supports contribute to higher deflections.  

 

Figure 4.6. Total displacement of the BW650 model before optimization 

4.4. Optimization of the reference model 

The reference case is established. The main target of optimization is to minimize the volume 

while decreasing total displacement of a single node to under 15 mm and keeping the D/C ratio 

at a similar value, as the structure has already passed the steel check. The volume of the 

structure is calculated using the following equation: 

 𝑉TOT = ∑ 𝐴cs,i ∙ 𝐿i
n
i=1   (4.1) 

where 𝑉TOT represents the total volume of the structure, calculated as the sum of the volumes 

of individual frame elements. Each frame's volume is determined by multiplying its cross-

sectional area 𝐴cs,I of the ith frame by its length 𝐿i. 

Based on the described problem, the optimization function is defined as follows: 
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 minimize            
𝑉i(𝐱)

V
  (4.2) 

where the V represents the expected value of target volume, while the 𝑉i represents the volume 

of the ith structure, retrieved from SAP2000, after generating it with design values stored within 

the design vector 𝐱 which is defined as: 

 𝐱 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]  (4.3) 

The vector 𝐱 consists of individual design variables which are shown in Table 4.1, together 

with lower and upper bounds. 

Table 4.1. Design variables 

𝑥i 𝑥i
L 𝑥i

U Unit Representative Symbol 

𝑥1 2 6 m 𝐿FS 

𝑥2 2.5 3 m 𝐻B 

𝑥3 0 2 ° 𝛼TR 

𝑥4 25  30 ° 𝜃TR 

𝑥5 2 4 m 𝐻MA 

 

The first constrain is oriented towards limiting maximum deformation, defined as: 

𝑈i − 𝑈allowed
𝑈allowed

 

Here, the 𝑈allowed is equal to 15 mm, as explained at the beginning, while the 𝑈i represents the 

ith total displacement of a single node retrieved from analysis initialized in SAP2000. 

The second constrain ensures that the D/C ratio remains in approximately the same range as in 

the reference case: 

(𝐷/𝐶)i − (𝐷/𝐶)ref.
(𝐷/𝐶)ref.

 

Out of every generated solution, only the best one is saved at the end. The design variables for 

this optimal solution are listed in the following table: 
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Table 4.2. Best solution design variables 

𝑥i 𝑉𝑎𝑙𝑢𝑒 Unit 

𝑥1 5.67 m 

𝑥2 2.52 m 

𝑥3 0.34 ° 

𝑥4 25.24 ° 

𝑥5 3.87 m 

 

The design variables produce the following design, with the total displacement below 15 mm, 

as illustrated in the accompanying figure: 

 

Figure 4.7. Total displacement of the BW650 model after optimization 

The final steel check, shown in Figure 4.9, confirms that the steel check is satisfied once again. 

As observed, the structure passes the check with values comparable to those from the reference 

run. 
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Figure 4.8. D/C ratio for the BW650 model after optimization 

The initial measured volume of the structure was 21.89 m³. After optimizing the design 

variables, the volume of the revised structure is reduced to 19.77 m³, while successfully 

achieving a total displacement of less than 15 mm. If the total volume is multiplied by the 

density of used S355 steel, the weight of the structure was reduced from 171,836.5 kg to 

155,194.5 kg, saving a total of 16,642 kg of raw material. 
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5. Conclusion 

This thesis successfully developed a Python-based tool for the numerical modeling and 

optimization of self-supporting steel structures used in ore transportation via belt conveyors. 

The integration with SAP2000 for finite element analysis enabled a streamlined process, where 

complex model definitions, including constraints, loads, and load combinations, were 

automated. The Excel-based user interface allowed for easy input of model parameters, 

facilitating a smooth transition between structural analysis and optimization phases. 

The tool significantly improved engineering efficiency by speeding up model definition and 

reducing the possibility of human error. The optimization component, using genetic algorithms, 

identified cost-effective designs that met industry standards and constraints, ensuring the final 

designs were both structurally and economically efficient. 

The tool's standardization capabilities contributed to improved safety, reduced material waste, 

and enhanced sustainability, while also making it easier to model similar designs repeatedly. 

By enabling the consistent application of Eurocode standards, the tool ensured compliance with 

relevant safety and performance regulations, thereby enhancing the overall reliability of the 

belt conveyor structures. 

In practical application, the tool demonstrated its versatility by standardizing and optimizing 

various belt conveyor models with different inputs. The case study presented in the thesis 

confirmed the tool's ability to minimize material usage while maintaining structural integrity, 

as evidenced by the satisfactory demand/capacity ratios and controlled displacements. 

In conclusion, this research meets a crucial need in the mining industry by combining a 

software approach with traditional engineering methods. Future work could explore further 

enhancements, such as incorporating additional optimization algorithms or expanding the tool's 

applicability to other types of structures. 
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Abstract 

This thesis presents the development of a Python-based tool designed to improve the numerical 

modeling and optimization of self-supporting steel structures used in ore transportation via belt 

conveyors. The tool integrates seamlessly with SAP2000, a commercial finite element analysis 

software, to automate complex model definition processes including the application of 

constraints, loads, and load combinations. By automating these tasks, the tool significantly 

reduces the time and effort required for engineering analysis, streamlining project execution. 

The optimization component focuses on identifying cost-effective designs that satisfy all 

relevant constraints and standards. Additionally, the tool's standardization features enhance 

safety, reduce material waste, and ensure better compliance with industry norms. 

Keywords: numerical modeling, optimization, steel structures, belt conveyors, Python, 

SAP2000, finite element method, genetic algorithm, standardization 
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Sažetak 

Ovaj rad predstavlja razvoj alata unutar Python okruženja dizajniranog za poboljšanje 

numeričkog modeliranja i optimizacije samonosivih čeličnih konstrukcija korištenih za 

prijenos rude pomoću trakastih transportera. Alat se integrira sa SAP2000, komercijalnim 

softverom za analizu metodom konačnih elemenata, kako bi automatizirao složene procese 

definiranja modela, uključujući primjenu rubnih uvjeta, opterećenja i kombinacija opterećenja. 

Automatizacijom ovih zadataka, alat značajno smanjuje vrijeme i napor potreban za 

inženjersku analizu, čime se pojednostavljuje izvođenje projekata. Komponenta optimizacije 

usmjerena je na pronalaženje isplativih rješenja koja zadovoljavaju sva relevantna ograničenja, 

uvjete i standarde. Dodatno, standardizacijske značajke doprinose poboljšanoj sigurnosti, 

smanjenju otpada materijala i boljoj usklađenosti s industrijskim normama.  

Ključne riječi: numeričko modeliranje, optimizacija, čelične konstrukcije, trakasti 

transporteri, Python, SAP2000, metoda konačnih elemenata, genetski algoritmi, 

standardizacija 

 

 

 

 

 

 

 

 

 

 

 

 

 


