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Abstract

Signals with the time-varying frequency content are best represented in the joint time-

frequency domain, with the components instantaneous frequency laws being their key non-

stationary features. However, the most commonly used methods for the time-frequency

distribution (TFD) calculation generate unwanted artifacts, making their interpretation

more difficult. In order to overcome this limitation, a number of methods have been

proposed utilizing the compressive sensing (CS) for the artifact removal, while the un-

avoidable resolution loss is reduced by the signal reconstruction algorithm which, in its

core, solves a linear unconstrained optimization problem.

The performance of the existing methodology relies primarily on the user-predefined

parameters, namely the CS area and input parameters of the sparse reconstruction algo-

rithm, which are in most cases chosen experimentally. This approach has resulted in the

unreliability of the sparse TFD methods, as the parameters which perform well for one

signal will not necessarily perform equally for a different signal.

In order to overcome this problem, three adaptive methods are proposed in this the-

sis, jointly resulting an an adaptive data-driven solution. The first proposed algorithm,

adaptively detects the CS area, while the remaining two algorithms are adaptive sparse

reconstruction algorithms based on the intersection of confidence intervals rule and the

localized Rényi entropy, respectively. The proposed adaptive sparse reconstruction algo-

rithms can be used in the conjunction with the adaptive CS area selection method in

order to increase the concentration of the resulting sparse TFD even further. The here-

proposed methods are tested on synthetical and real-life signals, and the obtained results

are compared with the results obtained with the currently available state-of-the-art sparse

TFD reconstruction methods.

Keywords: Time-frequency signal representation, Ambiguity function, Cross-terms sup-

pression, Signal sparsity, Compressive sensing, Linear unconstrained optimization, Inter-

section of confidence intervals method, Rényi entropy.
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Sažetak

U velikom broju praktičnih problema promatranje signala kao funkciju vremena ne pruža

dovoljno informacija o samoj prirodi promatrane pojave, te dolazi do potrebe za uvidom

u frekvencijski sadržaj signala što je moguće napraviti pomoću Fourierove transformacije.

Međutim, Fourierovom transformacijom signala gube se njegove vremenske značajke, te

je stoga ovakav pristup neprimjeren za nestacionarne signale, tj. signale čija se frekvencija

mijenja kroz vrijeme. Pri analizi nestacionarnih signala poželjno je promatrati energiju

signala kao funkciju i vremena i frekvencije istodobno, pa se takav prikaz naziva vremensko-

frekvencijska distribucija (VFD) signala. Energija idealne VFD usko je lokalizirana oko

trenutne frekvencije komponenti signala, što je u praksi zbog problema opisanih u nastavku

teško postići.

Računski najjednostavnije VFD su one linearne, prvenstveno Fourierova transformacija

na vremenskom otvoru i Gaborova transformacija. No, linearne VFD imaju ograničenu

rezoluciju, te uobičajeno podrazumijevaju kompromis između rezolucije u vremenu i

rezolucije u frekvenciji, stoga se u praksi najčešće koriste kvadratne VFD (KVFD). Kada

se signal sastoji od više komponenti ili od nelinearne komponente, zbog svoje kvadratne

prirode, KVFD uvode neželjene članove, tzv. artefakte ili među-članove, koji se pojavljuju

između svakog para komponenti signala te uvelike otežavaju interpretaciju KVFD. Pošto

su među-članovi visoko oscilatorni, u domeni neodređenosti, tj. dvodimenzionalnoj

Fourierovoj transformaciji VFD, među-članovi su locirani dalje od ishodišta domene, stoga

ih je moguće filtrirati s nisko-propusnim filtrom. Međutim, filtriranje na opisani način

uklanja i dio korisnih informacija u domeni neodređenosti, tzv. auto-članove, što dovodi

do gubitka rezolucije VFD.

Osnovna, nefiltrirana KVFD naziva se Wigner-Villeova distribucija (WVD), a

primjenom 2D nisko-propusnog filtra u domeni neodređenosti, moguće je dizajnirati

beskonačan broj različitih KVFD s različitim razinama kompromisa između učinkovitosti

uklanjanja među-članova i gubitka rezolucije auto-članova. U literaturi među korištenijim

KVFD nalaze se: izglađena pseudo WVD, Choi-Williams distribucija, Born-Jordan

distribucija, B distribucija, te njene modifikacije. Bolje performanse KVFD mogu se

postići nezavisnim filtriranjem po vremenu i po frekvenciji, ali takve metode često

zahtijevaju a priori poznavanje prirode promatranog signala, što u praksi najčešće nije

xix
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slučaj.

Jedna od nedavno predloženih metoda uklanjanja među-članova iz KVFD koristi

svojstva prorijeđenosti signala i komprimiranog uzorkovanja (KU). U praksi ustaljene

metode uzorkovanja slijede Shannon-Nyquistov teorem, no KU nudi alternativu Shannon-

Nyquistovom teoremu, omogućavajući točnu rekonstrukciju signala uzorkovanog ispod

Nyquistove frekvencije, uz povećanje matematičke zahtjevnosti algoritma za rekonstrukciju

signala. No, da bi rekonstrukcija signala rezultirala smislenim rješenjem promatrani signal

mora biti K-prorijeđen, što podrazumijeva da ga je moguće prikazati u nekoj domeni

sa K uzoraka, gdje je K << Nt, gdje je Nt broj uzoraka u vremenu. Većina signala

nije prorijeđena u domeni promatranja, ali signal može postati prorijeđen (ili približno

prorijeđen)u nekoj drugoj domeni. Na primjer, sinusoidni signal moguće je prikazati sa

samo jednim uzorkom u frekvencijskoj domeni. U vremensko-frekvencijskoj obradi signala

navedena svojstva KU mogu se iskoristiti na način da se komprimirano uzorkuju oni uzorci

domene neodređenosti za koje se zna da ne sadrže među-članove, tj. oni uzorci koji se

nalaze blizu ishodišta domene. Rekonstrukcija VFD je moguća iz razloga što je VFD po

svojoj prirodi prorijeđena, tj. sastoji se od trajektorija trenutnih frekvencija komponenti

signala, koje se mogu opisati s NcNt << NfNt uzoraka, gdje su Nc i Nf broj komponenti

u signalu i broj uzoraka u frekvenciji.

Učinak postojeće metodologije VFD rekonstrukcije uvelike se oslanja na korisnički

predefiniranim parametrima, posebice na području KU i na ulaznim parametrima

rekonstrukcijskog algoritma, čiji se odabir vrši eksperimentalnim putem. Takav pristup

dovodi do nepouzdanosti VFD rekonstrukcijskih metoda, pošto ulazni parametri koji

rezultiraju dobrim rezultatom za jedan signal neće nužno rezultirati jednako dobrim

rezultatom za neki drugi signal. U svrhu prevladavanja navedenog problema u ovoj

doktorskoj disertaciji predložene su tri adaptivne metode koje će smanjiti potrebu za

intervencijom korisnika i time povećati pouzdanost dobivenih rezultata. Prva metoda

adaptivno odabire područje KU, dok su preostale dvije metode rekonstrukcijski algoritmi

koji se temelje na pravilu presjecišta intervala pouzdanosti i na vremenski lokaliziranoj

Rényeovoj entropiji. Predloženi rekonstrukcijski algoritmi mogu su kombinirati s metodom

adaptivnog odabira područja KU u svrhu još većeg porasta koncentracije rezultirajuće

prorijeđene VFD. Opisani algoritmi testirani su na sintetičkim signalima i signalima iz

stvarnog života, te su dobiveni rezultati uspoređeni s rezultatima dobivenim primjenom

najnovijih VFD rekonstrukcijskih metoda.

Ključne riječi: Vremensko-frekvencijski prikaz signala, Domena neodređenosti,

Filtriranje među-članova, Prorijeđenost signala, Komprimirano uzorkovanje, Bezuvjetna

linearna optimizacija, Metoda presjecišta intervala pouzdanosti, Rényeva entropija.
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Chapter 1

Introduction

1.1 Motivation

In many practical problems observing a signal as a function of time does not provide

adequate information about the nature of the observed phenomenon, arising the need

for an insight into its frequency content, which can be done through the signal’s Fourier

transformation. However, by calculating a Fourier transformation of the signal, signal

time attributes are lost, making this approach inadequate for the non-stationary signals,

that is, signals with a time-varying frequency content. The preferable observation do-

main, when dealing with non-stationary signals, is the joint time-frequency (TF) domain,

providing an insight into the signal energy as a function of both time and frequency, si-

multaneously. Energy of the ideal time-frequency distribution (TFD) is strictly localized

around the instantaneous frequency of the individual signal components; however such

energy concentration in real-life applications is impossible to accomplish because of the

problems described in the sequel.

One of the simplest ways to calculate a TFD is with the linear class of the TFDs,

namely the short-time Fourier transformation and the Gabor transformation [24, 15].

However, the TFDs calculated in this way have a limited resolution and usually involve

a trade-off between the resolution in time and the resolution in frequency. This is why

in practice the quadratic class of the TFDs (QTFD) are more commonly used; however,

the main drawback of the QTFD class comes from its quadratic nature, which introduces

unwanted artifacts, also called the cross-terms [24, 15]. When the observed signal has more

than one component the outer artifacts will appear midway between the each pair of the

signal components. On the other hand, when the observed signal has a nonlinear frequency

modulated component, the inner artifacts will appear making the TFD interpretation

more challenging. Since the cross-terms are highly oscillatory, they can be filtered out by

the two dimensional low-pass filter in the ambiguity function (AF); however in doing so,

the concentration of the auto-terms gets reduced as well. The original, unfiltered QTFD

1
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is called the Wigner-Ville distribution [80, 76], and one can design an infinite number of

different QTFDs with the different trade-off levels between the cross-terms elimination and

the auto-terms concentration preservation. In literature among the most commonly used

QTFDs are: smoothed pseudo Wigner-Ville distribution [15], Choi-Williams distribution

[22], Born-Jordan distribution [49], B distribution [8], and its modifications [39, 16]. Better

performance of the QTFDs can be achieved through the separable kernel design in time

and frequency domains [15]; however, the performance of such QTFDs is often dependent

on the a priori knowledge about the nature of the observed signal, which is in practice

often unavailable.

The need for a trade-off between the interference suppression and the TFD local-

ization has led to a number of TFD concentration improvement methods. One of the

recently proposed methods for the cross-terms removal is based on the compressive sens-

ing [30, 64, 54, 31]. Over the last few years, the compressive sensing (CS) has been an

important research topic [21, 27, 20], with applications in medicine [48, 75, 35], geophysics

[23, 33], communication [38], etc. The theory behind the compressive sensing provides

an alternative to the Shannon-Nyquist sampling theorem, allowing sampling with the

sub-Nyquist frequencies; however, the lower sampling frequency comes with the cost of

a mathematically significantly more demanding signal reconstruction algorithm. The re-

construction of the CS signal is only possible if a signal is sparse in the certain domain,

which means that the signal can be represented in this domain with K nonzero coef-

ficients, where K << Nt, Nt being the number of signal samples in the time domain

[21, 27]. Most signals are non-sparse in the domain of interest, but can become sparse (or

approximately sparse) by applying a domain transformation. For example, a sinusoidal

signal can be represented with only one sample in the frequency domain. The sparse

signal reconstruction algorithm can be utilized in order to avoid a trade-off between the

cross-terms suppression and the auto-terms concentration loss by picking the AF samples

corresponding to the auto-terms, while discarding the interfering ones (in a similar way

as a low-pass filter does, just more strictly) [30]. The TFD reconstruction is possible

because the TFDs are inherently sparse, as they are composed from trajectories describ-

ing the instantaneous frequency law of each individual signal component, containing only

NcNt << NfNt samples (Nc and Nf being number of the signal components and number

of the available frequency bins, respectively).

The current methods utilizing the CS and the sparsity constraint for the sparse TFD

reconstruction heavily rely upon the user predefined parameters, especially the CS-AF

area selection and the choice of input parameters of the sparse reconstruction algorithm.

They are both generally selected experimentally, decreasing the overall reliability of the

sparse TFD reconstruction, since the inputs which perform well for one signal will not

necessarily perform equally for a different signal. This fact has served as a motivation

behind this thesis, i.e. to decrease the amount of user input in the TFD reconstruction

2
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process by developing adaptive and reliable methods for the TFD reconstruction.

1.2 Objectives of the Thesis

Current procedures for the sparse TFD reconstruction involve experimental selection of

the CS-AF area and the sparse reconstruction algorithm input parameters. Both of these

play an important role in the obtained quality of the reconstructed sparse TFD, while

their experimental selection decreases the overall reliably of the TFD methods based on

the sparsity constraint, as they require intervention of the signal specialist in order to

select a proper set of inputs for the signal under consideration.

If the selected CS-AF area is too big, the selected AF samples may include undesired

information about the cross-terms, which if captured would reappear in the sparse TFD.

On the other hand, to few CS-AF samples may significantly degrade the concentration of

the resulting sparse TFD; that is if the selected CS-AF samples do not provide enough

information about the auto-terms. These facts lead to the conclusion that the ideal CS-

AF area should contain all of the samples originating from the auto-terms, and none from

the cross-terms. In that case, reconstruction of the TFD would be trivial and would imply

taking a two-dimensional Fourier transformation of the selected CS-AF area. In practical

applications, where no prior information about the signal is available, we try to capture

as much AF samples corresponding to the auto-terms without including the cross-terms.

With CS-AF area selected in this way, the requirements of the sparse reconstruction

algorithm will be lowered as much as possible, while guarantying complete removal of the

cross-terms.

Furthermore, the selection of the proper input parameters of the sparse reconstruction

algorithm plays an important role as well. The choice of the algorithm parameters can

not be generalized, as it is both algorithm and signal dependent. However, improper

selection of the input parameters may result in a slower convergence rate of the sparse

reconstruction algorithm or in a lower concentration of the resulting sparse TFD; in the

worst case scenario, solution of the sparse reconstruction algorithm may not even converge

at all.

Both of the discussed problems have served as a motivation when defining the two

main objectives of this thesis, which when combined will increase the overall reliably of

the sparse TFD calculation methods and decrease the need for an intervention of the

signal specialist:

• Develop a method for an automatic selection of the optimal CS-AF area. The CS-

AF area picked by the proposed method will contain as much as possible information

about the energy of the auto-terms, with minimal cross-term inclusion.

3
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• Develop multiple algorithms for the sparse TFD reconstruction, resulting in a more

reliable and less input dependent approach than the existing approaches.

1.3 Contributions of the Thesis

The original scientific contributions presented in this thesis can be summarized in the

following three points:

• Development of the adaptive algorithm for selection of the compressed sensed area

in the ambiguity function. The samples of the ambiguity function picked by the

here-proposed algorithm ensure the optimal amount of data for the sparse TFD

reconstruction, resulting in a better TFD concentration and a faster sparse recon-

struction algorithm convergence rate (Section 4.1 and Section 5.1).

• Development of the adaptive sparse TFD reconstruction algorithm based on the

fast intersection of confidence intervals rule. The here-proposed fast intersection of

confidence intervals rule has been used as a method for the adaptive selection of

the threshold value in the sparse TFD reconstruction based on the ℓ0 and ℓ1 norm

minimization leading to a faster sparse reconstruction algorithm convergence rate

(Section 4.2.4 and Section 5.2).

• Development of the adaptive sparse TFD reconstruction algorithm based on the

localized Rényi entropy information. The information about the TFD sparsity level

obtained through the localized Rényi entropy has been used in order to enhance

the concentration of the sparse TFD obtained through the ℓ0 norm minimization

(Section 5.3).

1.4 Organization of the Thesis

The thesis is organized in six chapters and four appendices. The short overview of the

thesis chapters is given below.

• Chapter 1 gives a motivation behind this thesis. It summarizes the main objectives

and the original scientific contributions of this thesis. The thesis organization and

the short review through thesis chapters are also given.

• Chapter 2 introduces the basic concepts of the time-frequency signal processing

and its advantages over the one dimensional signal processing in time and frequency

domain. The concept of the ideal TFD and its properties are discussed, followed by

the review of the classical numerical methods for the TFD calculation. Special im-

portance is given to the quadratic class of the TFDs, in particular, the introduction

of the cross-terms and classical methods of their removal.

4
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• Chapter 3 gives a short overview of the compressive sensing and the signal recon-

struction based on the sparsity constraints. Application of described methods for

the TFD concentration enhancement is described in details, with the special empha-

sis on the sparse reconstruction algorithms based on the ℓ0 norm and the ℓ1 norm

minimization. The state-of-the-art sparse reconstruction algorithms are presented,

and their performance is tested on synthetical and real-life signals.

• Chapter 4 introduces three adaptive methods: the adaptive parallelogram kernel,

the denoising methods based on supplementing the local polynomial approximation

method with the rules derived from the intersection of confidence intervals rule, and

the localized Rényi entropy. The methods are reviewed in their original form and

applications, while Chapter 5 thoroughly describes their application in the context

of the sparse TFD concentration enhancement.

• Chapter 5 presents the main original scientific contributions of this thesis. It

introduces the algorithm for the adaptive selection of the compressive sensing area in

the ambiguity function, and two sparse reconstruction algorithms based on the fast

intersection of confidence intervals rule and the localized Rényi entropy, respectively.

The performance of the here-proposed methods is tested on synthetical and real-life

signals, and the obtained results are compared to the results obtained in Chapter

3, corresponding to the state-of-the-art TFD reconstruction methods.

• Chapter 6 summarizes the key conclusions of this thesis and outlines directions for

the future research based on the work and results presented in the thesis.

The methods proposed in this thesis have been implemented in the MATLAB with

the time-frequency toolbox1, and the here-developed algorithms are given in Appendices

B - D as MATLAB functions.

1 Available at: http://tftb.nongnu.org/
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Chapter 2

Time-Frequency Signal

Representations

In this chapter necessity of the joint time-frequency representation and its advantages over

the one-dimensional time or frequency signal representation are discussed. Furthermore,

the concept of the ideal TFD is introduced, and the properties of the ideal TFD are

reviewed.

The classical numerical methods for the TFD calculation, like the short time Fourier

transformation, and the Wigner-Ville distribution are introduced. The necessity of the

TFD performance evaluation is discussed and importance of the TFD optimization is ad-

dressed. In addition, the more complex TFD calculation methods are reviewed, including

separable and adaptive kernel design. All of the discussed methods are substantiated by

examples on synthetical and real-life signals.

2.1 Time-Frequency Concepts

2.1.1 Motivation

Signals in terms of their frequency content can generally be divided into stationary and

non-stationary signals. In the case of stationary signals, that is, signals with the constant

frequency content, the one-dimensional signal processing is an adequate analysis tool,

providing insight into signal energy in either the time or frequency domain, which are

connected through the Fourier transformation, denoted as F{·}, and its inverse, denoted

7



Ivan Volarić TF Domain Signal Enhancement Using Adaptive CS

as F−1{·}:

Z(f) = F{z(t)} =
∞∫

−∞

z(t)e−j2πftdt, (2.1a)

z(t) = F−1{Z(f)} =
∞∫

−∞

Z(f)ej2πftdf. (2.1b)

However, in the case of non-stationary signals, that is, signals with the time-varying

frequency content, the one-dimensional signal processing methods are insufficient. In-

stead, the desirable analysis domain for the non-stationary signals is the joint time-

frequency domain, with the components instantaneous frequency laws being their key

non-stationary features. The multi-component non-stationary signals are analytically ex-

pressed as:

z(t) =

Nc∑

i=1

Ai(t)e
jϕi(t), (2.2)

where Nc is the number of non-stationary components, while Ai(t) and ϕi(t) are slowly

varying amplitude and phase content of the signals i-th component, respectively, By

analyzing a TFD one can observe the evolution of signal energy as a function of both

time and frequency, providing additional information about the signal nature.

2.1.2 Ideal Time-Frequency Distribution

Ideal signal TFD, denoted as ρ̂z(t, f), is a set of perfectly localized Dirac delta functions:

ρ̂z(t, f) =
Nc∑

i=1

A2
i (t)δ(f − f0i(t)), (2.3)

where f0i(t) is the instantaneous frequency of the i-th component, calculated as the first

derivative of the component phase [24, 15]:

f0i(t) =
1

2π

dϕi(t)

dt
. (2.4)

Example 2.1. Consider a multi-component non-stationary signal zLFM(t) =
Nc∑
i=1

zi(t) with

8
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Figure 2.1: Considered three LFM component signal, zLFM(t): (a) the signal’s instantaneous power,
|zLFM(t)|2, and its energy spectrum, |ZLFM(f)|2, (b) the signal’s ideal TFD, ρ̂zLFM

(t, f).

Nt = 256 samples, composed of Nc = 3 linear frequency modulated (LFM) components:

z1(t) = 0.5ej2π(0.15t+0.00098t2), (2.5a)

z2(t) = ej2π(0.00117t
2), (2.5b)

z3(t) = 1.5ej2π(0.3t+0.00078t2). (2.5c)

The signal’s instantaneous power, |zLFM(t)|2, and its energy spectrum, |ZLFM(f)|2 are

shown in Fig. 2.1(a). By observing both of the domains, it can be easily seen that neither

representation gives an insight into nature of the considered signal. However, by applying

(2.3) and (2.4) to the signal analytical expression (2.5c), the signal’s ideal TFD, shown in

Fig. 2.1(b), can be calculated as:

ρ̂zLFM
(t, f) = 0.25δ(f − (0.15 + 0.00196t))︸ ︷︷ ︸

ρ̂z1 (t,f)

+

+ δ(f − 0.00234t)︸ ︷︷ ︸
ρ̂z2 (t,f)

+2.25δ(f − (0.3 + 1.00156t))︸ ︷︷ ︸
ρ̂z3(t,f)

.
(2.6)

The advantages of the joint time-frequency signal representation over the separate time

and frequency signal representation are obvious: time and frequency domain do not pro-

vide information about the number of signal components, their amplitudes or their du-

rations, while in the joint time-frequency domain all of the signal features are clearly

visible.

Example 2.2. Consider a two component non-stationary signal, znonLFM(t) =
Nc∑
i=1

zi(t),
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Figure 2.2: Considered two component signal, znonLFM(t): (a) the signal’s instantaneous power,
|znonLFM(t)|2, and its energy spectrum, |ZnonLFM(f)|2, (b) the signal’s ideal TFD, ρ̂znonLFM

(t, f).

composed of the LFM and the sinusoidal frequency modulated component:

z1(t) = ej2π(0.05t+0.00059t2), (2.7a)

z2(t) = ej(0.7πt+19.2 sin(0.049t−π/2)). (2.7b)

The signal’s instantaneous power, |znonLFM(t)|2, and its energy spectrum, |ZnonLFM(f)|2
are shown in Fig. 2.2(a), while its ideal TFD is shown in Fig. 2.2(b), and has been

calculated as:

ρ̂znonLFM
(t, f) = δ(f − (0.05 + 0.00118t))︸ ︷︷ ︸

ρ̂z1 (t,f)

+ δ(0.35 + 0.15 cos(0.049t− π/2))︸ ︷︷ ︸
ρ̂z2 (t,f)

. (2.8)

In most real-life applications, the signal analytical form is impossible to obtain, hence

the procedure described in Example 2.1 and Example 2.2 can not be used. Instead,

numerical methods for the TFD calculation have been developed, each one with its own

advantages and limitations, which will be discussed in the sequel of this chapter.

2.1.3 Properties of Ideal Time-Frequency Distribution

As it can be concluded from (2.3), the TFDs are energy distributions, because of the

term A2
i (t). As an energy distribution, following properties are desirable for TFD to have

[24, 15]:
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1. Realness and positivity. Energy must be real and positive:

ρ̂z(t, f) = ρ̂∗z(t, f), (2.9a)

ρ̂z(t, f) > 0. (2.9b)

2. Time-shift invariance. A time shift in the signal produces the same time shift in

the TFD, that is:

z1(t) = z(t− t0) =⇒ ρ̂z1(t, f) = ρ̂z(t− t0, f). (2.10)

3. Frequency-shift invariance. A frequency shift in the signal produces the same

frequency shift in the TFD, that is:

z1(t) = z(t)ej2πf0t =⇒ ρ̂z1(t, f) = ρ̂z(t, f − f0). (2.11)

4. Time marginal. Instantaneous power, |z(t)|2, is obtained by integration of the

TFD w.r.t. frequency:

∞∫

−∞

ρ̂z(t, f)df = |z(t)|2. (2.12)

5. Frequency marginal. Energy spectrum, |Z(f)|2, is obtained by integration of the

TFD w.r.t. time:

∞∫

−∞

ρ̂z(t, f)dt = |Z(f)|2. (2.13)

6. Global energy. Total energy, Ez, is obtained by integration of the TFD over the

entire (t, f) plane:

∞∫

−∞

∞∫

−∞

ρ̂z(t, f)dtdf =

∞∫

−∞

|z(t)|2dt =
∞∫

−∞

|Z(f)|2df = Ez. (2.14)

7. Instantaneous frequency. Instantaneous frequency is calculated as the first mo-

ment of the TFD w.r.t. frequency:

∞∫
−∞

f ρ̂z(t, f)df

∞∫
−∞

ρ̂z(t, f)df

=
1

2π

d

dt
[arg(z(t))]. (2.15)
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8. Time Delay. Time delay is calculated as the first moment of the TFD w.r.t. time:

∞∫
−∞

tρ̂z(t, f)dt

∞∫
−∞

ρ̂z(t, f)dt

= − 1

2π

d

df
[arg(Z(f))]. (2.16)

2.1.4 Signal Analytic Associate

It is well known that the frequency spectrum o the real signal, s(t) ∈ R will exhibit the

Hermitian symmetry, that is:

S(−f) = S∗(f), (2.17)

thus the negative frequencies can be eliminated without any information loss. The signal

without the negative frequencies, denoted as z(t):

Z(f) = 0, for f < 0, (2.18)

is an analytic associate of the signal s(t). Note that the generalized multi-component

signal, given in (2.2) and the signals zLFM(t) and znonLFM(t) defined in Example 2.1 and

Example 2.2 do not contain the negative frequencies, as it is visible in Figs. 2.1(a) and

2.2(a), thus they are analytical associates, and furthermore, all signals in the sequel of

this thesis will also be defined in their analytical associate form.

When the signal is defined in the analytical associate form, the mathematical complex-

ity of the numerical TFD calculation is reduced, especially when dealing with the QTFDs,

discussed later in Section 2.3, as it eliminates the cross-terms between the positive and

the negative frequencies.

The analytic associate, z(t), of the signal s(t) is calculated as [24, 15]:

z(t) = s(t) + jH{s(t)}, (2.19)

where the operator H{·} denotes the Hilbert transformation:

H{s(t)} = F−1 {(−j sgn(f))F{s(t)}}

= s(t) ∗ 1

πt
,

(2.20)
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where sgn(·) is a signum function, defined as:

sgn(ξ) =





−1, ξ < 0,

0, ξ = 0,

1, ξ > 0.

(2.21)

2.2 Linear Time-Frequency Distributions

One of the simplest and most straight-forward numerical methods for the TFD calculation

are the linear time-frequency distributions. As the most commonly used representative of

this TFD class, the short-time Fourier transformation (STFT) is reviewed in this section.

The general idea behind the STFT is to obtain a time dependency by multiplying the

signal z(τ) with the window function w(τ), centered at a time instance τ = t, and calculate

a Fourier transformation at each time instance individually. Analytically, the STFT can

be expressed as [24, 15]:

STFTz(t, f) =

∞∫

−∞

z(τ)w(τ − t)e−j2πfτdτ. (2.22)

The key parameter in the STFT calculation is the window length, denoted as ∆t,

and the window shape. With the window length of ∆t = 1 sample, the STFT will have

the best possible time resolution, however the Fourier transformation will produce only

1 sample, thus having the lowest possible frequency resolution. On the other hand, with

the window size equal to number of the available samples, ∆t = Nt, the window function

becomes w(τ) = 1, and the STFT will be equal to the simple one-dimensional Fourier

transformation, having the highest possible frequency resolution, but the lowest possible

time resolution. Both discussed window lengths are the worst-case scenarios, each one

in its own way; however, any window length between these two extremities, involves a

trade-off between the time resolution and the frequency resolution. Larger window will

have a lower time resolution, but on the other hand will produce more frequency samples,

resulting in a higher frequency resolution, and vice versa, the shorter window will have a

smaller time resolution and a higher frequency resolution.

The most commonly used window functions are listed in Table 2.1. The selection

of the appropriate window type involves a trade-off between resolving a similar strength

components closely located in the frequency domain and resolving a dissimilar strength

components distantly located in the frequency domain (i.e. the rectangular window has

the best resolution when dealing with the closely located components with similar ampli-

tudes; however, due to its spectral properties, i.e. large side-lobes, it is a poor choice for

the more spread-out components with dissimilar amplitudes).
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Example 2.3. In this example, the STFT of the three LFM component signal, zLFM(t),

previously defined in Example 2.1 has been calculated with the rectangular window con-

taining ∆t = {9, 49, 199} samples. The STFT which lacks in frequency resolution (∆t = 9

samples) is shown in Fig. 2.3(a), while on the other hand, the STFT with a poor time

resolution (∆t = 199 samples) is shown in Fig. 2.3(b). Even in the case of the STFT with

an optimal window length (selected experimentally as ∆t = 49 samples), shown in Fig.

2.3(c), it can be seen that the STFT lacks in time-frequency resolution when compared

to the ideal TFD, shown in Fig. 2.1(b)

Note that the STFT, given by (2.22), does not contain a squared amplitude (this is

why it is called a linear distribution), and as such the STFT is not an energy distribution.

In order to obtain an energy distribution one can take a squared magnitude of the STFT,

also called the spectrogram [24, 15]:

SPECz(t, f) = |STFTz(t, f)|2 =

∣∣∣∣∣∣

∞∫

−∞

z(τ)w(τ − t)e−j2πfτdτ

∣∣∣∣∣∣

2

. (2.23)

2.3 Quadratic Time-Frequency Distributions

2.3.1 Wigner-Ville Distribution

To overcome the resolution problems of linear TFDs discussed in Section 2.2, the quadratic

TFDs have been developed. Unlike the STFT, the time dependency in QTFDs is obtained

by multiplying the signal z(t) with its time-shifted complex conjugated copy, z∗(t − τ),
and taking the Fourier transformation of it. This notation is used in some applications

(i.e. radar [47]); however, in the signal processing, the more commonly used notation also

time-shifts the starting signal, z(t+ τ/2), and multiplies it with z∗(t− τ/2). Analytically,

this can be expressed as [24, 15]:

Wz(t, f) =

∞∫

−∞

Rz(t, τ)e
−j2πfτdτ, (2.24)

where Rz(t, τ) is the signal localized autocorrelation function (LACF), calculated as:

Rz(t, τ) = z
(
t+

τ

2

)
z∗
(
t− τ

2

)
. (2.25)

The Wz(t, f) is also known as the Wigner-Ville distribution (WVD) [76, 80], and provides

a perfect localization for a mono-component LFM signal [24, 15].
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Table 2.1: The most commonly used window functions, w(τ).

Window name Window function, w(τ)

Rectangular 1 |τ | < ∆/2

Triangular (Bartlett) 1− 2|τ |
∆

|τ | < ∆/2

Hann(ing) 1
2

[
1 + cos

(
τπ
∆

)]
|τ | < ∆

Hamming 0.54 + 0.46 cos
(
τπ
∆

)
|τ | < ∆

Blackman 0.42 + 0.5 cos
(
τπ
∆

)
+ 0.08 cos

(
2τπ
∆

)
|τ | < ∆

Gaussian e−τ
2/α2 |τ | < ∆/2

Kaiser* I0
[
β
√

1−(τ/∆)2
]

I0(β)
|τ | < ∆

*I0 is the zeroth-order modified Bessel function of the first kind, calculated as:

Iα(x) =
∞∑

m=0

1
m!Γ(m+α+1)

(
x
2

)2m+α
,

where Γ is the Gamma function, an extension of the factorial function for all complex
numbers except for the non-positive integers, calculated as:

Γ(t) =
∞∫
0

xt−1e−xdx.
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Figure 2.3: STFT of the three LFM component signal, zLFM(t), with the window length: (a) ∆t = 9
samples, (b) ∆t = 199 samples, (c) ∆t = 49 samples.
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2.3.2 Time-Frequency Related Domains

By inspecting (2.24) it can be concluded that the time-frequency domain is obtained by

taking a Fourier transformation of the time-lag domain w.r.t. lag. In addition to the

time-frequency domain and the time-lag domain, one can define the doppler-frequency

domain and the doppler-lag domain by taking the appropriate Fourier transformations.

The doppler-frequency domain, also called the spectral autocorrelation function (SAF),

rz(ν, f), is calculated by taking a Fourier transformation of the time-frequency domain

w.r.t. time:

rz(ν, f) =

∞∫

−∞

Wz(t, f)e
−j2πνtdt, (2.26)

while the doppler-lag domain, also called the ambiguity function (AF), Az(ν, τ), is calcu-

lated by taking a Fourier transformation of the time-lag domain w.r.t. time:

Az(ν, τ) =

∞∫

−∞

Rz(t, τ)e
−j2πνtdt. (2.27)

The relationship between the all four time-frequency related domains is shown in Fig. 2.4

by representing the Fourier transformation with the arrows. It is interesting to note that

the relationship between the time-frequency domain and the doppler-lag domain is similar

to the relationship between the one-dimensional time domain and frequency domain; the

slow varying terms in the time-frequency domain are located near the doppler-lag domain

origin, and vice versa, the fast varying terms are located further away from its origin.

(ν, τ)

(ν, f)

(t, f)

(t, τ)

τ →
f t→

ν

t→
ν τ →

f

Figure 2.4: Relationship between the four time-frequency related domains. Arrows represent direction
of the Fourier transformation.
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2.3.3 Multi-component Signals and Cross-terms

The drawback of the WVD takes place when the considered signal has more then one

component. In that case, the signal LACF, given by (2.25), expands into:

Rz(t, τ) =

Nc∑

i=1

zi

(
t+

τ

2

)
z∗i
(
t− τ

2

)

︸ ︷︷ ︸
auto-terms

+

Nc∑

i=1


zi

(
t+

τ

2

) Nc∑

j=1
j 6=i

z∗j
(
t− τ

2

)



︸ ︷︷ ︸
cross-terms

, (2.28)

while the signal WVD, following the quadratic superposition rule, becomes:

Wz(t, f) =
Nc∑

i=1

Wzi(t, f)

︸ ︷︷ ︸
auto-terms

+2
Nc∑

i=1

Nc∑

j=1
j 6=i

Re
{
Wzi,j (t, f)

}

︸ ︷︷ ︸
cross-terms

, (2.29)

where Wzi(t, f) is the WVD of the signal i-th component, while Wzi,j (t, f) is the cross-

WVD between the signal i-th and the signal j-th component. Because of this, Wzi(t, f)

terms are commonly called the auto-terms, while Wzi,j (t, f) terms are commonly called

the cross-terms. The auto-terms have the identical form as (2.25) and they provide useful

information about the components energy. However, as it can be seen from (2.28), the

cross-terms are mathematical byproduct introduced by the LACF’s quadratic nature, and

will appear midway between the each pair of components, as shown in Fig. 2.5(a). Fur-

thermore, the cross-terms oscillate in the time-frequency domain proportional to distance

between the interfering components and have an oscillation direction which is orthogonal

to the straight line connecting the components in question [24, 15].

2.3.4 Ambiguity Function Low-Pass Filtering

Because of their oscillatory nature, the cross-terms are located away from the AF domain

origin with distance equal to the time-frequency distance between the interfering compo-

nents [24, 15], as shown in Fig. 2.5(b). Because of their location, the cross-terms can

be easily filtered out with a two-dimensional low-pass filter. However, in doing so, the

auto-terms get partially filtered out as well, thus reducing the concentration of the signal

components in the time-frequency domain. This filtering problem leads to a trade-off

between the cross-terms suppression and the auto-terms concentration and consequently

leads to a formulation of the quadratic class of the TFDs as [24, 15]:

Az(ν, τ) = Az(ν, τ)g(ν, τ), (2.30a)

ρz(t, f) =Wz(t, f) ∗
t
∗
f
γ(t, f), (2.30b)
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Figure 2.5: Location of the cross-terms and the auto-terms in the: (a) time-frequency domain,
(b) doppler-lag domain.

Table 2.2: Selected TFD kernels in the time-lag domain, the doppler-lag domain, and the doppler-
frequency domain.

Distribution
Kernel

G(t, τ) g(ν, τ) G(ν, f)

WVD [76, 80] δ(t) 1 δ(f)

Levin [51]
1
2

[
δ
(
t+ τ

2

)
+ δ

(
t− τ

2

)]
cos (πντ) 1

2

[
δ
(
f + ν

2

)
+ δ

(
f − ν

2

)]
(Margenau-Hill)

Born-Jordan [49] 1
|2αbjτ | rect

(
t

2αbjτ

)
sinc (2αbjντ)

1
|2αbjν| rect

(
f

2αbjν

)

Sinc [67] τ
αsinc

sinc
(

tτ
αsinc

)
rect

(
ντ
αsinc

)
ν

αsinc

sinc
(

fν
αsinc

)

Rihaczek [60] δ
(
t− τ

2

)
e−jπντ δ

(
f + ν

2

)

Page [55] δ
(
t− |τ |

2

)
e−jπν|τ | 1

2

[
δ
(
f + ν

2

)
+ δ

(
f − ν

2

)]

Choi-Williams [22]
√
πσcw
|τ | e−π

2σcwt2/τ2 e−ν
2τ2/σcw

√
πσcw
|ν| e−π

2σcwf2/ν2

B [8] |τ |βb cosh−2βb t |τ |βb |Γ(βb+jπν)|2
21−2βbΓ(2βb)

− sin(πβb/2)Γ(βb+1)
21−βbΓ(2βb)

Γ(βb+jπν)|2
|πf |βb+1

Modified B [39]
cosh−2βmb t∫∞

−∞
cosh−2βmb ξdξ

|Γ(βmb+jπν)|2
Γ2(βmb)

|Γ(βmb+jπν)|2
Γ2(βmb)

δ(f)

Extended modified B [16]
cosh−2βemb t∫∞

−∞
cosh−2βemb ξdξ

|Γ(αemb+jπτ)|2
Γ2(αemb)

|Γ(βemb+jπν)|2
Γ2(βemb)

|Γ(αemb+jπτ)|2
Γ2(αemb)

cosh−2αemb f∫∞

−∞
cosh−2αemb ξdξ

|Γ(βemb+jπν)|2
Γ2(βemb)
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Figure 2.6: Selected TFD kernels in the doppler-lag domain: (a) magnitude of the Levin kernel, (b) mag-
nitude of the Born-Jordan kernel (αbj = 0.4) (c) magnitude of the Sinc kernel (αsinc = 2), (d) phase of
the Rihaczek kernel, (e) phase of the Page kernel, (f) magnitude of the Choi-Williams kernel (σcw = 1),
(g) magnitude of the B kernel (βb = 0.2), (h) magnitude of the modified B kernel (βmb = 0.2), (i) mag-
nitude of the extended modified B kernel (βemb = 0.25, αemb = 0.1).
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where g(ν, τ) and γ(t, f) are filter functions (also known as kernels), while Az(ν, τ) and

ρz(t, f) are the filtered AF and and the filtered WVD, respectively. One can design an

infinite number of various QTFDs with the various levels of trade-off between the cross-

terms suppression and the auto-terms concentration. The most commonly used kernels

with their respective functions in the time-lag domain, the doppler-lag domain, and the

doppler-frequency domain are listed in Table 2.2, and shown in Fig. 2.6.

Example 2.4. In this example, the selected QTFDs of the three LFM component signal,

zLFM(t), previously defined in Example 2.1, have been calculated. The AF of the con-

sidered signal is shown in Fig 2.7(a), while the resulting QTFDs are shown in Fig. 2.8.

When compared to the optimal STFT, shown in Fig. 2.3(c), the QTFDs higher resolution

can easily be noticed; however, the QTFDs are corrupted with the cross-terms between

the signal components. Note that the first component, z1(t), has been modeled in such

a way that it is located midway between the remaining two components, z2(t) and z3(t),

thus overlaying it with the cross-terms between them, making the first component almost

unidentifiable in the WVD, shown in Fig. 2.8(a). From the visual inspection of Fig. 2.8, it

can be concluded that the best performance among the selected QTFDs has the modified

B distribution, shown in Fig. 2.8(h), since the IF laws of the signal components have a

slow slew rate, thus in the AF, the auto-terms are located along the lag-axis, fitting into

the pass-band of the modified B kernel, shown in 2.6(g).

Example 2.5. In this example, the selected QTFDs of the two component signal, znonLFM(t),

previously defined in Example 2.2, have been calculated. The AF of the considered signal

is shown in Fig. 2.7(b), while the resulting QTFDs are shown in Fig. 2.9. Notice that

the cross-terms in WVD, shown in Fig. 2.9(a), are not only located midway between

the components, but they are also located around the sinusoidal frequency modulated

component. This can be explained by a fact that each TFD point can be considered as

a single component, and the cross-terms will appear between all of them. In case of the
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Figure 2.7: Ambiguity functions of the considered signals: (a) zLFM(t) defined in Example 2.4,
(b) znonLFM(t) defined in Example 2.5, (c) zbat(t) defined in Example 2.6.
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LFM, all of the cross-terms will align with the auto-terms, forming a single continuous

line; however, in case of the non-LFM component, this is not a case, and the cross-terms

appear midway between the each pair of the auto-term points. This is why the cross-terms

are often divided into the inner-terms (cross-terms which are caused by the components

non-linear frequency modulation), and the outer-terms (cross-terms between the compo-

nents). By visual inspection of Fig. 2.9, the best performance among the selected QTFDs

has the extended modified B distribution, shown in Fig. 2.9(a), since the two parameters,

αemb and βemb, provide the independent user control over the kernel spread along the lag

and the doppler axis.

Example 2.6. In this example, the selected QTFDs of the real-life bat (Large Brown Bat,

Eptesicus Fuscus) echolocation signal1, zbat(t), with Nt = 400 samples (signal duration

is t = 2.5 ms, with a sampling period Ts = 4 µs) have been calculated. The AF of

the considered signal is shown in Fig. 2.7(c), while the resulting QTFDs are shown in

Fig. 2.10. The considered signal is composed from three non-LFM components, and it is

commonly used as a benchmark in the time-frequency signal processing. As it was the case

in Example 2.4 and Example 2.5, by visual inspection of Fig. 2.10, the best performing

QTFDs are the modified B distribution, shown in Fig. 2.10(h), and the extended modified

B distribution, shown in Fig. 2.10(i).

2.3.5 Separable Kernel Design

A simple way to design a TFD kernel is to split a two-dimensional kernel into two separable

one-dimensional kernels:

Az(ν, τ) = G1(ν)Az(ν, τ)g2(τ), (2.31a)

ρz(t, f) = g1(t) ∗
t
Wz(t, f) ∗

f
G2(f). (2.31b)

Special cases of the separable kernels are the doppler-independent kernels, with G1(ν) = 1,

that is with g1(t) = δ(t), and the lag-independent kernels, with g2(τ) = 1, that is with

G2(f) = δ(f). Kernel of the extended modified B distribution [16], shown in Fig. 2.6(i),

is an example of a separable kernel, while the kernel of the modified B distribution [39],

shown in Fig. 2.6(h), is an example of a lag-independent kernel. On the other hand, the

WVD with g(ν, τ) = 1, has both a lag-independent and a doppler-independent kernel.

As discussed in Example 2.5, the separable kernel design provides an independent user

control over the kernel spread along the lag and the doppler axis. Because of this, with a

proper selection of the lag and the doppler kernel parameters, a user can control the kernel

1 Available at: http://dsp.rice.edu/sites/dsp.rice.edu/files/software/batsignal.zip. The
author wishes to thank Curtis Condon, Ken White, and Al Feng of the Beckman Institute of the
University of Illinois for the bat data and for permission to use it in this thesis.
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Figure 2.8: Selected QTFDs of the three LFM component signal, zLFM(t): (a) WVD, (b) Levin distribu-
tion, (c) Born-Jordan distribution (αbj = 0.4), (d) Sinc distribution (αsinc = 2), (e) Rihaczek distribution,
(f) Page distribution, (g) Choi-Williams distribution (σcw = 1), (h) Modified B distribution (βmb = 0.2),
(i) Extended modified B distribution (βemb = 0.25, αemb = 0.1).
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Figure 2.9: Selected QTFDs of the two component signal znonLFM(t): (a) WVD, (b) Levin distribution,
(c) Born-Jordan distribution (αbj = 0.4), (d) Sinc distribution (αsinc = 2), (e) Rihaczek distribution,
(f) Page distribution, (g) Choi-Williams distribution (σcw = 1), (h) Modified B distribution (βmb = 0.2),
(i) Extended modified B distribution (βemb = 0.25, αemb = 0.1).
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Figure 2.10: Selected QTFDs of the bat echolocation signal, zbat(t): (a) WVD, (b) Levin distribution,
(c) Born-Jordan distribution (αbj = 0.4), (d) Sinc distribution (αsinc = 2.5), (e) Rihaczek distribution,
(f) Page distribution, (g) Choi-Williams distribution (σcw = 2), (h) Modified B distribution (βmb = 0.2),
(i) Extended modified B distribution (βemb = 0.07, αemb = 0.1).
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shape in the AF to include only the auto-terms, while avoiding the cross-terms. However,

the downside of this approach is the need to have an extensive a priori knowledge about

the nature of the considered signal in order to correctly design a TFD kernel. A separable

two-dimensional TFD kernel can be designed by combining a two one-dimensional window

functions, listed in Table 2.2, one for the lag filtering, and one for the doppler filtering.

2.4 Adaptive Kernel Design

2.4.1 TFD Performance Assessment

As discussed previously, when a signal has the a priori known behaviour, it is possible

to design a TFD kernel which would perfectly capture all of the auto-terms without

inclusion of the cross-terms. However, kernel designed in such a way would have perfect

performance only for that signal, or very similar class of signals. Because there is no

single best performing kernel for all possible applications, a need for the objective TFD

performance assessment has arisen. One way of doing it, is to measure the concentration

of the auto-terms, which can be done through a calculation of the TFD complexity. Jones

and Park [40] proposed the concentration measure, denoted as MJP
z , calculated as a fourth

power of ratio between the TFD ℓ4 norm and the TFD ℓ2 norm, also known as kurtosis:

MJP
z =

||ρz(t, f)||44
||ρz(t, f)||42

, (2.32)

where ||ρz(t, f)||p denotes the TFD ℓp norm, calculated as:

||ρz(t, f)||p =




∞∫

−∞

∞∫

−∞

|ρz(t, f)|p dtdf




1
p

. (2.33)

A higher value of the Jones-Park concentration measure indicates the higher TFD concen-

tration, and vice versa. However, if the signal components have various amplitudes, which

is the case in many real-life applications, the measure can produce high values if the high

amplitude components are highly concentrated, while the low amplitude components are

not. This problem can be reduced by calculating the Jones-Park concentration measure

over a smaller, localized time-frequency region [40]:

MJPL
z (t0, f0) =

∞∫
−∞

∞∫
−∞

Q2(t− t0, f − f0)ρ4z(t, f)dtdf
[ ∞∫
−∞

∞∫
−∞

Q(t− t0, f − f0)ρ2z(t, f)dtdf
]2 , (2.34)
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where Q(t, f) is the localization weighting function used to select a measurement region.

However, the downside of the method is its high dependance on a proper Q(t, f) selection

and its computational requirements.

Stanković [68] proposed an alternative concentration measure for the normalized TFDs,

denoted as MS
z , and calculated as:

MS
z =

1

NtNf




∞∫

−∞

∞∫

−∞

|ρzN (t, f)|
1
ps dtft



ps

, ps > 1. (2.35)

Normalization of the TFDs can be performed in various ways, leading to a different

definitions of the concentration measure. In this thesis, the TFD normalization has been

performed w.r.t. its total energy, resulting in EzN = 1:

ρzN (t, f) =
ρz(t, f)

Ez
=

ρz(t, f)
∞∫

−∞

∞∫
−∞

ρz(t, f)dtdf

. (2.36)

The smaller the MS
z value is, the higher TFD concentration is achieved, and vice versa.

Furthermore, the measure proposed by Stanković does not suffer from the same problem

as the previously discussed Jones-Park concentration measure, in case when the signal

components have different amplitudes. In order to achieve the robustness of the concen-

tration measure, it has been recommended in [68] to use a low order form (e.g. with

ps = 2), since in general, there are no sharp edges between the zero and non-zero TFD

values, hence the proposed measure would be more sensitive to smaller TFD values when

a higher order form is used.

Alternative way to calculate a measure of the TFD complexity is with the Rényi

entropy, denoted as Rαr

z , and calculated as [81, 6]:

Rαr

z =
1

1− αr

log2




∞∫

−∞

∞∫

−∞

ραr

zN
(t, f)dtdf


 , αr > 2, (2.37)

where the parameter αr is order of the Rényi entropy. The Rényi entropy has a larger

values for the less concentrated TFDs, and vise versa. It has been shown in [6] when

choosing αr to be an odd integer, the oscillatory cross-terms are cancelled under integra-

tion, thus the Rényi entropy counts only information originating from the auto-terms. In

TFD applications, the 3rd order Rényi entropy is commonly used [81, 6].

Example 2.7. In this example, the concentration measures given by the (2.32), (2.35),

and (2.37) with ps = 2 and αr = 3 have been calculated for the selected QTFDs of signals

zLFM(t), znonLFM(t), and zbat(t) previously defined in Examples 2.4 - 2.6. The results are

presented in Table 2.3, along with the concentration measures of the ideal signal TFDs
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Table 2.3: Concentration measures MJP
z , Rαr

z , and MS
z of the three component LFM signal, zLFM(t),

the two component, znonLFM(t), and the bat echolocation signal, zbat(t). The bold value indicates the
best performing TFD according to the respective measure for the considered signal.

zLFM(t) znonLFM(t) zbat(t)

MJP
z Rαr

z MS
z MJP

z Rαr

z MS
z MJP

z Rαr

z MS
z

·104 αr = 3 ps = 2 ·104 αr = 3 ps = 2 ·104 αr = 3 ps = 2

Ideal 19.6078 9.2568 0.0111 19.6078 8.9944 0.0078 − − −
WVD 5.3164 9.8680 3.1258 2.4245 10.3746 4.6003 3.8479 10.8951 2.0656

Levin 0.6766 12.0980 4.2220 0.9008 12.0779 3.9331 0.6549 12.4221 2.5702

Born-Jordan 2.4248 11.8764 1.4278 2.1967 11.9253 1.6491 2.5431 11.9996 0.9127

Sinc 2.7659 11.3981 2.0831 2.1684 11.5066 2.3329 2.8403 11.5626 1.5561

Rihaczek 0.6615 12.0711 4.4520 0.8468 12.0333 4.3354 0.6526 12.4315 2.6449

Page 0.8698 11.7608 4.9469 1.3271 11.4657 4.9866 0.8441 11.9832 3.1353

Choi-Williams 3.0344 11.7513 1.1793 2.5217 11.7957 1.4661 3.4363 11.6805 0.8181

B 7.6235 11.2217 0.7890 4.7245 11.8499 1.0676 4.5044 11.4664 0.6511

Modified B 7.5494 11.1341 0.8793 4.6801 11.8070 1.1135 4.4024 11.4231 0.6868

Extended modified B 2.2874 13.1718 0.5283 2.5938 13.4071 0.5168 2.3139 13.2663 0.2893

RGK-TFD 22.3985 10.3326 0.3203 23.1350 10.7851 0.7507 14.5322 9.7164 0.5270

(highlighted row), which are the best obtainable measure values for the given signal.

Since the Rényi entropy does not take into account the cross-terms, the best perform-

ing TFD is selected as the one with the most concentrated auto-terms. As discussed in

Section 2.3.4, the WVD has the best concentration, and other TFDs are derived through

a low-pass filtering, resulting in the lower auto-terms concentration, but better cross-term

suppression, hence, the Rényi entropy will always favour the WVD as the best perform-

ing TFD. As it can be seen from the obtained results, the remaining two concentration

measures select a different kernel as the optimal one; however, by visual inspection of

the calculated QTFDs, shown in Figs. 2.8 - 2.10, it can be concluded that the concen-

tration measure proposed by Stanković achieves the best result among the considered

concentration measures.

Because of the issues described in Example 2.7, the problem of objective TFD per-

formance assessment is an ongoing topic of research. A more detailed measure which

takes into account the auto-terms and the cross-terms geometry is presented in [17]. The

best performing TFD can be found by solving an optimization problem with the selected

TFD performance measure being an objective function which needs to be minimized or

maximized, depending on the selected measure. An example of such optimization is the

adaptive STFT with the Gaussian window calculated as [40]:

wt,f(τ) = (−2Re{ct,f}/π)1/4 exp[ct,f (τ − t2)]e−j2πfτ , (2.38)

where ct,f is parameter calculated by selecting (2.34) as an objective function of the

optimization problem.
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2.4.2 Optimal Radially Gaussian Kernel

Baraniuk and Jones [5] developed a method for finding an optimal kernel, gopt(ν, τ), by

solving the optimization problem with the objective function defined as:

gopt(ν, τ) = arg max
g(ν,τ)

∞∫

−∞

∞∫

−∞

|Az(ν, τ)g(ν, τ)|2dτdν, (2.39)

with the following constraints ensuring that the kernel has properties of the low-pass filter:

g(0, 0) = 1, (2.40a)

g(r1, ψ) ≥ g(r2, ψ), ∀r1 < r2, ∀ψ, (2.40b)
∞∫

−∞

∞∫

−∞

|g(ν, τ)|2dτdν ≤ αrgk, αrgk ≥ 0, (2.40c)

where (ri, ψ) are the AF polar coordinates, while the parameter αrgk controls the volume

under the kernel, that is, a trade-off between the auto-terms concentration and the cross-

terms suppression (with αrgk →∞, the kernel becomes the WVD kernel, i.e. g(ν, τ) = 1).

Maximizing the objective function (2.39) will ensure that signal auto-terms are located

in the gopt(ν, τ) pass-band, without their energy being attenuated. The reason behind this

is the fact that the cross-terms total energy is zero, that is:

∞∫

−∞

∞∫

−∞

Wzi,j (t, f)dtdf = 0, (2.41)

thus all of the signal energy is concentrated in the auto-terms. The solution of the

optimization problem gives 1/0 values, and this is why the kernel obtained by (2.39)

is referred as the 1/0 kernel. However, the downside of the 1/0 kernel are sharp edges

between the kernel pass-band and stop-band, which may cause a Gibbs phenomenon (i.e.

ringing artifacts). This effect can be negated by forcing the kernel to be smooth with a

Gaussian function [4]:

g(ν, τ) = e−(ν2+τ2)/2σ2(ψ), (2.42)

where σ(ψ) is the spread function, which controls the kernel spread along the radial angle

ψ. The kernel obtained by the (2.42) is referred as the Radially Gaussian Kernel (RGK)2.

Example 2.8. In this example, the RGKs, and the associated TFDs of the previously de-

fined signals zLFM(t), znonLFM(t), and zbat(t) have been calculated. The results are shown

2 Available at: http://www.ece.rice.edu/dsp/software/TFA/RGK/rgk.tar.Z
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Figure 2.11: Performance of the optimal radially Gaussian kernel: (a)-(c) the RGK, the non filtered AF,
and the associated TFD (MS

z

∣∣
ps=2

= 0.3203, Rαr

z |αr=3 = 10.3326) of the three LFM component signal,

zLFM(t), respectively; (d)-(f) the RGK, the non filtered AF, and the associated TFD (MS
z

∣∣
ps=2

= 0.7507,

Rαr

z |αr=3 = 10.7851) of the two component signal, znonLFM(t), respectively; (g)-(i) the RGK, the non

filtered AF, and the associated TFD (MS
z

∣∣
ps=2

= 0.5270, Rαr

z |αr=3 = 9.7164) of the bat echolocation

signal, zbat(t), respectively.

29



Ivan Volarić TF Domain Signal Enhancement Using Adaptive CS

in Fig. 2.11, with the kernel volume parameter selected as αrgk = 5, while the concen-

tration measures of the resulting TFDs have been shown in Table 2.3. When compared

to the non-adaptive TFDs calculated in Examples 2.4 - 2.6 the performance of the RGK

is significantly better; however, it is not perfect. For the three LFM component signal,

zLFM(t), the RGK followed the auto-terms of the two strongest components, but missed

to capture the weakest component, as shown in Fig. 2.11(c). On the other hand, in case

of the two component signal, znonLFM(t), the RGK captured a LFM component, however

it missed the sinusoidal frequency modulated component, as shown in Fig. 2.11(f).

2.5 Summary

In this chapter, advantages of the joint time-frequency signal representation over the one-

dimensional time and frequency signal representation have been shown on the synthetical

(zLFM(t) and znonLFM(t)) and real-life (zbat(t)) signals. Properties of the ideal TFD have

been reviewed, and the classical numerical methods for the TFD calculation have been

introduced. The more advanced adaptive TFD calculation methods have been discussed,

and necessity of the objective TFD performance assessment and the TFD optimization

has been addressed.
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Chapter 3

Compressive Sensing and Sparse

Filtering

In this chapter, the advantages and disadvantages of the CS approach over the classi-

cal sampling approach dictated by the Shannon-Nyquist sampling theorem are discussed.

Short overview of the CS related research is given, and application for the TFD concentra-

tion enhancement is thoroughly described. The key conditions which have to be satisfied

in order to guaranty the meaningful solution of the sparse signal reconstruction and their

TFD related implications are discussed.

Furthermore, the sparse signal reconstruction based on the ℓ0 norm, the ℓ1 norm, and

the ℓ2 norm minimization is described in details, and associated state-of-the-art sparse

reconstruction algorithms are introduced. The state-of-the-art sparse signal reconstruc-

tion algorithms are modified and tested for the reconstruction of the sparse TFDs of

synthetical and real-life signals.

3.1 Introduction

3.1.1 Motivation

The continuous-time and the discrete-time signals are connected through a process called

sampling, which implies a periodical selection of samples from the continuous-time signal

with a sampling period Ts, that is:

ss(t) = s(t)

∞∑

n=−∞
δ(t− nTs), (3.1)
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where ss(t) is the sampled continuous-time signal. The Fourier transformation of this

signal can be calculated as:

Ss(f) = F
{
s(t)

∞∑

n=−∞
δ(t− nTs)

}
= S(f) ∗ F

{ ∞∑

n=−∞
δ(t− nTs)

}

= S(f) ∗ 1

Ts

∞∑

n=−∞
δ(f − nfs) =

1

Ts

∞∑

n=−∞
S(f − nfs),

(3.2)

which states that the spectrum of the discrete-time signal is composed of infinite copies of

the continuous-time signal spectrum repeating itself every sampling frequency fs = 1/Ts.

If a signal of bandwidth B, is sampled with a sampling frequency fs ≥ 2B, the original

continuous-time signal can be easily reconstructed by singling-out the spectrum copy for

n = 0, by means of the low-pass filter with a cut-off frequency fs/2. However, in case

when a signal is sampled with a sampling frequency fs < 2B, the signal reconstruction is

not possible, since the spectrum copies overlap with each other, making extraction of a

single spectrum copy impossible. This effect is called the aliasing, and can be avoided by

a proper selection of the sampling frequency as fs ≥ 2B. The criterium fs ≥ 2B is well

known as the Shannon-Nyquist sampling theorem, while the frequency fN = 2B is called

the Nyquist frequency.

In some special cases, when the signal behaviour is a priori known, the Shannon-

Nyquist sampling theorem can be circumvented, allowing sampling with the sub-Nyquist

frequencies. Recently developed sampling methods exploit the signal sparsity, which

means that the signal can be represented in a certain domain with K non-zero coeffi-

cients, where K << Nt. For example, a sinusoidal signal can be represented with only

one sample in the frequency domain. Most signals are non-sparse in the domain of interest,

but can become sparse (or approximately sparse) by applying a domain transformation.

The sparse domain is then used as the a priori knowledge, allowing signal undersampling,

also called the compressive sensing. Traditionally, CS implies signal undersampling with

samples randomly picked [27, 3, 20, 48]; however, the samples can be picked to favour

specific signal features, while discarding the others [69, 64, 65].

Compressive sensing has a number of advantages, primarily the sampling hardware

requirements can be eased considerably and the CS signals require less storage space.

However, the CS benefits are gained in expense of the sparse signal reconstruction al-

gorithm mathematical complexity. Reconstruction of the traditionally sampled signal,

as already mentioned, involves only a low-pass filter, while on the other hand, the CS

signal reconstruction involves a specially designed iterative algorithms for solving a un-

constrained linear optimization problem.
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3.1.2 Compressive Sensing Development and Applications

Presumably, the first contribution to the sparse signal recovery has been reported in [57]

as far back as 1795 by the French mathematician de Prony. The method decomposed

a nonharmonic trigonometric sum: y(t) =
∑N

j=1 xje
2πifjt into its basic components by

finding the frequencies fj ∈ R and the associated amplitudes xj ∈ C. In modern times,

the empirical beginnings of the sparse signal recovery can be traced back to the late

1970’s, when the sparse signal reconstruction algorithm has been successfully employed in

the reflection seismology, in order to calculate a sparse reflection between the subsurface

layers [23, 73]. At the same time, a similar method has been applied in radio astronomy

for the aperture synthesis [37]. In the late 1980’s, a method for the sparse signal recovery

has been used in the spectroscopy [63] and in the nuclear magnetic resonance (NMR)

spectroscopy [9] in order to recover a spectrum of the undersampled signal. In image

processing, the sparse signal recovery methods have been used in order to remove noise

from the heavily noise corrupted images, dating back to the early 1990’s [62]. The sparsity

based method has also been used in the statistics as the least absolute shrinkage and

selection operator (LASSO) [74].

The common idea in all of the above discussed applications is to a solve system of

under-determined equations with the ℓ1 norm minimization in the sparse domain. How-

ever, the reason behind the method effectiveness at that time were unknown. The major

breakthrough in the field of sparse signal recovery has been reported in [21], by giving a

mathematical proof behind the method effectiveness and introducing the restricted isome-

try property (RIP) (initially called the uniform uncertainty principle). In the same paper,

it has been shown that the Fourier matrices satisfy this property, opening a wide appli-

cation in the field of signal processing. The initial paper has been followed by [27, 26], in

which the term compressive sensing has been formulated.

The CS has already had a significant impact in the various fields, although the major

breakthrough point of the CS related research happened not so long ago and it is still an

ongoing topic of research. Some of the more impactful CS applications are listed in the

sequel of this section.

• Sparse approximation. Sparse signal approximation methods for various signal

types have been developed before the introduction of CS, and they are the fundamen-

tal basis in most of the modern compression methods. The idea behind the sparse

approximation is to find a certain domain in which the observed signal is sparse (or

approximately sparse) and store only a small number of the highest value samples

in the sparse domain. Original signal can be then approximated by returning the

stored samples to the original observation domain. Most of the modern compression

techniques (e.g. JPEG, MPEG, MP3, etc.) work in this way, for example a wavelet

transformation provides a good sparse representation of images, while a Gabor ex-
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pansion is suitable for the audio signals. Example of image approximation using the

wavelet coefficients is shown in Fig. 3.1.

• Signal acquisition. The previously discussed sparse approximation method de-

scribes a typical up-to-date acquisition and storage system. First, the full set of

signal samples is measured, and then most of the samples are discarded in the

sparse domain through the signal compression. The CS theory provides an alterna-

tive approach to such a wasteful acquisition system. Instead of acquiring a full set

of the signal samples (which is a strain on the acquisition hardware), only a small

subset of the signal samples is measured, enough to reconstruct the most significant

samples in the sparse domain. Example of such system is the single-pixel camera

[28], and the CMOS image sensor with the programmable CS [53].

• Medical imaging. In the similar way, the CS has been successfully implemented in

the magnetic resonance imaging (MRI) [48, 75], and the computed tomography (CT)

[7], allowing the faster signal acquisition (some MRI scans can take up to few hours),

and patients are exposed to a lower amount of radiation (the main problem in the

CT acquisition is a trade-off between the CT quality and the radiation exposure).

In a similar way, the CS is implemented in the related problems of spectroscopy [63]

and NMR spectroscopy [9, 70].

In the field of time-frequency signal processing, the CS based methods have been used

in radar systems in order to enhance their resolution [56, 66]. The similar problem is

formulated in sonar [45] and in wireless communication networks [38]. Furthermore, the

CS has also been used in astrophysics for the gravitational wave data analysis [1], in

geophysics for the hydrocarbon detection [33], in medical imaging for the high resolution

EEG [35], etc. Application of CS for the TFD concentration enhancement, explored in

(a) (b) (c)

Figure 3.1: Image compression using the wavelet coefficients: (a) original uncompressed image,
(b) wavelet coefficients (Symlets 8, decomposition level 5), (c) obtained image by taking only a 1%
of the highest value wavelet coefficients (99% of the wavelet coefficients are set to zero).
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the [30, 69, 54, 78, 31, 77] is topic of this thesis, and it is more thoroughly discussed in

the continuation of this chapter.

3.2 Compressive Sensing for TFD Concentration En-

hancement

3.2.1 Compressed Sensed Ambiguity Function

Ideal TFDs are inherently sparse (as shown in Fig. 2.1(b)), since they are composed from

the components IFs, thus requiring only one sample per component and frequency bin,

that is: Nc ·Nt << Nf ·Nt samples in total, hence the CS and the sparse filtering can be

utilized. The CS-AF, A′
z(ν, τ), also known as the observation or measurement matrix, is

formulated as:

A′
z(ν, τ) = φ(ν, τ)⊙Az(ν, τ), (3.3)

where the operator ⊙ denotes a element-by-element matrix multiplication, Az(ν, τ) is the

matrix representation of the AF, and φ(ν, τ) is the sensing matrix. Unlike the previously

discussed CS applications in which the sensing matrix randomly picks a small subset of

the original data, in the TFD related applications the CS area is chosen in such a way

which does not contain the cross-terms. Thus, the sensing matrix defines the N ′
ν × N ′

τ

area Ω around the AF plane origin:

φ(ν, τ) =

{
1, (ν, τ) ∈ Ω,

0, otherwise.
(3.4)

The sensing matrix defined in this way discards the highly oscillatory cross-terms located

away from the AF domain origin, while preserving the auto-terms located closer to the

AF origin. Proper selection of N ′
τ and N ′

ν is crucial for TFD localization and cross-terms

suppression. Too few samples will reduce time-frequency localization, which results in a

blurred TFD. With too many samples, on the other hand, the CS-AF area will contain

the cross-terms along with the auto-terms, resulting in a cross-term corrupted TFD. Most

authors use a square CS-AF area with N ′
τ = N ′

ν ≈
√
Nt samples [64, 18, 30], which gives:

card(A′
z(ν, τ)) ≈ Nt, where the operator card(x) denotes the cardinality of x, that is a

number of non-zero elements in x.

In the standard CS notation, matrix multiplication is commonly used to define a

connection between the observation and solution matrices, thus from (2.27) and (3.3):

A′
z(ν, τ) = W(ν, t) · ϑz(t, f) ·WH

i (τ, f) = ψ · ϑz(t, f), (3.5)
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where ϑz(t, f) is a matrix representation of the sparse TFD reconstructed from the CS-

AF, the operator ·H denotes the Hermitian transpose, while W(ν, t) and Wi(τ, f) are

matrices representing a Fourier transformation and its inverse, respectively, defined as:

W(ν, t) =




1 1 1 · · · 1

1
(
e−2πi/Nν

)1 (
e−2πi/Nν

)2 · · ·
(
e−2πi/Nν

)Nt−1

1
(
e−2πi/Nν

)2 (
e−2πi/Nν

)4 · · ·
(
e−2πi/Nν

)2(Nt−1)

...
...

...
. . .

...

1
(
e−2πi/Nν

)Nν−1 (
e−2πi/Nν

)2(Nν−1) · · ·
(
e−2πi/Nν

)(Nν−1)(Nt−1)




, (3.6a)

Wi(τ, f) =
1

Nτ




1 1 1 · · · 1

1
(
e2πi/Nτ

)1 (
e2πi/Nτ

)2 · · ·
(
e2πi/Nτ

)Nf−1

1
(
e2πi/Nτ

)2 (
e2πi/Nτ

)4 · · ·
(
e2πi/Nτ

)2(Nf−1)

...
...

...
. . .

...

1
(
e2πi/Nτ

)Nτ−1 (
e2πi/Nτ

)2(Nτ−1) · · ·
(
e2πi/Nτ

)(Nτ−1)(Nf−1)




, (3.6b)

and ψ is a domain transformation matrix, representing a two-dimensional Fourier trans-

formation ψ = W(ν, t)⊗Wi(τ, f), where the operator ⊗ denotes the Kronecker product,

defined as:

ψ = W(ν, t)⊗Wi(τ, f) =




w11Wi(τ, f) w12Wi(τ, f) · · · w1Nt
Wi(τ, f)

w21Wi(τ, f) w22Wi(τ, f) · · · w2Nt
Wi(τ, f)

...
...

. . .
...

wNν1Wi(τ, f) wNν2Wi(τ, f) · · · wNνNt
Wi(τ, f)




=




w11wi11 w11wi12 · · · w11wi1Nf
· · · · · · w1Nt

wi11 w1Nt
wi12 · · · w1Nt

wi1Nf

w11wi21 w11wi22 · · · w11wi2Nf
· · · · · · w1Nt

wi21 w1Nt
wi12 · · · w1Nt

wi2Nf

...
...

. . .
...

...
...

. . .
...

w11wiNτ1 w11wiNτ2 · · · w11wiNτNf
· · · · · · w1Nt

wiNτ1 w1Nt
wiNτ2 · · · w1Nt

wiNτNf

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

wNν1wi11 wNν1wi12 · · · wNν1wi1Nf
· · · · · · wNνNt

wi11 wNνNt
wi12 · · · wNνNt

wi1Nf

wNν1wi21 wNν1wi22 · · · wNν1wi2Nf
· · · · · · wNνNt

wi21 wNνNt
wi22 · · · wNνNt

wi2Nf

...
...

. . .
...

...
...

. . .
...

wNν1wiNτ1 wNν1wiNτ2 · · · wNν1wiNτNf
· · · · · · wNνNt

wiNτ1 wNνNtnwiNτ2 · · · wNνNtnwiNτNf




.

(3.7)

Kronecker product usually results in a very large matrices, as it can be seen from (3.7).

The two-dimensional Fourier transformation matrix, ψ = W(ν, t)⊗Wi(τ, f), is a matrix

containing NνNt × NτNf elements, which if implemented in such a way would require

significant computational power and storage space. This is why, in most practical real-

izations, ψ and its inverse, ψH are implemented as functions, resulting in a significantly
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faster algorithms [29, 2]. In this thesis multiplication with ψ and its inverse ψH are im-

plemented as a MATLAB functions, fun_ambi2tf.m and fun_tf2ambi.m, the codes of

which are given in Appendix A.

Since A′
z(ν, τ) has cardinality of card(A′

z(ν, τ)) = N ′
ν · N ′

τ samples, and ϑz(t, f) has

cardinality of card(ϑz(t, f)) = Nt · Nf samples, where N ′
ν · N ′

τ << Nt · Nf , the system

(3.5) is under-determined, thus ϑz(t, f) can have an infinite number of possible solutions

and the goal of the sparse reconstruction algorithm is to find the optimal solution to:

ϑz(t, f) = ψ
H ·A′

z(ν, τ) = ψ
H · [φ(ν, τ)⊙Az(ν, τ)] . (3.8)

3.2.2 Restricted Isometry and Mutual Incoherence Conditions

In this section two main conditions for a successful reconstruction of the sparse signals

are discussed: the restricted isometry property, and the mutual incoherence between the

sensing and domain transforming matrices. The mathematical background behind these

two conditions has been given in [21, 27], while discussion in this section is focused on

their implications in the standard and TFD related applications.

In the standard CS formulation, which implies a random selection of samples, the

number of selected samples is dictated by the RIP condition [21]. By enforcing the RIP

condition, the CS-AF area size should contain card(A′
z(ν, τ)) ≈ NcNt log(NtNf ) sam-

ples, with the lower limit of card(A′
z(ν, τ)) ≈ NcNt log(Nf/Nc) samples [21, 20, 61, 30].

However, in the TFD related applications the goal is not to exactly reconstruct a start-

ing TFD, since this would result in the cross-term corrupted WVD. Instead, the goal

is to obtain a new WVD-like TFD, but with highly suppressed cross-terms and local-

ized auto-terms. This is a reason why the RIP condition in the TFD related applica-

tions is not enforced, and the CS-AF area used in literature, containing approximately

card(A′
z(ν, τ)) ≈

√
Nt ×

√
Nt = Nt samples, is of the order lower than the number of

samples dictated by the RIP condition.

Furthermore, in the standard CS approaches it is imperative that the matrices ψ and

φ(ν, τ) have a low mutual coherence in order to guaranty a meaningful solution of the

sparse reconstruction [27, 20]. The mutual coherence is calculated as the largest cross-

correlation between any two elements of matrices ψ and φ(ν, τ), that is:

µ (φ(ν, τ),ψ) = max
i 6=j

|〈φi(ν, τ),ψj〉|
||φi(ν, τ)||2 ||ψj||2

. (3.9)

With regards to matrix: Υ = ψ ·φ(ν, τ), the mutual coherence is calculated as the largest

element of the normalized Gramian matrix ΥHΥ [26], that is:

µ(Υ) = max
i 6=j

|〈Υi,Υj〉|
||Υi||2 ||Υj||2

. (3.10)
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The reason behind a low mutual coherence requirement between the matrices ψ and

φ(ν, τ) is to ensure that the signal is not sparse in the sensing domain, that is, to ensure

that both ϑz(t, f) and Az(ν, τ) are not sparse. This condition is of vital importance

for the CS, because sampling in a sparse domain will very likely result that most of

the selected samples are equal to zero, providing very little information about the signal

energy. Instead, sampling has to be performed in a such sensing domain, which when

transformed back to the sparse domain, will spread throughout the entire sparse domain,

providing as much information about the signal energy as possible.

By observing both TF and AF domain, it can be concluded that both TF and AF

domain are sparse; they are both composed from the auto-terms and the cross-terms

between them, while most of the samples can be approximated to zero. The difference

between the domains is mainly in their geometries, that is, the cross-term and the auto-

term location, as shown in Fig. 2.5. This means that the TF and AF domain are

mutually coherent, and a random selection of samples in the AF domain most likely will

not produce a correct sparse solution in the TF domain. However, as discussed in Section

3.2.1, compressive sensing of the AF is not performed randomly; samples are selected in

such a way which ensures inclusion of the auto-terms and exclusion of the cross-terms,

making sure that the CS-AF area contains the useful information. This is why the low

mutual coherence condition can also be circumvented along with the RIP condition in the

TFD related applications.

3.3 Sparse TFD Reconstruction

3.3.1 Problem Formulation

Problem described in (3.8) is a well-known unconstrained linear optimization problem

[25, 12, 29, 82, 10, 2], and thus it can be rewritten as:

ϑ̂z(t, f) = arg min
ϑz(t,f)

1

2

∣∣∣∣ϑz(t, f)−ψHA′
z(ν, τ)

∣∣∣∣2
2
+ λc (ϑz(t, f)) , (3.11)

where regularization function c (ϑz(t, f)) : R2 → R is a nonsmooth and nonconvex, λ

is a regularization parameter, and f (ϑz(t, f)) =
1
2

∣∣∣∣ϑz(t, f)−ψHA′
z(ν, τ)

∣∣∣∣2
2

is an error

estimating function.

Since the problem of estimating ϑ̂z(t, f) is ill-posed, a regularization function has to

be applied as some sort of prior information about the signal, in order to find a proper

solution. Regularization functions are usually sparsity inducing such as ℓp norm, and

in most problems the ℓ1 norm based regularization function is commonly used [18, 30,

33, 64, 65, 66, 78, 31, 77]. Optimization problem (3.11) can be solved alternatively,

with the greedy algorithms, such as matching pursuit and orthogonal matching pursuit
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[50, 52, 19, 84, 54], which are not based on the explicit optimization formulation; however,

due to extensiveness of the area, the discussion in this thesis has been limited to the

methods based on the ℓ0 norm, the ℓ1 norm, and the ℓ2 norm minimization.

3.3.2 ℓ2 Norm Based TFD Reconstruction

The ℓ2 norm based regularization function, cℓ2 (ϑz(t, f)), has the same form as the error

estimating function, that is:

cℓ2(ϑz(t, f)) = ||ϑz(t, f)||22 =
Nt∑ Nf∑

|ϑz(t, f)|2 , (3.12)

thus the optimization problem (3.11) becomes a problem of ϑz(t, f) energy minimization,

that is:

ϑℓ2z (t, f) = arg min
ϑz(t,f)

||ϑz(t, f)||22 ,

subject to:
∣∣∣∣ϑz(t, f)−ψHA′

z(ν, τ)
∣∣∣∣2

2
≤ ǫ,

(3.13)

where ǫ is a user defined energy threshold value which controls the reconstruction accuracy.

Since the ℓ2 norm is used in both regularization and error estimating function, the solution

of the optimization problem (3.13) is trivial:

ϑℓ2z (t, f) = ψ
H
(
ψψH

)−1
A′
z(ν, τ) = ψ

HA′
z(ν, τ). (3.14)

Example 3.1. In this example, the reconstructed sparse TFDs based on the ℓ2 norm

minimization have been calculated for the signals zLFM(t), znonLFM(t), and zbat(t). In

order to ensure that N ′
τ and N ′

ν are odd, the CS-AF area has been calculated as N ′
τ =

N ′
ν = 2⌈√Nt/2⌉ − 1, resulting in N ′

τ = N ′
ν = 15 samples for the signals zLFM(t) and

znonLFM(t), and in N ′
τ = N ′

ν = 19 samples for the signal zbat(t), as shown in Figs. 3.2(a) -

3.2(c). The resulting ℓ2 norm based reconstructed sparse TFDs are shown in Figs. 3.2(d)

- 3.2(f). By comparing the obtained concentration measures with the ones previously

obtained for the classically filtered TFDs, listed in Table 2.3, it can be seen that the

obtained MS
z values are significantly larger, while the obtained Rényi entropy values are

even lower then the Rényi entropy of the ideal TFD. This means that the concentration

of the auto-terms is very poor and a significant portion of the auto-terms got filtered out

as well, which can be confirmed by the visual inspection of Figs. 3.2(d) - 3.2(f).

As it can be seen from (3.14) and confirmed in Example 3.1, the solution based on the

ℓ2 norm minimization, ϑℓ2z (t, f), is basically just a heavily-filtered WVD with the kernel

defined through a sensing matrix, φ(ν, τ), thus it will suffer from the same resolution

loss with which the QTFDs have to deal. This is because the ℓ2 norm measures a signal

energy, and it is not a sparsity inducing function.
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Figure 3.2: The reconstructed sparse TFDs based on the ℓ2 norm minimization: (a) - (c) CS-AF
of the signals zLFM(t) (N ′

τ = N ′

ν = 15), znonLFM(t) (N ′

τ = N ′

ν = 15), and zbat(t) (N ′

τ = N ′

ν = 19),
(d) - (f) the reconstructed sparse TFDs of the signals zLFM(t) (Rαr

z |αr=3 = 8.4958, and MS
z

∣∣
ps=2

=

11.1723), znonLFM(t) (Rαr

z |αr=3 = 8.4856, and MS
z

∣∣
ps=2

= 10.6073), and zbat(t) (Rαr

z |αr=3 = 13.1724,

and MS
z

∣∣
ps=2

= 10.6056).

3.3.3 ℓ0 Norm Based TFD Reconstruction

Unlike the regularization function based on the ℓ2 norm, described in Section 3.3.2, the

ℓ0 norm based regularization function induces sparsity by counting a number of nonzero

elements of the ϑz(t, f), hence can be written as:

cℓ0 (ϑz(t, f)) = ||ϑz(t, f)||0 =
Nt∑ Nf∑

|ϑz(t, f)|0 =
Nt∑ Nf∑

ϑz(t,f)6=0

1, (3.15)

thus the optimization problem (3.11) becomes:

ϑℓ0z (t, f) = arg min
ϑz(t,f)

||ϑz(t, f)||0 ,

subject to:
∣∣∣∣ϑz(t, f)−ψHA′

z(ν, τ)
∣∣∣∣2

2
≤ ǫ.

(3.16)
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Solution of the minimization problem (3.16) has a unique and a well known closed form:

ϑℓ0z (t, f) = hard√
2λ {ϑz(t, f)} , (3.17)

where the operator hard√
2λ {ϑz(t, f)} is a hard-thresholding function, defined as:

hard√
2λ {ϑz(t, f)} =

{
ϑz(t, f), |ϑz(t, f)| >

√
2λ,

0, otherwise.
(3.18)

It is well known that the problem of ℓ0 norm minimization is computationally NP

hard [3, 61, 59, 13]; however, recently a several iterative algorithms have been developed

addressing this problem. Sparse signal reconstruction algorithms based on the ℓ0 norm

minimization used in this thesis are shortly discussed in the sequel of this section.

• Iterative hard thresholding (IHT)1 algorithm iterations are defined as [14]:

[
ϑℓ0z (t, f)

][n+1]
= HK

{[
ϑℓ0z (t, f)

][n]
+ µihtψ

H
(
A′
z(ν, τ)−ψ

[
ϑℓ0z (t, f)

][n])}
, (3.19)

where the parameter µiht defines the algorithm step size, [ϑℓ0z (t, f)]
[n] denotes the n-

th algorithm iteration, the starting solution is initialized as [ϑℓ0z (t, f)]
[0] = ψHA′

z(ν, τ),

and HK{·} denotes a non-linear operator which keeps the largest K samples, by set-

ting all of the remaining samples to zero. Note that the operator HK is basically

a hard-thresholding function (3.18) defined in a different way. The IHT algorithm

step size, µiht, can be adaptively calculated, leading to the normalized IHT (NIHT)

algorithm [13]:

µniht =

∣∣∣
∣∣∣ψH

Γ[n]

(
A′
z(ν, τ)−ψ

[
ϑℓ0z (t, f)

][n])∣∣∣
∣∣∣
2

2∣∣∣
∣∣∣ψΓ[n]

(
ψH

(
A′
z(ν, τ)−ψ

[
ϑℓ0z (t, f)

][n]))∣∣∣
∣∣∣
2

2

, (3.20)

where Γ[n] are indexes of the non-zero elements of
[
ϑℓ0z (t, f)

][n]
, that is

Γ[n] = supp
([
ϑℓ0z (t, f)

][n])
, while ψΓ[n] is a matrix with elements outside the set

Γ[n] removed. Furthermore, the IHT convergence rate can be accelerated, lead-

ing to the accelerated IHT (AIHT) algorithm [13]. This is achieved by calculating[
ϑ̃ℓ0z (t, f)

][n+1]

with (3.19); however, before proceeding to the next iteration of the

IHT algorithm, the AIHT algorithm tries to find an estimate
[
ϑℓ0z (t, f)

][n+1]
which

1 Available at: http://www.personal.soton.ac.uk/tb1m08/sparsify/sparsify_0_5.zip
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satisfies the following two conditions:

1.
∣∣∣
∣∣∣
[
ϑℓ0z (t, f)

][n+1]
∣∣∣
∣∣∣
0
= K, (3.21a)

2.
∣∣∣
∣∣∣A′

z(ν, τ)−ψ
[
ϑℓ0z (t, f)

][n+1]
∣∣∣
∣∣∣
2

2
≤
∣∣∣∣
∣∣∣∣A

′
z(ν, τ)−ψ

[
ϑ̃ℓ0z (t, f)

][n+1]
∣∣∣∣
∣∣∣∣
2

2

. (3.21b)

• Expectation-Conditional Maximisation Either (ECME)2 algorithm replaces the IHT

algorithm step size µiht with a pseudo-inverse of ψ, that is µecme =
(
ψψH

)−1
,

leading to the [58]:

[
ϑℓ0z (t, f)

][n+1]
= HK

{[
ϑℓ0z (t, f)

][n]
+ψH(ψψH)−1

(
A′
z(ν, τ)−ψ

[
ϑℓ0z (t, f)

][n])}
. (3.22)

Calculation of µecme in this way, removes the problem of step size selection, which

can cause instability of the IHT algorithm. Note, that the ECME algorithm reduces

to the IHT algorithm with µiht = 1 when (ψψH)−1 = 1.

• Double overrelaxation thresholding scheme (DORE)2 algorithm calculates[
ϑ̃ℓ0z (t, f)

][n+1]

with (3.19), just like the IHT algorithm; however, it is followed

by the two over-relaxation steps [59]:

[
ϑ̃
ℓ0
z1(t, f)

][n+1]
=

[
ϑ̃ℓ0
z (t, f)

][n+1]
+ a1dore

([
ϑ̃ℓ0
z (t, f)

][n+1]
−

[
ϑℓ0
z (t, f)

][n]
)
, (3.23a)

[
ϑ̃
ℓ0
z2(t, f)

][n+1]
= HK

{[
ϑ̃
ℓ0
z1(t, f)

][n+1]
+ a2dore

([
ϑ̃
ℓ0
z1(t, f)

][n+1]
−

[
ϑℓ0
z (t, f)

][n−1]
)}

, (3.23b)

where a1dore and a2dore are the line search parameters, and a solution of the

[n + 1]-th algorithm iteration,
[
ϑℓ0z (t, f)

][n+1]
, is selected as

[
ϑ̃ℓ0z2(t, f)

][n+1]

if the

following condition is fulfilled:

∣∣∣∣
∣∣∣∣A

′
z(ν, τ)−ψ

[
ϑ̃ℓ0z2(t, f)

][n+1]
∣∣∣∣
∣∣∣∣
2

2

≤
∣∣∣∣
∣∣∣∣A

′
z(ν, τ)−ψ

[
ϑ̃ℓ0z (t, f)

][n+1]
∣∣∣∣
∣∣∣∣
2

2

, (3.24)

and
[
ϑ̃ℓ0z (t, f)

][n+1]

otherwise. If the signal sparsity level K is unknown, the au-

tomatic DORE (ADORE) algorithm can be used which utilizes the unconstrained

sparsity selection (USS) criterion [59].

• Hard thresholding pursuit (HTP)3 algorithm uses the IHT algorithm iteration (3.19)

to find a preliminary solution, which is then refined by solving the following opti-

2 ECME and DORE algorithms are available at: http://home.eng.iastate.edu/~ald/ECME.tar.gz
3 Available at: https://github.com/foucart/HTP
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mization problem [32]:

[
ϑℓ0z (t, f)

][n+1]
= argmin

[
ϑ̃
ℓ0
z (t,f)

][n+1]

∣∣∣∣
∣∣∣∣A

′
z(ν, τ)−ψΓ[n+1]

[
ϑ̃ℓ0z (t, f)

][n+1]
∣∣∣∣
∣∣∣∣
2

2

, (3.25)

with the conjugate gradient algorithm. In [32] the normalized (NHTP) version and

the fast (FHTP) version of the HTP algorithm have been derived.

Example 3.2. In this example, the reconstructed sparse TFDs based on the ℓ0 norm min-

imization have been calculated for the signals zLFM(t), znonLFM(t), and zbat(t), with the

following algorithms: IHTλ, IHTK, NIHTλ, NIHTK, AIHTK, ECMEK, DOREK, HTPK,

and FHTPK. Note that the subscript λ in the algorithm names denotes that the hard-

thresholding function is implemented with the hard operator, while the subscript K de-

notes that the hard-thresholding function is implemented with the HK operator. The

expected sparsity level has been calculated as K = 5NcNt (Nc is used as the prior in-

formation about the signal), the regularization parameter has been selected as λ = 10,

while the CS-AF area has been selected as in Example 3.1 and is shown in Figs. 3.2(a)

- 3.2(c). The resulting reconstructed sparse TFDs are shown in Figs. 3.3 - 3.5 with the

results summarized in Table 3.1 for all the tested signals and algorithms. Note that the

IHTλ algorithm and the NIHTλ algorithm for the signal zbat(t) did not converge, produc-

ing NaN solution, and this is why the respective sparse reconstruction results have been

omitted from Fig. 3.5 and Table 3.1.

The algorithm execution times are obtained on the PC with the Intel Core i7-4770

@ 3.40 Ghz processor and 16 GB of RAM, and should be taken only in comparison

among themselves. By visual inspection of the presented results, it can be seen that

Table 3.1: Rényi entropies, Rαr

z , concentration measures, MS
z , and the algorithm execution times of

the reconstruction algorithms based on the ℓ0 norm minimization. The bold value indicates the best
performing reconstruction algorithm according to the respective measure for the considered signal.

zLFM(t) znonLFM(t) zbat(t)

Rαr

z MS
z t Rαr

z MS
z t Rαr

z MS
z t

αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms]

Ideal 9.2568 0.0111 − 8.9944 0.0078 − − − −
IHTλ 13.0632 0.1534 38.8363 12.0882 0.0757 70.8456 − − −
IHTK 11.8760 0.0584 141.514 11.2558 0.0388 272.996 12.7482 0.0489 215.227

NIHTλ 12.7974 0.1296 35.5623 12.0462 0.0722 21.2055 − − −
NIHTK 11.5585 0.0569 174.825 11.1379 0.0383 88.4535 12.6429 0.0479 285.033

AIHTK 10.1025 0.0493 3317.7 10.0377 0.0328 2696.0 12.7620 0.0489 39.0654

ECMEK 10.4123 0.0491 911.618 10.0114 0.0334 916.207 12.7571 0.0489 64.5025

DOREK 10.1620 0.0487 2009.8 9.5909 0.0316 2150.3 12.6548 0.0475 96.1028

HTPK 11.8785 0.0584 70.6926 11.0575 0.0382 29.1090 12.7416 0.0488 75.9146

FHTPK 14.2817 0.7253 14.5512 14.1350 0.7353 12.5697 14.5039 0.5680 32.2825
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Figure 3.3: The reconstructed sparse TFDs based on the ℓ0 norm minimization of the three LFM
component signal zLFM(t) with: (a) IHTλ, (b) IHTK , (c) NIHTλ, (d) NIHTK , (e) AIHTK , (f) ECMEK ,
(g) DOREK , (h) HTPK , (i) FHTPK algorithm.
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Figure 3.4: The reconstructed sparse TFDs based on the ℓ0 norm minimization of the two compo-
nent signal znonLFM(t) with: (a) IHTλ, (b) IHTK , (c) NIHTλ, (d) NIHTK , (e) AIHTK , (f) ECMEK ,
(g) DOREK , (h) HTPK , (i) FHTPK algorithm.
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Figure 3.5: The reconstructed sparse TFDs based on the ℓ0 norm minimization of the bat echolocation
signal zbat(t) with: (a) IHTλ, (b) IHTK , (c) NIHTλ, (d) NIHTK , (e) AIHTK , (f) ECMEK , (g) DOREK ,
(h) HTPK , (i) FHTPK algorithm.
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most of the ℓ0 norm based sparse TFDs are oversparse, as the auto-terms do not form a

single continuous line. Furthermore, most of the tested algorithms have filtered out the

weakest component, leaving only poorly localized stronger components. The algorithms

in which the hard-thresholding function is implemented with the HK operator perform

better then the ones with the hard operator. By comparing the concentration measures,

with the ones previously obtained for the classically filtered TFDs, shown in Table 2.3,

it can be concluded that the obtained sparse TFDs are significantly better concentrated;

however, this is not necessarily the case, since the lower concentration measures in this

example have been influenced by the missing low-energy components, rather then the

higher concentrated auto-terms.

The main problem of algorithms based on the ℓ0 norm minimization is that their

solution, ϑℓ0z (t, f), is highly dependant on value of the input hard-thresholding parameter

K (if the hard-thresholding is implemented with the HK operator) or λ (if the hard-

thresholding is implemented with the hard operator). The HK operator requires the prior

knowledge of the signal sparsity level K, which is in TFD context proportional to the

number of signal components, that is K ∼ NcNt. This information is often not accessible,

and this is one of the reasons why algorithms based on the ℓ0 norm minimization are in

general, not used in the TFD related applications. The second reason why the ℓ0 norm

based sparse TFDs are not used, is a problem demonstrated in Example 3.2, that is,

inability to resolve the low-energy components properly. Both of the discussed problems

can be partially solved by estimating a TFD sparsity level by using an information about

the instantaneous number of signal components calculated by the localized Rényi entropy

introduced in [71, 72], as it is discussed in Section 5.3.

3.3.4 ℓ1 Norm Based TFD Reconstruction

It has been shown that the regularization function based on the ℓ1 norm gives the best

result among all the previously discussed regularization functions, since the ℓ1 norm pro-

vides a compromise between the sparsity inducing ℓ0 norm and the energy measuring ℓ2

norm [21, 3]. The regularization function based on the ℓ1 norm sums all samples of the

TFD, that is:

cℓ1(ϑz(t, f)) = ||ϑz(t, f)||1 =
Nt∑ Nf∑

|ϑz(t, f)| , (3.26)

and the optimization problem (3.11) becomes:

ϑℓ1z (t, f) = arg min
ϑz(t,f)

||ϑz(t, f)||1 ,

subject to:
∣∣∣∣ϑz(t, f)−ψHA′

z(ν, τ)
∣∣∣∣2

2
≤ ǫ.

(3.27)
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In a similar way to the ℓ0 norm minimization solution (3.17), solution of the problem

(3.27) has also a unique and a well known closed form:

ϑℓ1z (t, f) = softλ {ϑz(t, f)} , (3.28)

where the operator softλ {ϑz(t, f)} is a soft-thresholding function defined as:

softλ {ϑz(t, f)} = sgn (ϑz(t, f))max (|ϑz(t, f)| − λ, 0) . (3.29)

The ℓ1 based minimization has been a popular topic of research in the last decade,

resulting in an overwhelming number of methods and software packages for solving this

optimization problem in various ways. The full and comprehensive list of methods is

beyond the scope of this thesis; however, in continuation of this section a list of the op-

timization algorithms used in this thesis has been given, with a short description and

links to the original MATLAB function. Note however, that some of the sparse recon-

struction algorithms had to be slightly modified in order to work with the given problem

formulation.

• Iterative shrinkage/thresholding (IST)4 algorithm has the form of [25]:

[
ϑℓ1z (t, f)

][n+1]
= (1− βist)

[
ϑℓ1z (t, f)

][n]
+

+ βist softλ

{[
ϑℓ1z (t, f)

][n]
+ψH

(
A′
z(ν, τ)−ψ

[
ϑℓ1z (t, f)

][n])}
,

(3.30)

where βist > 0 is the relaxation parameter defining a trade-off between the IST

algorithm accuracy and convergence rate. The original IST algorithm has the form

with βist = 1; however, choosing βist 6= 1 will produce the under-relaxed IST

algorithm for βist < 1, or the over-relaxed IST algorithm for βist > 1.

• Two-step IST (TwIST)5 algorithm is very similar to the IST algorithm; however, the

iterative solution is calculated from solution of the previous two iterations, rather

then just one [12]:

[
ϑℓ1
z (t, f)

][n+1]
= (1− αtwist)

[
ϑℓ1
z (t, f)

][n−1]
+ (αtwist − βtwist)

[
ϑℓ1
z (t, f)

][n]
+

+ βtwist softλ

{[
ϑℓ1
z (t, f)

][n]
+ψH

(
A′

z(ν, τ)− ψ
[
ϑℓ1
z (t, f)

][n])}
,

(3.31)

where 0 < αtwist ≤ 1 and 0 < βtwist < 2αtwist are the relaxation parameters. When

compared to the original IST algorithm, the TwIST algorithm handles ill-posed

problems more efficiently, and furthermore, it has been shown that its convergence

rate is the two orders of magnitude faster.

4 Available at: http://www.lx.it.pt/~mtf/GPSR/GPSR_6.0.zip
5 Available at: http://www.lx.it.pt/~bioucas/code/TwIST_v2.zip
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• Fast IST algorithm (FISTA)6 decreases a computational cost of the IST algorithm

from O(1/n) to O(1/n2) by applying the accelerated gradient algorithm [10]. The

FISTA algorithm is defined as:

[
ϑℓ1z (t, f)

][n+1]
= softλ

{
[y(t, f)][n] −ψH

(
ψ
[
ϑℓ1z (t, f)

][n]
−A′

z(ν, τ)

)}
, (3.32a)

[t][n+1] =
1 +

√
1 + 4

(
[t][n]

)2

2
, (3.32b)

[y(t, f)][n+1] =
[
ϑℓ1z (t, f)

][n+1]
+

[t][n] − 1

[t][n+1]

([
ϑℓ1z (t, f)

][n+1]
−
[
ϑℓ1z (t, f)

][n])
. (3.32c)

Note that the soft-thresholding operator is applied to [y(t, f)][n], which is calcu-

lated as a linear combination of the previous two solutions, similarly to the TwIST

algorithm.

• Sparse reconstruction by separable approximation (SpaRSA)7 framework [82] grad-

ually decreases a thresholding parameter across the two levels of algorithm itera-

tions. The thresholding parameter [αsparsa]
[t+1], in the outer algorithm iterations is

updated according to the Barzilai-Borwein (BB) spectral approach:

[αsparsa]
[t+1] =

([
ϑ
ℓ1
z (t,f)

][n]
−
[
ϑ
ℓ1
z (t,f)

][n−1]
)T(

∇f
([
ϑ
ℓ1
z (t,f)

][n]
)
−∇f

([
ϑ
ℓ1
z (t,f)

][n−1]
))

([
ϑ
ℓ1
z (t,f)

][n]
−
[
ϑ
ℓ1
z (t,f)

][n−1]
)T([

ϑ
ℓ1
z (t,f)

][n]
−
[
ϑ
ℓ1
z (t,f)

][n−1]
) , (3.33)

where ∇f
([
ϑℓ1z (t, f)

][n−1]
)

is the gradient of the error estimating function, defined

in (3.11). On the other hand, the inner algorithm iterations calculate the solution,[
ϑℓ1z (t, f)

][n+1]
, as:

[
ϑℓ1z (t, f)

][n+1]
= soft λ

[αsparsa][t+1]

{[
ϑℓ1z (t, f)

][n] − 1
[αsparsa][t+1]∇f

([
ϑℓ1z (t, f)

][n])}
, (3.34)

where [αsparsa]
[t+1] in the each inner algorithm iteration is decreased with the user

defined parameter ηsparsa < 1 as: [αsparsa]
[t+1] ← ηsparsa[αsparsa]

[t+1], until the ac-

ceptance criterium is satisfied. The described algorithm structure is often called

the continuation scheme, which can be implemented in different ways. The general

characteristics of all algorithms which utilize the continuation scheme is their faster

convergence rate, since the thresholding parameter, λ/[αsparsa]
[t+1], is continuously

updated.

• Fixed point continuation (FPC)8 algorithm is based on the forward-backward split-

ting method combined with the continuation scheme [36]. Through a forward-

6 Available at:
http://web.iem.technion.ac.il/images/user-files/becka/papers/wavelet_FISTA.zip

7 Available at: http://www.lx.it.pt/~mtf/SpaRSA/SpaRSA_2.0.zip
8 Available at: http://www.caam.rice.edu/~optimization/L1/fpc/fpc.zip
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backward splitting algorithm, the FPC algorithm is derived as:

[
ϑℓ1z (t, f)

][n+1]
= soft λ

[µfpc]
[n+1]

{[
ϑℓ1z (t, f)

][n] − τfpc∇f
([
ϑℓ1z (t, f)

][n])}
, (3.35)

which is equivalent to the SpaRSA algorithm. The difference between the algorithms

lies in the way in which the continuation scheme is implemented. The parameter τfpc

is calculated as τfpc = min
(
1 + 1.665

(
1− N ′

νN
′
τ

NtNf

)
, 1.9999

)
, from which µfpc is ini-

tialized as

[µfpc]
[0] = τfpc

γfpc

∣∣∣
∣∣∣
[
ϑℓ1z (t, f)

][0]∣∣∣
∣∣∣
−1

∞
, where 0 < γfpc < 1 is the user defined param-

eter. The continuation scheme is implemented in the outer algorithm iterations by

increasing value of the parameter [µfpc]
[n+1] = βfpc[µfpc]

[n], where βfpc > 1 is the

user defined parameter.

• Gradient projection for sparse reconstruction (GPSR)9 algorithm [29] transforms

the optimization problem (3.11) to a quadratic optimization problem, by splitting

the solution into two parts: u(t, f) and v(t, f), that is: ϑℓ1z (t, f) = u(t, f)−v(t, f),

where u(t, f) = max
(
0,ϑℓ1z (t, f)

)
and v(t, f) = max

(
0,−ϑℓ1z (t, f)

)
, resulting in

the optimization problem which is easier to solve. This equivalent optimization

problem is then solved by the projected gradient steps combined with the BB

method in order to accelerate the algorithm convergence rate. With the notation

z(t, f) =
[
uT (t, f) vT (t, f)

]T
, the GPSR algorithm iterations are defined as:

[δ(t, f)][n+1] = max
(
0, [z(t, f)][n] − [α][n]∇f

(
[z(t, f)][n]

))
− [z(t, f)][n] , (3.36a)

[λ][n+1] = min


1,max


0,

(
[δ(t, f)][n+1]

)T
∇f

(
[z(t, f)][n]

)

(
[δ(t, f)][n+1]

)T
[δ(t, f)][n+1]





 , (3.36b)

[z(t, f)][n+1] = [z(t, f)][n] + [λ][n+1] [δ(t, f)][n+1] , (3.36c)

[γ][n+1] =
(
[δ(t, f)][n+1]

)T
[δ(t, f)][n+1] , (3.36d)

[α][n+1] = min


αmax,max


αmin,

∣∣∣
∣∣∣[δ(t, f)][n+1]

∣∣∣
∣∣∣
2

2

[γ][n+1]





 . (3.36e)

The main problem of all methods based on the gradient projection is their perfor-

mance deterioration when the regularization function is undervalued (e.g. value of

the parameter λ is very low); however, the GPSR algorithm employs a continuation

scheme in order to bypass this problem.

• Nestrov algorithm (NESTA)10 is based on the smoothing algorithm developed by

9 Available at: http://www.lx.it.pt/~mtf/GPSR/GPSR_6.0.zip
10 Available at: http://statweb.stanford.edu/~candes/nesta/NESTA_v1.1.zip
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Nesterov [11], and it is defined as:

[y(t, f)][n+1] =

(
I − λǫ

λǫ + λ−1

)

(
λǫλψ

HA′
z(ν, τ) +

[
ϑℓ1
z (t, f)

][n]
− λ∇fλ

([
ϑℓ1
z (t, f)

][n]
))

,

(3.37a)

[z(t, f)][n+1] =

(
I − λǫ

λǫ + λ−1

)


λǫλψHA′

z(ν, τ) +
[
ϑℓ1
z (t, f)

][0]
− λ

∑

i≤n

[αnesta]
[i]∇fλ

([
ϑℓ1
z (t, f)

][i])

 ,

(3.37b)

[
ϑℓ1
z (t, f)

][n+1]
= [τnesta]

[n+1][z(t, f)][n+1] + (1− [τnesta]
[n+1])[y(t, f)][n+1], (3.37c)

where the parameters [αnesta]
[n] and [τnesta]

[n] are defined as: [αnesta]
[n] = 1/2(n +

1) and [τnesta]
[n] = 2/(n + 3), respectively. Furthermore, the optimal Lagrange

multiplier, λǫ, can be explicitly calculated in the closed form as:

λǫ = max


0,

∣∣∣∣
∣∣∣∣A′

z(ν,τ)−ψ
([
ϑ
ℓ1
z (t,f)

][n+1]
−λ∇fλ

([
ϑ
ℓ1
z (t,f)

][n+1]
))∣∣∣∣

∣∣∣∣
2

ǫ
− 1

λ


 , (3.38)

where ∇fλ
([
ϑℓ1z (t, f)

][n])
, gradient of the Huber function, is also given in its closed

form as:

∇fλ
([
ϑℓ1z (t, f)

][n])
=





1

λ

[
ϑℓ1z (t, f)

][n]
,

[
ϑℓ1z (t, f)

][n]
< λ,

sgn
([
ϑℓ1z (t, f)

][n])
, otherwise.

(3.39)

In a similar way to the FISTA algorithm, the key idea of the NESTA algorithm is

to use the solutions from the previous algorithm iterations in the soft-thresholding

operator. In the NESTA algorithm this is implemented in (3.37b), where [z(t, f)][n+1]

is calculated by averaging a weighted sum of gradients from the previous algorithm

iterations, which has been shown to increase the convergence rate of the NESTA

algorithm, making it appealing for the large-scale problems.

• Split augmented Lagrangian shrinkage algorithm (SALSA)11 transforms the uncon-

strained optimization problem (3.27) into an equivalent constrained optimization

problem by the means of variable splitting [2]:
[
ϑℓ1z (t, f)

][n]
= [v(t, f)][n]+[d(t, f)][n].

The resulting constrained problem is then solved by the alternating direction method

of multipliers (ADMM), a variation of the augmented Lagrangian (AL) method. The

11 Available at: http://cascais.lx.it.pt/~mafonso/SALSA_v2.0.zip

51



Ivan Volarić TF Domain Signal Enhancement Using Adaptive CS

SALSA algorithm is defined as:

[
ϑℓ1z (t, f)

][n+1]
= ψH

(
A′
z(ν, τ)−ψ

(
[v(t, f)][n] + [d(t, f)][n]

))
, (3.40a)

[v(t, f)][n+1] = softλ

{[
ϑℓ1z (t, f)

][n+1] − [d(t, f)][n]
}
, (3.40b)

[d(t, f)][n+1] = [d(t, f)][n] −
([
ϑℓ1z (t, f)

][n+1] − [v(t, f)][n+1]
)
. (3.40c)

The SALSA algorithm has been shown to have a fast convergence rate in practice,

which is combined with a flexibility for solving the various optimization formula-

tions and effectiveness in the large-scale non-smooth optimization problems, the

characteristics which all of the ADMM based methods exhibit.

• Your augmented Lagrangian algorithm for ℓ1 (YALL1)12, just like SALSA algorithm

is derived from the ADMM application to the AL function [85, 83]:

[y(ν, τ)][n+1] = αyallψ [z(t, f)][n] − βyall

(
ψ
[
ϑℓ1z (t, f)

][n]
−A′

z(ν, τ)

)
, (3.41a)

[z(t, f)][n+1] = soft λ
µyall

{
ψH [y(ν, τ)][n+1] +

1

µyall

[
ϑℓ1z (t, f)

][n]}
, (3.41b)

[
ϑℓ1z (t, f)

][n+1]
=
[
ϑℓ1z (t, f)

][n]
+ γyallµyall

(
ψH [y(ν, τ)][n+1] − [z(t, f)][n+1]

)
, (3.41c)

where µyall > 0 is the penalty parameter, and the parameters αyall, βyall, and

γyall are calculated as: γyall ∈ (0, (1 +
√
5)/2), αyall = µyall/(µyall + ρyall), and

βyall = 1/(µyall+ρyall), respectively, with ρyall = 1/(2λ). The main advantages of

YALL1 algorithm is its wide application and effectiveness in the various optimization

problems. In terms of its performance, the main advantages of the YALL1 algorithm

is its fast convergence rate, which is achieved without a continuation scheme, or a

line search method (which, if used, would increase the algorithm execution time),

and its robustness towards the changes of the input parameters. However, these

advantages are negated when the observed signal is corrupted with the non-trivial

level of noise.

• ℓ1-ls
13 algorithm [44] is an interior point method which appends the logarithmic

barrier with the bound constraint −ςz(t, f) ≤ ϑz(t, f) ≤ ςz(t, f) to the objective

function of the optimization problem (3.11), that is:

φt (ςz(t, f),ϑz(t, f)) =
tls
2

∣∣∣∣ϑz(t, f)−ψHA′
z(ν, τ)

∣∣∣∣2
2
+ tlsλ ||ςz(t, f)||1−

−
Nt∑ Nf∑

log
(
ςz(t, f)

2 − ϑz(t, f)2
)
.

(3.42)

12 Available at:
http://www.caam.rice.edu/~optimization/L1/YALL1/.v.beta/YALL1_Group_20120223.zip

13 Available at: https://stanford.edu/~boyd/l1_ls/l1_ls_matlab.zip
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This function has a unique minimizer, producing a curve, called the central path,

defined with the parameter tls. The primal interior point method minimizes (3.42)

along the central path by increasing the parameter [tls]
[n+1] = µls[tls]

[n], where the

parameter µls is usually 2 ≤ µls ≤ 50. The minimization is performed by solving a

Newton system with the precondition conjugate gradient (PCG) method:

∇2φt

([
ςℓ1z (t, f)

][n]
,
[
ϑℓ1z (t, f)

][n])
[[

∆ςℓ1z (t, f)
][n+1]

[
∆ϑℓ1z (t, f)

][n+1]

]
= −∇φt

([
ςℓ1z (t, f)

][n]
,
[
ϑℓ1z (t, f)

][n])
, (3.43)

and the solution is updated as:

[
ςℓ1z (t, f)

][n+1]
=
[
ςℓ1z (t, f)

][n]
+ βkls

ls

[
∆ςℓ1z (t, f)

][n+1]
, (3.44a)

[
ϑℓ1z (t, f)

][n+1]
=
[
ϑℓ1z (t, f)

][n]
+ βkls

ls

[
∆ϑℓ1z (t, f)

][n+1]
, (3.44b)

where the parameter kls ≥ 0 is an integer, calculated by the backtracking line search,

i.e. as the smallest integer satisfying the following inequality:

φt

([
ςℓ1z (t, f)

][n]
,
[
ϑℓ1
z (t, f)

][n])
+ αβkls

ls
∇φt

([
ςℓ1z (t, f)

][n]
,
[
ϑℓ1
z (t, f)

][n])T
[[

∆ςℓ1z (t, f)
][n+1]

[
∆ϑℓ1

z (t, f)
][n+1]

]

≥ φt

([
ςℓ1z (t, f)

][n]
+ βkls

ls

[
∆ςℓ1z (t, f)

][n+1]
,
[
ϑℓ1
z (t, f)

][n]
+ βkls

ls

[
∆ϑℓ1

z (t, f)
][n+1]

)
,

(3.45)

where αls and βls are the line search parameters.

Example 3.3. In this example, the reconstructed sparse TFDs based on the ℓ1 norm

minimization have been calculated for the signals zLFM(t), znonLFM(t), and zbat(t), with

the following algorithms: IST, TwIST, FISTA, SpaRSA, FPC, GPSR, NESTA, SALSA,

YALL1, and ℓ1-ls. The regularization parameter has been set as: λ = 1, while the CS-AF

area has been selected as in Example 3.1 and is shown in Figs. 3.2(a) - 3.2(c). The

resulting ℓ1 norm based reconstructed sparse TFDs are shown in Figs. 3.6 - 3.8, with the

results summarized in Table 3.2 for all the tested signals and algorithms. Note that the

FPC algorithm for the signal zbat(t) did not converge, producing NaN solution, and this

is why the respective sparse reconstruction result has been omitted from Table 3.2 and

Fig. 3.2(c).

The algorithm execution times are obtained on the PC with the Intel Core i7-4770 @

3.40 Ghz processor and 16 GB of RAM, and should be taken only in comparison among

themselves. Note however, that the obtained results should not be taken to rigorously,

since the comprehensive comparison of the ℓ1 based sparse reconstruction algorithms is

not a topic of this thesis and it would require an extensive modifications to the original

algorithms, and even then it would not guaranty the objectivity of the comparison, due

to the subtle differences in the algorithm implementations, differences in the termination

criteria, and large number of the algorithm specific input parameters which can not be
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Figure 3.6: The reconstructed sparse TFDs based on the ℓ1 norm minimization of the three LFM
component signal zLFM(t) with: (a) IST, (b) TwIST, (c) FISTA, (d) SpaRSA, (e) FPC, (f) GPSR,
(g) NESTA, (h) SALSA, (i) YALL1 algorithm.
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Figure 3.7: The reconstructed sparse TFDs based on the ℓ1 norm minimization of the two component
signal znonLFM(t) with: (a) IST, (b) TwIST, (c) FISTA, (d) SpaRSA, (e) FPC, (f) GPSR, (g) NESTA,
(h) SALSA, (i) YALL1 algorithm.
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Figure 3.8: The reconstructed sparse TFDs based on the ℓ1 norm minimization of the bat echolocation
signal zbat(t) with: (a) IST, (b) TwIST, (c) FISTA, (d) SpaRSA, (e) FPC, (f) GPSR, (g) NESTA,
(h) SALSA, (i) YALL1 algorithm.
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Table 3.2: Rényi entropies, Rαr

z , concentration measures, MS
z , and the algorithm execution times of

the reconstruction algorithms based on the ℓ1 norm minimization. The bold value indicates the best
performing reconstruction algorithm according to the respective measure for the considered signal.

zLFM(t) znonLFM(t) zbat(t)

Rαr

z MS
z t Rαr

z MS
z t Rαr

z MS
z t

αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms]

Ideal 9.2568 0.0111 − 8.9944 0.0078 − − − −
IST 12.5535 0.1556 333.3987 12.4859 0.1513 209.5674 11.2552 0.0203 432.6409

TwIST 11.3956 0.0776 194.2069 11.2005 0.0648 159.2943 11.2552 0.0203 442.4628

FISTA 11.9123 0.0934 252.4976 12.0731 0.1063 167.2367 10.8487 0.0150 422.6172

SpaRSA 12.1135 0.1128 160.8317 12.1544 0.1195 84.2935 10.3820 0.0110 278.7615

FPC 11.5062 0.0869 894.3250 11.0434 0.0728 828.3579 − − −
GPSR 12.4003 0.1386 215.2057 12.3232 0.1311 151.6580 10.9132 0.0157 294.2261

NESTA 11.5276 0.1564 1584.2 11.8304 0.1997 1101.9 11.6021 0.2801 2608.2

SALSA 12.8112 0.2059 194.8357 12.4511 0.1733 195.5804 10.1860 0.0158 1304.6

YALL1 9.9986 0.0227 2027.3 9.7727 0.0198 2002.9 9.0057 0.0041 9339.8

ℓ1-ls 11.8612 0.3577 4469.1 12.1695 0.4985 2390.5 14.4945 0.5674 2814.4

generalized across the tested algorithms. By visual inspection of the obtained results, it

can be seen that the resulting TFDs are the best ones yet obtained, being better then the

classically filtered TFDs (shown in Figs. 2.8 - 2.10), the RGK-TFD (shown in Fig. 2.11),

the ℓ2 norm based sparse TFDs (shown in Fig. 3.2), and the ℓ0 norm based sparse TFDs

(shown in Figs. 3.3 - 3.5). This is confirmed by very low values of the obtained concentra-

tion measures, which for some tested algorithms are close to the concentration measures

of the ideal signal TFD. Note however, that the obtained algorithm execution times are

significantly higher than the execution times of the algorithms based on the ℓ0 norm min-

imization, shown in Table 3.1. This is because the ℓ0 norm based sparse reconstruction

algorithms are based on the hard-thresholding operator rather than the soft-thresholding

operator, and the hard-thresholding operator tends to decrease the values of the TFD

samples much faster, especially if implemented with the HK operator.

3.4 Summary

In this chapter, the compressive sensing based approach for the TFD concentration en-

hancement has been discussed. The approach is based in the AF by compressively sensing

the samples in such a way to include only the signal components, while discarding the in-

terfering ones. The resolution loss, caused by the CS can be avoided by the reconstruction

algorithms based on the sparsity constraint. Recently developed state-of-the-art sparse

reconstruction algorithms based on the ℓ0 norm, the ℓ1 norm, and the ℓ2 norm mini-

mization have been modified and applied for the TFD concentration enhancement. The
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conducted experiments on the previously defined signals zLFM(t), znonLFM(t), and zbat(t),

have shown that the sparse TFDs obtained by the ℓ1 norm minimization are superior to

the classically filtered TFDs, the RGK-TFD, and the sparse TFDs obtained by the ℓ0

norm minimization and the ℓ2 norm minimization.
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Chapter 4

Supporting Methods Needed in

Adaptive Time-Frequency

Compressive Sensing

In this chapter, the three adaptive methods have been discussed, used as supporting

methods in the CS based TFD concentration enhancement, discussed later in Chapter 5.

The adaptive parallelogram 1/0 kernel is proposed, which is mathematically less de-

manding than the RGK, previously discussed in Section 2.4.2. Performance of the pro-

posed kernel is tested on the previously defined synthetical and real-life signals, while the

obtained TFDs are compared with the RGK-TFD performance.

The denoising methods developed by combining the local polynomial approximation

(LPA) method with the rules derived from the intersection of confidence intervals (ICI)

rule, namely the relative ICI (RICI) rule and the fast ICI (FICI) rule are discussed.

The denoising capabilities of the LPA-ICI and the LPA-RICI methods are tested on the

commonly used synthetical test signals, namely the Blocks signal and the HeaviSine signal.

The FICI rule has been proposed and performance of the LPA-FICI method is compared

with the performance of the LPA-ICI method and the LPA-RICI method.

The method which estimates the instantaneous number of signal components of the

TFD is discussed. The method is based on the Rényi entropy counting property, and the

method is tested on the previously defined synthetical (with the a priori known number

of instantaneous signal components) and real-life signals.

4.1 Adaptive Parallelogram 1/0 Kernel

In this section, the new adaptive kernel design has been proposed, mathematically signif-

icantly less demanding then the RGK, previously discussed in Section 2.4.2, which is one

59



Ivan Volarić TF Domain Signal Enhancement Using Adaptive CS

of the best performing adaptive TFD kernels. The proposed adaptive kernel; however, is

unreliable for the signals with a nonlinear frequency modulated component. The kernel

is build as a parallelogram centered around the AF origin, going through all the lag in-

stances, with its height and slope defined by the kernel parameters N ′
τ and N ′

ν calculated

from the signal AF geometry.

The kernel parameters N ′
τ and N ′

ν in the proposed method are calculated to be equal

to the time and frequency distance between the two closest components in the TF domain,

respectively, or equivalently in the AF domain, to the lag and doppler distance between

the origin and the first pair of cross-terms. The proposed method is based on the AF

domain approach, by searching zero doppler (Az(0, τ)) and zero lag (Az(ν, 0)) slices for the

first energy spike located away from the origin. The detected points on lag and doppler

axes are in fact the points where the closest pair of cross-terms are located. The complete

algorithm for finding N ′
τ and N ′

ν is defined in details in the sequel of this section, and is

implemented in a MATLAB function fun_adaptiveCSAF.m, the code of which is given in

Appendix B.

1. Since the AF domain is symmetrical, just one half of the lag and doppler AF zero

slices are obtained:

Sτ (τ) = Az(0, Nτ/2→ Nτ ), (4.1a)

Sν(ν) = Az(Nν/2→ Nν , 0), (4.1b)

where notation N1 → N2 is used to define a subset of samples of the respective AF

zero slice that are preserved for further processing, while Nτ and Nν are the number

of available lag instances and doppler bins, respectively.

2. In the next step, the derivatives of the zero-doppler and the zero-lag slices are calcu-

lated. The AF zero slices are highly oscillatory, as shown in Fig. 4.1(a) for the AF

zero-doppler slice of the signal zLFM(t), and thus their derivatives will also oscillate

around the respectful axis, meaning that the cross-terms location information would

be hard to extract from them. This problem is solved by filtering the AF zero slices,

that is:

S∗
τ (τ) = MA{Sτ (τ)}, (4.2a)

S∗
ν(ν) = MA{Sν(ν)}, (4.2b)

where the operator MA{·} denotes the moving average filter, defined as:

MA{x(t)} = 1

∆t

t+∆t/2∫

t−∆t/2

x(t)dt. (4.3)
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Figure 4.1: Zero-doppler slice of the signal zLFM(t) with marked N ′

τ : (a) the unfiltered slice, Sτ (τ) and
its derivative, dSτ (τ)/dτ , (b) the filtered slice, S∗

τ (τ), and its derivative, dS∗

τ (τ)/dτ .

From the extensive simulations, it has been concluded that the moving average filter

window needs to be long enough to smoothen up the respectful slice, revealing its

global trend-line, as shown in Fig. 4.1(b). The conducted simulations involving

various test signals have shown that Nτ/12 and Nν/12 are good choice for the

moving average filters window sizes.

3. Finally, the parameters N ′
τ and N ′

ν are calculated by searching dS∗
τ (τ)/dτ and

dS∗
ν(ν)/dν for a location of local maximum after the first crossing from negative

to positive values. By doing so, auto-terms located at beginning of the slices can

settle down, ensuring that detected peak is caused by the cross-terms. To make the

method even more robust, two additional conditions have been included: the next

sample of dS∗
τ (τ)/dτ and dS∗

ν(ν)/dν must be positive as well, and it has to be above

a preset threshold value, ǫapk (in the examples to follow, the threshold value is set

to ǫapk = 20% of the slices maximum value).

The here-proposed method can detect the cross-terms location, even in the case when

the cross-terms do not intersect with the AF axes, because from the AF volume distribu-

tion relationships [47]:

∞∫

−∞

|Az(ν, τ)|2dτ =

∞∫

−∞

|Az(0, τ)|2e−j2πντdτ, (4.4a)

∞∫

−∞

|Az(ν, τ)|2dν =

∞∫

−∞

|Az(ν, 0)|2ej2πντdν, (4.4b)
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it can be concluded that the cross-terms are, in fact, detectable on the AF zero slices,

even when they are not intersecting it.

Another way to understand this is to look at the AF as a two-dimensional auto-

correlation function. This approach can be confirmed by combing (2.25) and (2.27), and

substituting ν = 0, in order to obtain the AF zero doppler slice, Az(0, τ):

Az(0, τ) =

∞∫

−∞

z
(
t+

τ

2

)
z∗
(
t− τ

2

)
dτ, (4.5)

which gives the well known expression for the one-dimensional auto-correlation function.

In the similar way, other AF slices can be interpreted as cross-correlation between the

signal z(t) and its frequency shifted copies z(t)e−j2πνt. Furthermore, it is well known that

the auto-correlation, along with the cross-correlation function exhibit cross-terms between

the components. This fact lead us to the same conclusion as before, that the cross-terms

do not need to intersect with the AF axis, in order to make their location detectable by

the proposed algorithm.

With the parameters N ′
τ and N ′

ν selected in this way, the adaptive kernel is build as

a parallelogram, centered around the AF origin, and going through all the lag instances,

that is:

g(ν, τ) =





1,

∣∣∣∣
kapk

N ′
ν

ν − 2

N ′
τ

τ

∣∣∣∣ ≤ 1,

0, otherwise,

(4.6)

where the kernel parameter kapk is selected as either −1 or 1, depending on the auto-term

direction. The here-proposed kernel is denoted as the adaptive parallelogram 1/0 kernel

(APK).

Example 4.1. In this example, the APK and the associated TFDs of the previously

defined signals zLFM(t), znonLFM(t), and zbat(t) have been calculated and the results are

shown in Fig. 4.2.

For the signal zLFM(t), as it can be seen from Fig. 4.2(a), the APK perfectly cap-

tured all the auto-terms, while avoiding the cross-terms. When compared to the RGK

performance, shown in Fig. 2.11, it can be seen that the APK performance is very similar

to performance of the RGK. The difference in the concentration measures is caused by

the additional RGK-TFD smoothing, which can be performed in the same way for the

APK-TFD. However, for the signal znonLFM(t), the APK performance is significantly worse

when compared to the RGK performance. This was expected, since the signal in question

contains a highly nonlinear frequency modulated component, which resulted that APK

did not manage to properly capture the auto-terms, as it can be seen in Fig. 4.2(b). On

the other hand, for the signal zbat(t), the APK runs very competitively with the RGK,
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Figure 4.2: The performance of the adaptive parallelogram 1/0 kernel: (a)-(c) AF with marked kernel
area of the three LFM component signal, zLFM(t) (N ′

τ = 73 and N ′

ν = 17), the two component signal,
znonLFM(t) (N ′

τ = 39 and N ′

ν = 15), and the bat echolocation signal, zbat(t) (N ′

τ = 71 and N ′

ν = 21),
respectively; (d)-(f) resulting TFDs of the three LFM component signal, zLFM(t) (MS

z

∣∣
ps=2

= 1.0736,

and Rαr

z |αr=3 = 10.4168), the two component non-LFM signal, znonLFM(t) (MS
z

∣∣
ps=2

= 1.7917, and

Rαr

z |αr=3 = 11.2063), and the bat echolocation signal, zbat(t) (MS
z

∣∣
ps=2

= 0.5906, and Rαr

z |αr=3 =

10.8930), respectively.

even without the additional smoothing. The RGK-TFD has a slightly better concentra-

tion measure, however, the APK-TFD did not filtered-out the weakest signal component.

The reason behind the APK good performance, for the given signal with the nonlinear

frequency modulated components, is that the nonlinearity in the signal components fre-

quency modulation has been compensated with the difference between the auto-terms

slopes, as it can be seen in Fig. 4.2(c).

The main problem of the here-proposed kernel design, as illustrated in Example 4.1,

is when the observed signal has a highly nonlinear frequency modulated component. The

here-proposed algorithm determines the auto-terms location based on the cross-terms

location, assuming a linear behaviour of the auto-terms. However, when this is not a

case, the cross-terms and the auto-terms location are not necessarily connected in the

same manner (depending on type of the nonlinearity in the signal component phase),

resulting in the unreliable kernel. This is why in Section 5.1 a different way to construct
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the more reliable TFD kernel has been proposed using the same parameters N ′
τ and N ′

ν ,

but in combination with the sparse signal reconstruction algorithms, discussed in Section

3.3, preventing the auto-terms resolution loss.

4.2 Denoising Methods Based on the Intersection of

Confidence Intervals Rule

4.2.1 Motivation

The work presented in this Section is based on the work presented in the [79]. Acquired

real-life signals are often noisy due to the imperfection in their acquisition, transmission,

and/or processing procedures. In order to efficiently extract desired information from such

signals, it is essential to remove or suppress the noise that corrupts useful data. In general,

denoising methods can be divided into two broad groups: parametric and non-parametric

estimators [43]. Parametric estimators require a priori knowledge about signal and noise

probability density functions (PDFs). When this assumptions are correct, parametric esti-

mators will produce more precise estimates than non-parametric estimators. However, in

most practical applications, such a priori knowledge is not accessible, thus non-parametric

estimators have to be used. Most crucial parameter in non-parametric estimators is the

filter support size. The optimal size is defined by the compromise between estimation

bias and variance. Small filter support size will result in estimate with large variance,

hence resulting in undersmoothing, while large filter support size will cause uncontrollable

estimation bias, resulting in oversmoothing [43].

The non-parametric methods which are based on estimation of bias and variance are

called "plug-in" methods. Those methods, however, require high-order derivatives of the

estimate, hence they are more complex to implement and computationally very demand-

ing [43]. Alternatives to "plug-in" methods are the methods based on the quality-of-fit

statistics which do not require the knowledge of the estimation bias. One such quality-of-

fit signal denoising method is the LPA-ICI method [34, 41], requiring only noise standard

deviation, which is easily obtained in the case of additive white Gaussian noise (AWGN).

The LPA-ICI method combines LPA and ICI (originally developed in [34], and improved

in [41]) methods such that the ICI algorithm is used for the filter support size selection,

which is then complemented by the LPA method, used as the filter design tool.

4.2.2 The LPA-ICI method

A noise corrupted signal x(t) is composed of a noise-free signal s(t) and AWGN, ǫ(t), that

is: x(t) = s(t) + ǫ(t). The goal of the signal denoising is to estimate ŝ(t, w) such that the
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LPA absolute estimation error:

|e(t, w)| = |s(t)− ŝ(t, w)|, (4.7)

is reduced as much as possible, where w(t) is an adaptive filter support size. The filter

support size plays a key role in the performance of the LPA estimators by controlling

the trade-off between the variance and the bias. Thus, the denoising problem reduces

to finding such a filter support length, w+(t), which results in the optimal bias-variance

trade-off [43].

The point-wise mean square risk, r(t, w), is expressed as [42]:

r(t, w) = E{e2(t, w)} = std2{ŝ(t, w)}+ |bias{e(t, w)}|2, (4.8)

where std{ŝ(t, w)} is the standard deviation of the estimate, and bias{e(t, w)} is the bias

of the estimation error. The minimization of the mean square risk, r+(t, w), over the

window length, w(t), results in an ideal filter support size w+(t) [42]:

r+(t, w) = min(r(t, w)) = std2{ŝ(t, w+)}(1 + η2
ici
), (4.9)

where ηici at w(t) = w+(t) can be expressed as:

ηici =
bias{e(t, w+)}
std{ŝ(t, w+)} . (4.10)

In the case of LPA estimates, the following inequality holds [41]:

|e(t, w)| ≤ bias{e(t, w)}+ |ζ(t, w)|, (4.11)

where ζ(t, w) ∼ N (0, std2{ŝ(t, w)}) is the zero mean Gaussian random error with standard

deviation std{ŝ(t, w)}. With the probability p = 1 − α, following inequality holds true:

|ζ(t, w)| ≤ χ1−α/2 ·std{ŝ(t, w)} [41], thus with the same probability inequality (4.11) leads

to:

|e(t, w)| ≤ bias{e(t, w)}+ χ1−α/2 · std{ŝ(t, w)}, (4.12)

where χ1−α/2 is (1− α/2)th quantile of the standard Gaussian distribution.

The ICI rule introduces a finite set of filter support sizes {w1 < w2 < · · · < wL} giving

the proper filter support size as the one which provides adequate compromise between

the estimation error bias, bias{e(t, w)}, and the random error, ζ(t, w). Thus, inequality
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(4.12) can be redefined:

|e(t, w)| ≤ (ηici + χ1−α/2) · std{ŝ(t, w)}, (4.13a)

|s(t)− ŝ(t, w)| ≤ Γici · std{ŝ(t, w)}, (4.13b)

where parameter Γici = (ηici + χ1−α/2) is the ICI threshold value. With the same proba-

bility, p, inequality (4.14) can be expanded into:

ŝ(t, w)− Γici · std{ŝ(t, w)} ≤ s(t) ≤ ŝ(t, w) + Γici · std{ŝ(t, w)}, (4.14)

which leads to the introduction of confidence intervals, ŝ(t, w) ∈ D(t), with upper and

lower boundaries respectively being defined as [41]:

Du(t0 +∆t) =ŝ(t0 +∆t, w) + Γici · std{ŝ(t0 +∆t, w)}, (4.15a)

Dl(t0 +∆t) =ŝ(t0 +∆t, w)− Γici · std{ŝ(t0 +∆t, w)}, (4.15b)

with t = t0 + ∆t(t0), where t0 is the considered signal sample, ∆t(t0) is an element

of [0, Nt − t0] for the forward calculation, and an element of [0,−t0] for the backwards

calculation of the confidence intervals intersection, and ŝ(t0 +∆t) is calculated using the

LPA method (for zero order LPA, its value is calculated as the average value of the samples

in the vicinity of the considered signal sample, detected using the ICI algorithm).

The ICI algorithm results in the number of samples ∆t+(t0) which is then used for

the adaptive filter support size selection, where ∆t+(t0) is the largest ∆t(t0) satisfying

the following condition [41]:

Du+
min

(t0 +∆t) ≥ Dl+max
(t0 +∆t), (4.16)

where Du+
min

(t0 +∆t) and Dl+max
(t0 +∆t) are calculated as:

Du+
min

(t0 +∆t) =min(Du(t0), . . . , Du(t0 +∆t)), (4.17a)

Dl+max
(t0 +∆t) =max(Dl(t0), . . . , Dl(t0 +∆t)). (4.17b)

The most appropriate size of the support window for the considered signal sample,

w+(t0), is calculated as:

w+(t0) = ∆t+f (t0) + ∆t+b (t0) + 1, (4.18)

where ∆t+f (t0) and ∆t+b (t0) are the number of samples obtained from the forward and

backward confidence intervals intersection calculation, respectively. The flowchart of the
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t0 + ∆tf (t0 ) = Nt
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Figure 4.3: Flowchart of the ICI algorithm.
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Figure 4.4: Asymmetrical filter support size selection. ∆t+
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b
(t0), ∆t∗

f
(t0), and w∗(t0) are obtained after introducing (4.21)

as an additional criterion.
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ICI algorithm described in (4.15)-(4.18) is given in the Fig. 4.3.

An example of confidence intervals intersection, with the confidence intervals lengths,

D(t0+∆t), and the amount of confidence intervals overlaps, I(t0+∆t), is illustrated in Fig.

4.4. In the forward ICI calculation, the intervals are intersecting for

∆tf(t0) = 1, . . . , 4, however there are no intersections for ∆tf(t0) = 5, thus the opti-

mal forward window size is selected as ∆t+f (t0) = 4. In a similar way, in the backward ICI

calculation, the intervals are intersecting for ∆tb(t0) = 1, 2, however there are no inter-

sections for ∆tb(t0) = 3, thus the optimal forward window size is selected as ∆t+b (t0) = 2,

resulting in the optimal asymmetrical window of size w+(t0) = 4 + 2 + 1 = 7.

Example 4.2. In this example the LPA-ICI algorithm denoising performance has been

tested on the standard test signals Blocks and HeaviSine1 [41, 46], shown in Figs. 4.5(a)

and 4.5(b) with their lengths varying from Nt = 256 to Nt = 2048 samples. The Blocks

signal is known to be a model of acoustic impedance of a layered medium in geophysics,

as well as one-dimensional profile of images in some image processing problems, while the

HeaviSine signal is a sinusoidal signal with jumps (obtained by combining the sinusoid

and a piecewise constant component). Furthermore, the test signals have been corrupted

with the AWGN with the signal-to-noise ratio SNR = 10 dB (noisy signals are shown in

Figs. 4.5(c) and 4.5(d)), and the results have been averaged over M = 100 Monte Carlo

simulations. The LPA-ICI algorithm threshold parameters have been fixed at Γici = 3,

and the algorithms denoising quality has been measured with the mean square error

(MSE), the root of mean square error (RMSE), the mean absolute error (MAE), and the

maximum absolute difference (MAX), calculated as:

MSE =
1

MNt

M∑

m=1

Nt∑

t=1

(
s(t)− ŝ[m](t, w)

)2
, (4.19a)

RMSE =
1

M

M∑

m=1

(
1

Nt

Nt∑

t=1

(
s(t)− ŝ[m](t, w)

)2
) 1

2

, (4.19b)

MAE =
1

MNt

M∑

m=1

Nt∑

t=1

∣∣s(t)− ŝ[m](t, w)
∣∣ , (4.19c)

MAX =
1

M

M∑

m=1

max
(∣∣s(t)− ŝ[m](t, w)

∣∣) , (4.19d)

respectively, where ŝ[m](t, w) is the estimated signal value in the m-th simulation. The

obtained denoised signals are shown in Figs. 4.5(e) and 4.5(f), and are summarized in

Table 4.1.

The algorithm execution times are obtained on the PC with the Intel Core i7-4770

1 Part of the Wavelab toolbox, available at: http://www-stat.stanford.edu/~wavelab/Wavelab_850/
WAVELAB850.ZIP
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Figure 4.5: Used test signals with Nt = 256 samples: (a) Blocks signal, (b) HeaviSine signal, (c) noisy
Blocks signal (SNR = 10 dB), (d) noisy HeaviSine signal (SNR = 10 dB), (e) denoised Blocks signal with
the LPA-ICI algorithm (Γici = 3), (f) denoised HeaviSine signal with the LPA-ICI algorithm (Γici = 3).

Table 4.1: Signal denoising results of the LPA-ICI algorithm with Γici = 3.

Nt = 256 Nt = 512 Nt = 1024 Nt = 2048

Blocks HeaviSine Blocks HeaviSine Blocks HeaviSine Blocks HeaviSine

MSE 0.8476 0.9462 0.5056 0.5489 0.3018 0.3085 0.1530 0.1775

RMSE 0.9185 0.9713 0.7101 0.7396 0.5487 0.5545 0.3907 0.4207

MAE 0.7530 0.8335 0.5599 0.6271 0.4298 0.4662 0.3057 0.3471

MAX 2.8508 2.2691 2.4741 1.8541 2.3438 1.5997 2.2801 1.3451

t [ms] 0.0571 0.0699 0.1878 0.2207 0.6689 0.7014 2.5742 2.2560
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@ 3.40 Ghz processor and 16 GB of RAM, and should be taken only in comparison

among themselves. Due to the nature of the LPA-ICI algorithm, its execution time

grows quadratically with the signal length, i.e. the LPA-ICI algorithm execution time is

increased 45 times, when signal length is increased from Nt = 256 samples to Nt = 2048

samples. Furthermore, execution time of the LPA-ICI algorithm is also dependent of

signal type, which is obvious from the differences in algorithm execution times for Blocks

and HeaviSine signals.

4.2.3 The LPA-RICI method

The original ICI algorithm is not only time consuming, but its efficiency is highly depen-

dant on the value of the parameter Γici [41, 46]. For large Γici values, the ICI algorithm

results in oversized filter supports, resulting in the signal oversmoothing. On the other

hand, too small Γici values cause undersized filter supports and signal undersmoothing.

This problem can be solved by finding a proper value of parameter Γici using the cross-

validation or the variable Γici selection method [41]. Those methods, however, require

additional reruns of the ICI algorithm, thus making it even more time consuming.

In order to solve the problem of finding a proper Γici value without significantly in-

creasing the execution time, a new parameter has been introduced based on the overlap

lengths between two consecutive confidence intervals [46]. The relative amount of confi-

dence intervals overlapping is calculated as:

R(t0 +∆t) =
I(t0 +∆t)

D(t0 +∆t)
=
Du+

min
(t0 +∆t)−Dl+max

(t0 +∆t)

Du(t0 +∆t)−Dl(t0 +∆t)

=
Du+

min
(t0 +∆t)−Dl+max

(t0 +∆t)

2Γici · std{ŝ(t0 +∆t, w)} ,

(4.20)

where D(t0+∆t) and I(t0+∆t) are the length of confidence interval and the overlapping

length with previous confidence intervals, respectively (as shown in Fig. 4.4). The new

adaptive filter support size w∗(t0) = ∆t∗(t0) is then determined as the largest ∆t(t0)

satisfying the following condition, leading to the RICI rule:

R(t0 +∆t) ≥ Rc, (4.21)

where Rc is the preset threshold value. Note that setting Rc = 0 reduces the algorithm

to the original ICI algorithm.

Example 4.3. In this example the LPA-RICI algorithm denoising performance has been

tested, with identical simulation set-up as in Example 4.2, making obtained results mu-

tually comparable. The LPA-RICI algorithm parameters have been set as: Γici = 3 and

Rc = 0.8. The obtained denoised signals are shown in Fig. 4.6, while the denoising re-
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Table 4.2: Signal denoising results of the LPA-RICI algorithm with Γici = 3 and Rc = 0.8.

Nt = 256 Nt = 512 Nt = 1024 Nt = 2048

Blocks HeaviSine Blocks HeaviSine Blocks HeaviSine Blocks HeaviSine

MSE 0.1015 0.3180 0.0643 0.2136 0.0456 0.1520 0.0347 0.1098

RMSE 0.3144 0.5621 0.2508 0.4613 0.2123 0.3891 0.1855 0.3310

MAE 0.1965 0.4462 0.1481 0.3589 0.1203 0.2938 0.0948 0.2427

MAX 2.1032 2.1044 2.3009 2.3820 2.5059 2.8385 2.6845 3.2396

t [ms] 0.0358 0.0334 0.1209 0.0943 0.4068 0.2706 1.3568 0.7803

sults are summarized in Table 4.2. The LPA-RICI algorithm execution times are slightly

smaller than the execution times of the LPA-ICI algorithm, however, the LPA-RICI al-

gorithm suffers from the same problems as the LPA-ICI algorithm: non-linear increase

of the algorithm execution time as signal length increases, and algorithm execution time

is dependant of the signal type. When compared to the LPA-ICI denoising quality, the

LPA-RICI denoising quality is significantly better across all of the calculated indices, ex-

cept for the MAX value, which is in most of the performed simulations higher for the

LPA-RICI algorithm.

4.2.4 The LPA-FICI method

As discussed in Section 4.2.2, the ICI algorithm at the signal sample t0 calculates the

following number of confidence intervals and their intersections:

N ICI
CI (t0) = ∆t∗f (t0) + ∆t∗b(t0) + 3 ∈ [3, Nt], (4.22)

which makes N ICI
CI (t0) ∼ O(Nt). This means that the ICI algorithm calculates minimum

N ICI
CI (t0) = 3 confidence intervals (in the case when there is no intersection between them,

resulting in ∆t∗f (t0) = ∆t∗b(t0) = 0), however the maximum number of confidence intervals

calculation is N ICI
CI (t0) = Nt (in the case where confidence intervals of all signal samples are

intersecting). The ICI algorithm repeats the described procedure for each signal sample,

that is: [t0]
[n+1] = [t0]

[n] + 1, and (4.22) can be expanded to take into account the total
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Figure 4.6: Denoised test signals with the LPA-RICI algorithm (Γici = 3, Rc = 0.8): (a) Blocks signal,
(b) HeaviSine signal.
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number of calculated confidence intervals and their intersections for the entire signal:

N ICI
CI =

Nt∑

t0=0

(∆t∗f (t0) + ∆t∗b(t0) + 3) ∈ [3Nt, N
2
t ], (4.23)

which makes N ICI
CI ∼ O(N2

t ), as demonstrated in Examples 4.2 and 4.3. This significantly

slows down the ICI algorithm, especially for large chunks of data, and making it not

applicable in real-time signal processing since it requires future signal samples.

The motivation behind the here-proposed FICI algorithm is to obtain the filter support

size in groups, by dividing the signal in regions of varying size. The calculation of the

filter support in such a way eliminates the need for calculating ∆t∗b(t0), thus the FICI

algorithm at the signal sample t0 calculates the following number of confidence intervals

and their intersections:

NFICI
CI (t0) = ∆t∗f (t0) + 2 ∈ [2, Nt]. (4.24)

However, the FICI algorithm skips the filter support size calculation for samples in the

current group assuming they have the same support size, that is:

w(t0)
∗ = w(t0 + 1)∗ = · · · = w(t0 +∆t∗f (t0))

∗, (4.25)

and jumps to the first sample outside the current group, that is

[t0]
[n+1] = [t0]

[n] + ∆t∗f (t0) + 1. Thus, the total number of calculated confidence inter-

vals and their intersections for the entire signal stays the same, i.e. one per signal sample:

NFICI
CI = Nt, (4.26)

making the algorithm appealing in many applications, since its execution time can be

easily and accurately approximated on any system based on the execution time of the

test signal with smaller number of samples. By comparing (4.26) with the (4.23), it can

be clearly seen that the LPA-FICI algorithm reduces the computational complexity of

the LPA-FICI algorithm from 3 to Nt times. Comparison of the filter support selection

between the original and the here-proposed algorithm is illustrated in Fig. 4.7. As

shown in Fig. 4.7, the here-proposed algorithm selects the adaptive filter support size by

detecting the signal edges and the corresponding signal regions, and for all signal samples

inside the region, the same filter support size is used, unlike the original ICI rule which

does not use previously calculated confidence intervals.

Hence, the main advantage of the here-proposed algorithm is its complexity reduction.

For an Nt sample signal, the original ICI algorithm calculates up to Nt confidence intervals

for each signal sample. Thus, the ICI algorithm can reach up to Nt×Nt = N2
t confidence
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Figure 4.7: Example of the filter support selection using: (a) ICI algorithm (the algorithm calculates
filter support size for each sample individually, resulting in up to N2

t calculated confidence intervals
in total), (b) FICI algorithm (the algorithm calculates filter support in groups, resulting in exactly Nt

calculated confidence intervals).
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Figure 4.8: Flowchart of the here-proposed FICI algorithm.
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Figure 4.9: Denoised test signals with the LPA-FICI algorithm (Γici = 3, Rc = 0.8): (a) Blocks signal,
(b) HeaviSine signal.

intervals calculation for the whole signal (as shown in Fig. 4.7(a)), which are then used for

the adaptive filter support size selection. On the other hand, the here-proposed algorithm,

which calculates the filter support size for the first sample of the corresponding signal

region, requires only calculation of one confidence interval per sample, ergo Nt confidence

intervals in total (as shown in Fig. 4.7(b)). Accordingly, the here-proposed algorithm

reduces the number of computations from O(N2
t ) to O(Nt), hence the execution time is

reduced by up to Nt times, when compared to the original ICI algorithm. Additionally,

the here-proposed algorithm’s number of operations does not depend on the signal shape,

only its length as shown in (4.26), thus its execution time can be calculated, which is not

the case for the original ICI algorithm. Furthermore, the ICI algorithm for any sample

t0 requires the knowledge of ∆t∗f (t0) next sample values, which hinders its use in real-

time applications. On the other hand, the here-proposed algorithm does not have such

requirement, hence being suitable in real-time signal processing applications.

Fig. 4.8 gives the flowchart of the LPA-FICI algorithm. When compared to Fig. 4.3,

where the flowchart of the original LPA-ICI is shown, it can be observed that the FICI

algorithm eliminates the need for backward calculation of the filter support size, making

the algorithm much simpler, and leading to the algorithm execution time reduction.

Example 4.4. In this example the LPA-FICI algorithm denoising performance has been

tested, with identical simulation set-up as in Examples 4.2 and 4.3, making obtained

results mutually comparable. The LPA-FICI algorithm parameters have been set as:

Γici = 3 and Rc = 0.8. The obtained denoised signals are shown in Fig. 4.9, and

denoising results are summarized in Table 4.3.

When compared to the LPA-ICI and the LPA-RICI execution times, shown in Tables

4.1 and 4.2, the LPA-FICI execution times are significantly lower: 40 times faster for

signals with Nt = 256 samples, and 220 times faster for signals with Nt = 2048 samples.

Furthermore, the LPA-FICI algorithm eliminates two main problems of the LPA-ICI

algorithm: the execution times are constant across all signal types with the same length,

and the algorithm execution time linearly increases with respect to the signal length (as

74



Ivan Volarić TF Domain Signal Enhancement Using Adaptive CS

Table 4.3: Signal denoising results of the LPA-FICI algorithm with Γici = 3 and Rc = 0.8.

Nt = 256 Nt = 512 Nt = 1024 Nt = 2048

Blocks HeaviSine Blocks HeaviSine Blocks HeaviSine Blocks HeaviSine

MSE 0.2784 0.4166 0.2076 0.2668 0.1632 0.1742 0.1163 0.1156

RMSE 0.5222 0.6442 0.4526 0.5156 0.4021 0.4168 0.3396 0.3395

MAE 0.2329 0.5095 0.1733 0.4055 0.1371 0.3196 0.0981 0.2568

MAX 4.1416 2.3126 4.2513 2.3434 4.3791 2.5774 4.6255 2.7867

t [ms] 0.0015 0.0015 0.0029 0.0029 0.0058 0.0058 0.0118 0.0116
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t
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Figure 4.10: Normalized algorithm execution times for the LPA-ICI (dotted line), the LPA-RICI (dashed
line), and the LPA-FICI (solid line) algorithms: (a) Blocks signal, (b) HeaviSine signal. Due to the
differences in order of magnitude between the algorithms execution times have been normalized for each
algorithm separately.

shown in Fig. 4.10). On the other hand, denoising quality is not significantly disturbed:

the LPA-FICI performs better then the LPA-ICI algorithm, and slightly worse than the

LPA-RICI algorithm.

4.3 Estimation of Instantaneous Number of Time-

Frequency Components Based on the Localized

Rényi Entropy Information

Recently, a new method which estimates the instantaneous number of signal TF com-

ponents based on the localized Rényi entropy has been proposed [71, 72]. The Rényi

entropy, given by (2.37), is indifferent to the cross-terms when αr is chosen as an odd

integer value, i.e. integration of the cross-terms over the entire TF plane gives zero. This

is why the Rényi entropy can be used to calculate the signal complexity, and by exploiting

the counting property of the Rényi entropy, the number of instantaneous signal compo-

nents, can be extracted by comparing the localized Rényi entropy of the TFD in question

with a localized Rényi entropy of the TFD with a known number of signal components.
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In other words, the instantaneous number of signal components, nc(t0), is calculated as

[71, 72]:

nc(t0) = 2
Rαr

z (ρzt0
(t,f))−Rαr

z (ρreft0
(t,f))

, (4.27)

where t0 is the observed time slice, ρref(t, f) is a TFD of the reference signal, and the

subscript t0 in the TFD notation denotes that all samples of the TFD are set to zero,

except the samples in vicinity of t0, that is:

ρzt0 (t, f) =

{
ρz(t, f), t0 −∆t < t < t0 +∆t,

0, otherwise,
(4.28)

where ∆t is the user defined localization parameter defining a length of the observed time

interval.

The reference signal can be chosen arbitrarily; in [71, 72] the reference signal is chosen

to be a stationary cosine signal with a normalized frequency 0.1, and an amplitude of

1. In the conducted simulations, it seems that the selection of the reference signal does

not play a significant role in the overall performance of the algorithm. On the other

hand, the selection of the appropriate TFD plays a crucial role. In order to guaranty a

meaningful solution of the algorithm, ρz(t, f) and ρref(t, f) have to be calculated in the

same way. In [71] it has been shown that the extended modified B distribution (its kernel

function is given in Table 2.2) is a good choice for the TFD, as substantiated by the TFD

comparisons performed in Examples 2.4 - 2.7.

The flowchart of the algorithm is shown in Fig. 4.11. The two additional steps ensure

the robustness of the algorithm: firstly, the TFDs are thresholded by removing 10% of

the samples with the smallest amplitude; and secondly, if energy of the current time slice,

Ezt0 , is smaller then the predefined minimum energy threshold, Emin, that is [71]:

Nf∑
ρz(t0, f)

︸ ︷︷ ︸
Ezt0

<
0.001Nt

∆t

Nt∑ Nf∑
ρz(t, f)

︸ ︷︷ ︸
Emin

, (4.29)

the number of signal components in the current time slice, nc(t0), is set to zero.

Example 4.5. In this example, the instantaneous number of components for the pre-

viously defined signals zLFM(t), znonLFM(t), and zbat(t) has been calculated. The used

reference signal is a stationary cosine signal with a normalized frequency 0.1, and an am-

plitude of 1, as in [71, 72], while the selected TFD is the extended modified B distribution

with the kernel parameters set as αemb = 0.1 and βemb = 0.12. The order of the Rényi

entropy is set to αr = 7, with the localization parameter ∆t = 11.

The resulting instantaneous number of components, along with the extended modified
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Figure 4.11: Flowchart of the localized Rényi entropy based algorithm for estimation of the instanta-
neous number of signal components.
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Figure 4.12: The instantaneous number of signals components calculated from the localized Rényi
entropy of the extended modified B distribution (αemb = 0.1, βemb = 0.12) of the: (a) three LFM
component signal, zLFM(t), (b) two component non-LFM signal, znonLFM(t), (c) bat echolocation signal,
zbat(t).
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B distribution of the considered signals are shown in Fig. 4.12. For the signal zLFM(t),

it can be seen that the algorithm failed to detect the weakest signal component, which

is masked with the cross-terms between the remaining two components. On the other

hand, for the signal znonLFM(t), it can be seen that the algorithm has correctly calculated

the instantaneous number of signal components, with an exception of time slices where

the two components are very closely located. This problem is solved in [72], where the

signal component intersections are detected from the derivative of nc(t0). For the signal

zbat(t), it can be seen that the algorithm has correctly detected the instantaneous number

of signal components.

4.4 Summary

In this chapter, the three adaptive methods have been discussed, which when applied

in the CS based TFD calculation will enhance the concentration of the resulting sparse

TFD.

The first method, which detects the intersection between the cross-terms and the

respective AF axis, removes the need for experimental CS-AF area selection, providing the

signal adaptive method which avoids the cross-term inclusion in the reconstructed sparse

TFD. The effectiveness of the here-proposed method has been tested by constructing the

standard TFD kernel and comparing the concentration of the resulting TFDs with the

concentration of the RGK-TFDs. The conducted simulations on synthetical and real-

life signals have shown that the proposed kernel performs competitively with the RGK

when the considered signal is composed from the LFM components; however, when the

considered signal has a highly nonlinear frequency modulated component, the proposed

kernel fails to properly capture the auto-terms in its pass-band.

The second method, namely the FICI rule, provides a method for the adaptive sparse

TFD thresholding by searching the sparse TFD for samples with the similar values. The

denoising capabilities of the proposed LPA-FICI method have been tested on the synthet-

ical signals, and its performance has been compared with the performance of the LPA-ICI

method and the LPA-RICI method. The conducted experiments have shown that the

LPA-FICI convergence rate is significantly faster, while preserving the same denoising

quality.

The third method, based on the localized Rényi entropy, detects the instantaneous

number of signal components in the TFD. This information can then be used to estimate

the TFD sparsity level. The method has been used in order to calculate the instanta-

neous number of components present in synthetical and real-life signals. The conducted

simulation have shown the satisfactory performance of the method.
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Chapter 5

Compressive Sensing Based

Time-Frequency Distribution

Concentration Enhancement

In this chapter, the three methods for concentration enhancement of the sparse TFD

are discussed. The first method, based on the APK, previously discussed in Section 4.1,

adaptively detects the largest possible rectangular or elliptical CS-AF area without the

cross-term inclusion. The goal of the here-proposed CS-AF selection method is to provide

more cross-term free samples to the sparse signal reconstruction algorithm, resulting in

a more accurate reconstruction results and a faster algorithm convergence rate. The re-

maining two here-proposed methods are sparse reconstruction algorithms: the first sparse

reconstruction algorithm is based on the FICI rule, previously discussed in Section 4.2.4,

while the second sparse reconstruction algorithm is based on the localized Rényi entropy,

previously discussed in Section 4.3. The here-proposed adaptive methods are tested on

the synthetical and real-life signals, while the obtained results are compared with the re-

sults obtained with the currently available state-of-the-art algorithms for the sparse signal

reconstruction.

5.1 Adaptive Compressive Sensing Area Selection of

the Ambiguity Function

As previously discussed in Chapter 2, the cross-terms are located away from the AF

domain origin with the distance equal to the time-frequency distance between the compo-

nents, leading to a conclusion that selecting the CS-AF area independent of AF geometry

is suboptimal; when dealing with a closely located components, the CS-AF area is lim-

ited by the cross-terms location; however, when components are more spread-out, the
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Figure 5.1: The adaptive CS-AF sensing area geometry: (a) the rectangular mask, (b) the elliptical
mask. Dashed lines represent the cross-terms pair which is closest to the AF domain origin, while the
points A(−Nτ/2, Nν/2) and B(Nτ/2,−Nν/2) are touching points between the CS-AF sensing mask and
the cross-terms line.

CS-AF area can be significantly larger. This has served as a motivation for development

of a here-proposed method for the adaptive CS-AF area selection, with the general goal

to capture as large as possible area around the AF origin, without including any of the

cross-terms, which if included would reappear in the sparse TFD. The reason behind this

specific approach is to lower the requirements of the reconstruction algorithm; it is easier

to reconstruct a TFD having more AF auto-term samples to begin with.

The here-proposed method constructs the CS-AF sensing mask as a N ′
ν×N ′

τ rectangle

centered around the AF domain origin, that is:

φ(ν, τ) =





1, ν ≤
∣∣∣∣
N ′
ν

2

∣∣∣∣ , τ ≤
∣∣∣∣
N ′
τ

2

∣∣∣∣ ,

0, otherwise,

(5.1)

where the parameters N ′
ν and N ′

τ are obtained using the algorithm proposed in Section 4.1.

The algorithm is implemented in a MATLAB function

fun_adaptiveCSAF.m, the code of which is given in Appendix B. The rectangular CS-AF

sensing mask constructed in this way will have two of its vertices on the cross-terms line,

as shown in Fig. 5.1(a), ensuring the largest possible rectangular CS-AF area without the

cross-term inclusion.

Alternatively, the adaptive CS-AF sensing mask can be constructed as an ellipse,

centered around the AF domain origin, where the cross-terms line is a tangent to the

elliptical CS-AF sensing mask at the point A(−N ′
τ/2, Nν/2), as shown in Fig. 5.1(b).

The two radiuses, rτ and rν , are obtained from the intersection of the cross-terms line

with the elliptical CS-AF sensing mask:
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ν =
N ′
ν

N ′
τ

τ +N ′
ν , (5.2a)

τ 2

r2τ
+
ν2

r2ν
= 1, (5.2b)

leading to the following quadratic equation:

τ 2
(
r2ν + r2τ

N ′2
ν

N ′2
τ

)
+ τ

(
2r2τ

N ′2
ν

N ′
τ

)
+ (r2τN

′2
ν − r2τr2ν) = 0. (5.3)

The cross-terms line will be a tangent to the elliptical CS-AF sensing mask when there

is only a single intersection point between them, thus the determinant of (5.3) has to be

zero, leading to the following expression:

r2τ
N ′2
τ

+
r2ν
N ′2
ν

= 1, (5.4)

which further leads to a unique solution of the quadratic equation (5.3):

τ =
−r2τ

N ′
τ

(
r2τ
N ′2

τ
+ r2ν

N ′2
ν

) =
−r2τ
N ′
τ

. (5.5)

By plugging the desired intersection point between the cross-terms line and the elliptical

CS-AF sensing mask as τ = −N ′
τ/2 and ν = N ′

ν/2 into (5.5) and (5.2b), the two radiuses

of the elliptical CS-AF sensing mask, rτ and rν , are obtained as:

rτ =
N ′
τ√
2
, rν =

N ′
ν√
2
, (5.6)

leading to a final expression for the elliptical CS-AF sensing mask:

φ(ν, τ) =




1,

2ν2

N ′2
ν

+
2τ 2

N ′2
τ

≤ 1,

0, otherwise.

(5.7)

By comparing the rectangular CS-AF area containingN ′
τN

′
ν samples, and the elliptical CS-

AF area containing rτrνπ = N ′
τN

′
νπ/2 samples, it can be concluded that the elliptical CS-

AF sensing mask is π/2 times larger than the rectangular CS-AF sensing mask, allowing

even more samples to be included from which the sparse TFD is reconstructed.

Example 5.1. In this example, the here-proposed adaptive CS-AF areas have been cal-

culated for the previously defined signals zLFM(t), znonLFM(t), and zbat(t). Following the

standard CS-AF methodology, the following CS-AF areas are obtained: N ′
τ = N ′

ν = 15,

for the signals zLFM(t) and znonLFM(t), while N ′
τ = N ′

ν = 19 for the signal zbat(t). On

the other hand, the here-proposed adaptive CS-AF area selection method has resulted in
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N ′
τ = 17, N ′

ν = 73 for the signal zLFM(t), N ′
τ = 15, N ′

ν = 39 for the signal znonLFM(t), and

N ′
τ = 21, N ′

ν = 71 for the signal zbat(t). The resulting rectangular CS-AF sensing masks

are shown in Figs. 5.2(a) - 5.2(c), while the elliptical CS-AF sensing masks are shown

in Figs. 5.2(d) - 5.2(f). Note that the IHTλ, NIHTλ, and FPC algorithm for the signal

zbat(t) did not converge, producing NaN solution, and this is why the respective sparse

reconstruction results have been omitted from the respective figures and tables.

When compared to the manually selected CS-AF sensing masks, the adaptively de-

tected rectangular CS-AF sensing mask is 5 times larger for the signal zLFM(t), 2.5 times

larger for the signal znonLFM(t), and 4 times larger for the signal zbat(t). Further enlarge-

ment of the CS-AF area, by including approximately 50% more AF samples, is obtained

with the adaptively detected elliptical CS-AF sensing mask, achieving NCS = 1935 sam-

ples for the signal zLFM(t), NCS = 923 samples for the signal znonLFM(t), and NCS = 2380

samples for the signal zbat(t). Furthermore, by visual inspection of Fig. 5.2 it can be
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Figure 5.2: The adaptively detected CS-AF sensing mask: (a) the rectangular CS-AF sensing mask for
the signal zLFM(t) (N ′

τ = 17, N ′

ν = 73), (b) the rectangular CS-AF sensing mask for the signal znonLFM(t)
(N ′

τ = 15, N ′

ν = 39), (c) the rectangular CS-AF sensing mask for the signal zbat(t) (N
′

τ = 21, N ′

ν = 71),
(d) the elliptical CS-AF sensing mask for the signal zLFM(t) (NCS = 1935), (e) the elliptical CS-AF
sensing mask for the signal znonLFM(t) (NCS = 923), (f) the elliptical CS-AF sensing mask for the signal
zbat(t) (NCS = 2380). The gray square is a manually selected CS-AF sensing mask with N ′

τ = N ′

ν = 15
for the signals zLFM(t) and znonLFM(t), and N ′

τ = N ′

ν = 19 for the signal zbat(t).
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concluded that the performance of the here-proposed CS-AF area selection algorithm has

fulfilled the previously discussed design goals of the adaptive rectangular and elliptical

CS-AF sensing mask.

Next, the performance of the ℓ0 norm and the ℓ1 norm based sparse reconstruction

algorithms with the adaptively detected CS-AF sensing mask has been compared with

the performance of the sparse reconstruction algorithms when the CS-AF sensing mask

is selected manually. The simulation set-up is the same as in Example 3.2 for the ℓ0

norm based reconstruction algorithms, and same as in Example 3.3 for the ℓ1 norm based

reconstruction algorithms, making the previously obtained results presented in Tables

3.1 and 3.2 comparable with the results obtained in this example. The resulting sparse

TFDs based on the ℓ0 norm minimization are shown in Figs. 5.3 - 5.5, with the results

summarized in Table 5.1 for the adaptively detected rectangular CS-AF sensing mask

and in Table 5.2 for the adaptively detected elliptical CS-AF sensing mask. The resulting

sparse TFDs based on the ℓ1 norm minimization are shown in Figs. 5.6 - 5.8, with the

results summarized in Table 5.3 for the adaptively detected rectangular CS-AF sensing

mask and in Table 5.4 for the adaptively detected elliptical CS-AF sensing mask.

By visual inspection of the obtained sparse TFDs based on the ℓ0 norm minimization

and the adaptively detected CS-AF sensing mask (shown in Figs. 5.3 - 5.5), it can be con-

cluded that the newly obtained ℓ0 norm based TFDs are significantly better concentrated

than the previously obtained ℓ0 norm based sparse TFDs with the manually selected CS-

AF sensing mask (shown in Figs. 3.3 - 3.5), and are in fact, comparable with the sparse

TFDs obtained by the ℓ1 norm minimization and the manually selected CS-AF sensing

mask (shown in Figs. 3.6 - 3.8). The problem with the weakest signal component being

hard-thresholded, previously discussed in Example 3.2, has been partially solved (since

more AF samples are processed by the sparse reconstruction algorithm), but it is still

present. This can be seen by comparing the ℓ0 norm based sparse TFDs of the signals

zLFM(t) and zbat(t) obtained with the manually selected CS-AF sensing mask (shown in

Figs. 3.3 and 3.5) with the respective TFDs obtained with the adaptively detected CS-AF

sensing mask (shown in Figs. 5.3 and 5.5), as the weakest component is present in the more

newly obtained ℓ0 norm based sparse TFDs with the adaptively detected CS-AF sensing

mask. The similar problem is present in the ℓ0 norm based sparse TFDs of the signal

znonLFM(t) where the sinusoidal frequency modulated component gets hard-thresholded

because there is not enough CS-AF samples corresponding to the signal component in

question.

Furthermore, the concentration measure and the Rényi entropy of the newly obtained

ℓ0 norm based sparse TFDs, shown in Table 5.1, achieved approximately 5% − 10% im-

provement when compared to the respective sparse TFDs with the manually selected

CS-AF sensing mask. The problem with the concentration measure being unproportion-

ately low when a signal component is missing, discussed in Example 3.2, is also present
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Figure 5.3: The reconstructed sparse TFDs based on the ℓ0 norm minimization of the three LFM
component signal zLFM(t) with the adaptively detected rectangular CS-AF sensing mask: (a) IHTλ,
(b) IHTK , (c) NIHTλ, (d) NIHTK , (e) AIHTK , (f) ECMEK , (g) DOREK , (h) HTPK , (i) FHTPK

algorithm.
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Figure 5.4: The reconstructed sparse TFDs based on the ℓ0 norm minimization of the two component
signal znonLFM(t) with the adaptively detected rectangular CS-AF sensing mask: (a) IHTλ, (b) IHTK ,
(c) NIHTλ, (d) NIHTK , (e) AIHTK , (f) ECMEK , (g) DOREK , (h) HTPK , (i) FHTPK algorithm.
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Figure 5.5: The reconstructed sparse TFDs based on the ℓ0 norm minimization of the bat echoloca-
tion signal zbat(t) with the adaptively detected rectangular CS-AF sensing mask: (a) IHTλ, (b) IHTK ,
(c) NIHTλ, (d) NIHTK , (e) AIHTK , (f) ECMEK , (g) DOREK , (h) HTPK , (i) FHTPK algorithm.
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Table 5.1: Rényi entropies, Rαr

z , concentration measures, MS
z , and the algorithm execution times of the

reconstruction algorithms based on the ℓ0 norm minimization with the adaptively detected rectangular
CS-AF sensing mask. The bold value indicates the best performing reconstruction algorithm according
to the respective measure for the considered signal.

zLFM(t) znonLFM(t) zbat(t)

Rαr

z MS
z t Rαr

z MS
z t Rαr

z MS
z t

αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms]

Ideal 9.2568 0.0111 − 8.9944 0.0078 − − − −
IHTλ 12.2219 0.1250 3.6448 11.5645 0.0576 3.6191 − − −
IHTK 11.4876 0.0556 61.3573 11.1465 0.0384 55.4814 12.2063 0.0449 47.3696

NIHTλ 12.1530 0.1122 14.2751 11.2996 0.0468 35.5876 − − −
NIHTK 11.4655 0.0556 85.1035 10.9638 0.0372 212.7585 12.1501 0.0444 277.1088

AIHTK 11.1962 0.0525 1675.9107 9.9527 0.0336 4068.4165 12.2702 0.0458 33.7429

ECMEK 11.3839 0.0544 534.1264 10.8110 0.0359 695.4658 12.2160 0.0450 64.1194

DOREK 11.1127 0.0519 1978.9220 9.8552 0.0327 2979.5565 12.2225 0.0447 96.4435

HTPK 11.4564 0.0551 21.2135 11.1283 0.0384 20.5624 12.2052 0.0449 78.6640

FHTPK 13.1762 0.6142 8.0521 13.4477 0.6808 8.0569 13.5272 0.4687 31.5296

Table 5.2: Rényi entropies, Rαr

z , concentration measures, MS
z , and the algorithm execution times of

the reconstruction algorithms based on the ℓ0 norm minimization with the adaptively detected elliptical
CS-AF sensing mask. The bold value indicates the best performing reconstruction algorithm according
to the respective measure for the considered signal.

zLFM(t) znonLFM(t) zbat(t)

Rαr

z MS
z t Rαr

z MS
z t Rαr

z MS
z t

αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms]

Ideal 9.2568 0.0111 − 8.9944 0.0078 − − − −
IHTλ 11.9752 0.1106 4.9174 11.6856 0.0654 48.8216 − − −
IHTK 11.3771 0.0548 27.9543 11.1189 0.0383 41.4901 12.0855 0.0440 56.3378

NIHTλ 11.8141 0.0913 34.3817 11.5536 0.0582 36.1657 − − −
NIHTK 11.3790 0.0551 82.2913 11.0868 0.0380 129.2657 12.0869 0.0443 189.3486

AIHTK 11.1786 0.0521 2742.5673 10.2029 0.0345 2444.3186 12.1569 0.0450 42.3939

ECMEK 11.2438 0.0526 861.2112 10.8339 0.0359 832.8246 12.1020 0.0442 72.7568

DOREK 11.1469 0.0518 1918.2433 9.9356 0.0326 3578.9344 12.0937 0.0436 122.9286

HTPK 11.3725 0.0547 23.5431 11.1093 0.0382 22.7235 12.0836 0.0439 84.8922

FHTPK 12.7955 0.5513 9.6387 13.3113 0.6202 9.5300 13.3001 0.4859 37.4837
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Figure 5.6: The reconstructed sparse TFDs based on the ℓ1 norm minimization of the three LFM com-
ponent signal zLFM(t) with the adaptively detected rectangular CS-AF sensing mask: (a) IST, (b) TwIST,
(c) FISTA, (d) SpaRSA, (e) FPC, (f) GPSR, (g) NESTA, (h) SALSA, (i) YALL1 algorithm.
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Figure 5.7: The reconstructed sparse TFDs based on the ℓ1 norm minimization of the two component
signal znonLFM(t) with the adaptively detected rectangular CS-AF sensing mask: (a) IST, (b) TwIST,
(c) FISTA, (d) SpaRSA, (e) FPC, (f) GPSR, (g) NESTA, (h) SALSA, (i) YALL1 algorithm.
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Figure 5.8: The reconstructed sparse TFDs based on the ℓ1 norm minimization of the bat echoloca-
tion signal zbat(t) with the adaptively detected rectangular CS-AF sensing mask: (a) IST, (b) TwIST,
(c) FISTA, (d) SpaRSA, (e) FPC, (f) GPSR, (g) NESTA, (h) SALSA, (i) YALL1 algorithm.
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Table 5.3: Rényi entropies, Rαr

z , concentration measures, MS
z , and the algorithm execution times of the

reconstruction algorithms based on the ℓ1 norm minimization with the adaptively detected rectangular
CS-AF sensing mask. The bold value indicates the best performing reconstruction algorithm according
to the respective measure for the considered signal.

zLFM(t) znonLFM(t) zbat(t)

Rαr

z MS
z t Rαr

z MS
z t Rαr

z MS
z t

αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms]

Ideal 9.2568 0.0111 − 8.9944 0.0078 − − − −
IST 11.5542 0.0992 406.7996 11.7681 0.1229 277.2688 10.5699 0.0131 606.3275

TwIST 10.5232 0.0560 184.6928 10.3268 0.0447 216.7444 10.6202 0.0139 457.2896

FISTA 10.9062 0.0586 276.6017 11.1545 0.0718 229.3851 10.1051 0.0093 579.2088

SpaRSA 11.1068 0.0750 126.5906 11.3850 0.0950 79.1227 10.1322 0.0095 348.1371

FPC 10.4645 0.0636 655.8862 10.6083 0.1008 824.9775 − − −
GPSR 11.3511 0.0828 292.2279 11.5828 0.1046 193.1485 10.2641 0.0106 273.1314

NESTA 10.6336 0.1227 1466.2038 11.0566 0.1870 1190.9418 10.9388 0.2530 2655.0842

SALSA 12.0660 0.1866 116.6848 11.9081 0.1629 153.0509 10.1379 0.0150 1219.6876

YALL1 9.2721 0.0180 2084.0243 9.0030 0.0132 2341.8449 8.8022 0.0037 10772.1951

ℓ1-ls 9.4666 0.2366 6304.5451 9.6500 0.4230 6184.1323 13.4823 0.4664 4332.4106

Table 5.4: Rényi entropies, Rαr

z , concentration measures, MS
z , and the algorithm execution times of

the reconstruction algorithms based on the ℓ1 norm minimization with the adaptively detected elliptical
CS-AF sensing mask. The bold value indicates the best performing reconstruction algorithm according
to the respective measure for the considered signal.

zLFM(t) znonLFM(t) zbat(t)

Rαr

z MS
z t Rαr

z MS
z t Rαr

z MS
z t

αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms]

Ideal 9.2568 0.0111 − 8.9944 0.0078 − − − −
IST 11.4124 0.0987 542.1344 11.8659 0.1242 368.5609 10.4259 0.0118 854.2265

TwIST 9.9994 0.0447 313.9779 10.3686 0.0488 284.1496 9.6863 0.0070 462.7869

FISTA 10.6769 0.0541 416.9572 11.2028 0.0740 318.7749 9.9717 0.0084 780.7640

SpaRSA 10.8791 0.0708 227.2669 11.6143 0.1065 82.6394 10.0369 0.0089 433.2059

FPC 10.3455 0.0645 1020.6865 10.6763 0.0883 1118.3698 − − −
GPSR 11.2197 0.0831 370.3489 11.6748 0.1064 238.8542 10.1174 0.0095 385.8460

NESTA 10.5509 0.1241 2303.4049 10.9925 0.1727 1993.6167 10.9233 0.2696 3626.0724

SALSA 11.8211 0.1640 166.5997 12.0385 0.1640 190.7876 10.0407 0.0144 1726.2268

YALL1 10.7026 0.0546 2805.6211 11.2490 0.0765 2995.1133 10.6698 0.0141 10366.2891

ℓ1-ls 10.6210 0.2696 4745.5160 9.6899 0.3688 7597.0326 13.3593 0.5284 5876.1806
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in the newly obtained ℓ0 norm based sparse TFDs. The problem is obvious from com-

parison of the visually better concentrated sparse TFDs with all the components present

(obtained with e.g. AIHTK , ECMEK , and DOREK algorithm) with the visually worse

concentrated sparse TFDs with the missing component (obtained with e.g. IHTK , and

IHTλ algorithm), as the concentration measure often favours the less concentrated ℓ0 norm

based sparse TFDs with the missing component. On the other hand, execution times of

the reconstruction algorithms based on the ℓ0 norm minimization significantly benefitted

from the larger CS-AF area; in only 7 instances execution time of the reconstruction

algorithm with the adaptively detected CS-AF sensing mask is slightly larger then the

execution time of the reconstruction algorithm with the manually selected CS-AF sensing

mask.

The adaptively detected elliptical CS-AF sensing mask, as shown in Table 5.2, brought

further improvement of the concentration measure and the Rényi entropy of the result-

ing ℓ0 norm based sparse TFDs. However, there are no visually identifiable differences

when compared to the ℓ0 norm based TFDs obtained with the adaptively detected rect-

angular CS-AF sensing mask, hence the ℓ0 norm based sparse TFDs with the adaptively

detected elliptical CS-AF sensing mask have been omitted from the respective figures.

The sparse reconstruction algorithm execution times with the adaptively detected ellipti-

cal and rectangular CS-AF area are very similar, some reconstruction algorithms achieved

slight acceleration, while other reconstruction algorithms achieved slight deceleration.

In the similar way, as it can be seen by visual inspection of Figs. 5.6 - 5.8, the ℓ1 norm

based sparse TFDs with the adaptively detected CS-AF sensing mask gained significant

concentration enhancement when compared to the respective ℓ1 norm based sparse TFDs

with the manually selected CS-AF sensing mask, shown in Figs. 3.6 - 3.8. In fact, for the

signal zLFM(t) some of the newly obtained ℓ1 norm based sparse TFDs are visually very

close to the ideal signal TFD, shown in Fig. 2.1(b). This is confirmed by the improvement

of the ℓ1 based sparse TFDs concentration measures and the Rényi entropies, listed in

Table 5.3, of approximately 10%, when compared to the concentration measures of the ℓ1

based sparse TFDs with the manually selected CS-AF area, listed in Table 3.2. The ℓ1

norm based reconstruction algorithm execution times were not greatly affected by the CS-

AF area enlargement: in approximately half of the instances the reconstruction algorithms

achieved slight improvement of their execution times.

Furthermore, with the adaptively detected elliptical CS-AF sensing mask, as apparent

from Table 5.4, the concentration measures and the Rényi entropies of the resulting ℓ1

norm based TFDs achieved approximately 1% additional improvement for the signals

zLFM(t) and zbat(t), and less then 1% deterioration for the signal znonLFM(t). The execution

times of the ℓ1 norm based reconstruction algorithms, on the other hand, did not benefited

from the elliptical CS-AF area, as the reported results show slightly slower execution times.
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5.2 Sparse Signal Reconstruction Algorithm Based on

the FICI Rule

In this section, the new sparse reconstruction algorithm has been proposed based on the

FICI rule, previously discussed in Section 4.2.4. In the here-proposed algorithm, the

shrinkage operator can be either implemented as hard-thresholding (3.18) for the ℓ0 norm

minimization, or soft-thresholding (3.29) for the ℓ1 norm minimization. The threshold

value is detected adaptively with the FICI rule, while the reconstruction algorithm struc-

ture is based on the TwIST algorithm [12], i.e. the algorithm iterative solutions are

defined with (3.31). The complete FICI based sparse reconstruction algorithm is defined

as follows.

1. In the first step, the solution of previous algorithm iteration is updated as:

[ςz(t, f)]
[n+1] = ψH

[
A′
z(ν, τ)−ψ [ϑz(t, f)]

[n]
]
+ [ϑz(t, f)]

[n] . (5.8)

Note that, the initial algorithm solution, [ςz(t, f)]
[0], can be initialized in different

ways; however, the best reported convergence rate and the most accurate solution

is obtained with the initialization as: [ςz(t, f)]
[0] = ψHA′

z(ν, τ).

2. In the next step, [ςz(t, f)]
[n+1] is vectorized, that is:

[ςz1D(i)]
[n+1] = vec

(
[ςz(t, f)]

[n+1]
)
, (5.9)

followed by calculation of [ς̃z1D(i)]
[n+1], which is performed by sorting the vectorized

TFD, [ςz1D(i)]
[n+1], in the ascending order, with the zero indexes being removed.

3. The regularization parameter, λ, is obtained as the value of first sample of the

sorted vectorized TFD, [ς̃z1D(t, f)]
[n+1], for which the amount of intersection between

the respective confidence intervals is bellow the preset threshold value, Rc. The

thresholded TFD, [ς̃z(t, f)]
[n+1], is then calculated by either soft-thresholding or

hard-thresholding the TFD, [ςz(t, f)]
[n+1], with the previously calculated threshold

value.

4. Finally, the solution of current algorithm iteration, [ϑz(t, f)]
[n+1], is calculated by

combining [ς̃z(t, f)]
[n+1] with the previous two solutions, that is:

[ϑz(t, f)]
[n+1] = (1− αtwist) [ϑz(t, f)]

[n−1] + (αtwist − βtwist) [ϑz(t, f)]
[n] + βtwist [ς̃z(t, f)]

[n+1] , (5.10)

5. The algorithm steps 1-4 are repeated until the stopping criterion is satisfied. In the

algorithm implementation used in this thesis, the stopping criterion is implemented
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Figure 5.9: Flowchart of the here-proposed sparse reconstruction algorithm based on the FICI rule.
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> ǫ. (5.11)

The flowchart of the complete algorithm is shown in Fig. 5.9, and it is implemented

in a MATLAB functions fun_bpn_FICI_TwIST.m and fun_FICIThreshold.m, the codes

of which are given in Appendix C.

Example 5.2. In this example, the sparse TFDs obtained with the reconstruction al-
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gorithm based on the FICI rule have been calculated for the previously defined signals

zLFM(t), znonLFM(t), and zbat(t), with three different CS-AF sensing masks: the manually

selected CS-AF sensing mask (denoted with the subscript FIX), the adaptively detected

rectangular CS-AF sensing mask (denoted with the subscript REC), and the adaptively

detected elliptical CS-AF sensing mask (denoted with the subscript ELL). The parameters

of the FICI algorithm have been set as: Γici = 6, and Rc = 0.1, the TwIST relaxation pa-

rameters have been set as: αtwist = 1, and βtwist = 0.5, while the stopping criterium has

been set as: ǫ = 1%. The resulting sparse TFDs based on the ℓ0 norm minimization are

shown in Fig. 5.10, while the resulting sparse TFDs based on the ℓ1 norm minimization

are shown in Fig. 5.11, with the obtained TFD measures summarized in Table 5.5.

By visual inspection of the sparse TFDs obtained by the ℓ0 norm minimization with

the FICI based threshold detection, shown in Fig. 5.10, it can be seen that they are

generally better concentrated than the previously obtained ℓ0 norm based sparse TFDs

(shown in Figs. 3.3 - 3.5 and Figs. 5.3 - 5.5). Furthermore, in case of the signals

zLFM(t) and zbat(t) the weakest signal component is significantly more emphasized, while

for the signal znonLFM(t), the nonlinear frequency modulated signal component did not

get hard-thresholded. On the other hand, the here-proposed FICI based reconstruction

algorithm does not require input about the number of non-zero elements in the resulting

sparse TFD, eliminating the need of a priori information about the signal nature. By

comparing the TFD reconstruction results (shown in Table 5.5), with the previously

obtained results (shown in Table 3.1, Table 5.1, and Table 5.2) it can be seen that the here-

proposed algorithm is among the fastest used reconstruction algorithms. Furthermore, the

difference between the concentration measures can be explained, as previously discussed

in Example 3.2 and Example 5.1, with the inconsistency in the concentration measure

when one of the signal components gets eliminated by the hard-thresholding procedure.

In case when the here-proposed sparse reconstruction algorithm is utilized for the ℓ1

norm minimization, the resulting sparse TFD concentrations are slightly lower, as evident

Table 5.5: Rényi entropies, Rαr

z , concentration measures, MS
z , and the algorithm execution times of the

sparse reconstruction algorithm based on the FICI rule. The bold value indicates the best performing
reconstruction algorithm according to the respective measure for the considered signal.

zLFM(t) znonLFM(t) zbat(t)

Rαr

z MS
z t Rαr

z MS
z t Rαr

z MS
z t

αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms]

Ideal 9.2568 0.0111 − 8.9944 0.0078 − − − −

ℓ 0
b
as

ed FICIFIX 13.7666 0.4231 27.3776 13.6805 0.4572 27.2948 13.8853 0.2866 70.4350

FICIREC 12.5035 0.2969 27.9221 12.8608 0.3830 27.6586 12.8352 0.2114 71.3774

FICIELL 12.1534 0.2586 28.9959 12.7241 0.3364 28.7127 12.5920 0.2087 75.6932

ℓ 1
b
as

ed FICIFIX 13.1988 0.2746 137.1290 13.1453 0.3351 110.2280 13.5192 0.2077 209.6734

FICIREC 11.8151 0.1538 141.6669 12.2025 0.2476 112.2324 12.4146 0.1419 212.6088

FICIELL 11.3254 0.0976 209.5883 12.0000 0.1906 146.5532 12.1701 0.1301 228.5196
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Figure 5.10: The reconstructed sparse TFDs based on the FICI rule and the ℓ0 norm minimization:
(a)-(c) signal zLFM(t) with the manually selected, the adaptively detected rectangular, and the adap-
tively detected elliptical CS-AF sensing mask, respectively, (d)-(f) signal znonLFM(t) with the manually
selected, the adaptively detected rectangular, and the adaptively detected elliptical CS-AF sensing mask,
respectively, (g)-(i) signal zbat(t) with the manually selected, the adaptively detected rectangular, and
the adaptively detected elliptical CS-AF sensing mask, respectively.
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Figure 5.11: The reconstructed sparse TFDs based on the FICI rule and the ℓ1 norm minimization:
(a)-(c) signal zLFM(t) with the manually selected, the adaptively detected rectangular, and the adap-
tively detected elliptical CS-AF sensing mask, respectively, (d)-(f) signal znonLFM(t) with the manually
selected, the adaptively detected rectangular, and the adaptively detected elliptical CS-AF sensing mask,
respectively, (g)-(i) signal zbat(t) with the manually selected, the adaptively detected rectangular, and
the adaptively detected elliptical CS-AF sensing mask, respectively.

97



Ivan Volarić TF Domain Signal Enhancement Using Adaptive CS

from the visual comparison of the obtained sparse TFDs (shown in Fig. 5.11), with the

previously obtained sparse TFDs based on the ℓ1 norm minimization (shown in Figs. 3.6 -

3.8 and Figs. 5.6 - 5.8). However, in case of the signal znonLFM(t), the nonlinear frequency

modulated signal component is more emphasized, while in case of the signal zbat(t), the

extra signal component is revealed. The adaptiveness of the FICI algorithm has influenced

the execution time of the ℓ1 norm based sparse reconstruction algorithm in the same way

as it has influenced the execution time of the ℓ0 norm minimization; the here-proposed

algorithm is among the fastest ℓ1 norm based sparse reconstruction algorithms, as evident

from comparison of the obtained results (shown in Table 5.5) with the previously obtained

results (shown in Table 3.2, Table 5.3, and Table 5.4). In fact, for the signal zbat(t), the

here-proposed sparse reconstruction algorithm achieves the fastest execution time among

all used sparse reconstruction algorithms.

5.3 Sparse Signal Reconstruction Algorithm Based on

the Localized Rényi Entropy Information

As already discussed in Section 3.3.3, when a hard-thresholding function is implemented

with the operator HK , the solution of the ℓ0 norm based sparse reconstruction algorithm

is highly dependent on the a priori information about the expected sparsity level of the

solution, K, that is, in the TFD content, number of signal components, K ∼ NcNt.

The algorithm based on the localized Rényi entropy, discussed in Section 4.3, returns the

instantaneous number of signal components present in the TFD, nc(t). This information

can be easily used to remove the requirement of a priori knowledge about the TFD by

adaptively calculating the expected number of non-zero elements in the solution, that is

by summing all values of nc(t):

K = Km

Nt∑

t=0

nc(t), (5.12)

where Km is the user defined sparsity relaxation parameter. Without the sparsity relax-

ation parameter, that is, with Km = 1, the resulting sparse TFDs tend to be oversparse,

with some of the weaker components missing. This is because signal components are not

perfectly localized, and some of the samples from the stronger signal components can

overshadow the samples from the weaker signal components. By setting Km > 1 this

effect can be compensated by ensuring more than one sample in the resulting sparse TFD

per time slice and signal component. In the conducted experiments it has been shown

that setting 5 ≤ Km ≤ 10 is a good choice.

Example 5.3. In this example, the reconstructed sparse TFDs based on the ℓ0 norm

minimization have been calculated for the signals zLFM(t), znonLFM(t), and zbat(t), with
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the reconstruction algorithms which utilize the HK operator, denoted in the previous

examples with the subscript K for three different CS-AF sensing masks: the manually

selected CS-AF sensing mask, the adaptively detected rectangular CS-AF sensing mask,

and the adaptively detected elliptical CS-AF sensing mask. The simulation set-up is

the same as in Example 3.2 and Example 5.1, making the previously obtained results,

presented in Table 3.1, Table 5.1, and Table 5.2, comparable with the results obtained in

this example, which are summarized in Tables 5.6 - 5.8. Note that the expected sparsity

level, K, has been pre-computed, i.e. the time needed to calculate K has been excluded

from the algorithm execution times.

In the previous examples the expected sparsity level has been calculated asK = 5NtNc,

where Nc is a priori known number of signal components, resulting in KLFM = 3840

samples, KnonLFM = 2560 samples, and Kbat = 7980 samples, for the respective signals.

On the other hand, the algorithm based on the localized Rényi entropy, with the sparsity

relaxation parameter Km = 7, has resulted in a KLFM = 3584 samples, KnonLFM = 3360

samples, and Kbat = 2527 samples, for the respective signals. For the signals zLFM(t),

and znonLFM(t) the manually and the adaptively calculated sparsity levels are similar,

resulting in the visually similar TFDs with the similar values of the Rényi entropies,

the concentration measures, and the reconstruction algorithm execution times. On the

other hand, for the signal zbat(t), the difference between the manually and the adaptively

calculated sparsity level is over 3 times, which resulted in a general oversparsity of the

resulting reconstructed sparse TFDs. This is because, the number of signal components

has been deliberately overvalued in the manual selection of the expected sparsity level,

in order to compensate the fact that the real-life measured signals do not have to be

perfectly localized in frequency.

Table 5.6: Rényi entropies, Rαr

z , concentration measures, MS
z , and the algorithm execution times of

the reconstruction algorithms based on the ℓ0 norm minimization with the localized Rényi entropy based
sparsity level detection and with the manually selected CS-AF sensing mask. The bold value indicates the
best performing reconstruction algorithm according to the respective measure for the considered signal.

zLFM(t) znonLFM(t) zbat(t)

Rαr

z MS
z t Rαr

z MS
z t Rαr

z MS
z t

αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms]

Ideal 9.2568 0.0111 − 8.9944 0.0078 − − − −
IHTK 11.7823 0.0547 134.4265 11.6097 0.0510 213.1847 11.2509 0.0158 1015.2998

NIHTK 11.5935 0.0534 105.1059 10.4917 0.0463 325.7706 10.8873 0.0153 688.3073

AIHTK 10.0438 0.0463 2781.3772 10.0652 0.0426 2539.2384 11.2786 0.0158 33.8833

ECMEK 10.0657 0.0453 969.3566 10.0827 0.0431 939.6820 11.2760 0.0158 61.6094

DOREK 10.0800 0.0462 2171.7668 9.8630 0.0421 1853.7792 11.1700 0.0156 93.7271

HTPK 11.7851 0.0548 21.0307 11.4496 0.0504 20.5785 11.2450 0.0158 70.7071

FHTPK 14.2817 0.7281 8.3342 14.1350 0.7382 8.2014 14.5039 0.5680 30.4408

99



Ivan Volarić TF Domain Signal Enhancement Using Adaptive CS

Table 5.7: Rényi entropies, Rαr

z , concentration measures, MS
z , and the algorithm execution times of

the reconstruction algorithms based on the ℓ0 norm minimization with the localized Rényi entropy based
sparsity level detection and with the adaptively detected rectangular CS-AF sensing mask. The bold
value indicates the best performing reconstruction algorithm according to the respective measure for the
considered signal.

zLFM(t) znonLFM(t) zbat(t)

Rαr

z MS
z t Rαr

z MS
z t Rαr

z MS
z t

αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms]

Ideal 9.2568 0.0111 − 8.9944 0.0078 − − − −
IHTK 11.4322 0.0522 85.3947 11.4187 0.0496 11.3064 11.1636 0.0156 284.3883

NIHTK 11.4171 0.0523 82.0723 11.3800 0.0492 131.8601 11.0978 0.0155 414.0112

AIHTK 11.1567 0.0489 2666.3740 10.3757 0.0443 2569.1989 11.1876 0.0157 35.1514

ECMEK 11.3278 0.0510 556.2766 11.2502 0.0474 544.8806 11.1744 0.0156 64.6773

DOREK 11.0255 0.0490 2135.5477 10.3284 0.0437 2529.3203 11.1107 0.0154 95.5262

HTPK 11.3893 0.0516 21.3178 11.4171 0.0496 20.7766 11.1487 0.0156 77.2793

FHTPK 13.1762 0.6142 8.0097 13.4477 0.6808 7.9201 13.5272 0.4687 31.5556

Table 5.8: Rényi entropies, Rαr

z , concentration measures, MS
z , and the algorithm execution times

of the reconstruction algorithms based on the ℓ0 norm minimization with the localized Rényi entropy
based sparsity level detection and with the adaptively detected elliptical CS-AF sensing mask. The bold
value indicates the best performing reconstruction algorithm according to the respective measure for the
considered signal.

zLFM(t) znonLFM(t) zbat(t)

Rαr

z MS
z t Rαr

z MS
z t Rαr

z MS
z t

αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms]

Ideal 9.2568 0.0111 − 8.9944 0.0078 − − − −
IHTK 11.3157 0.0514 34.8242 11.3964 0.0494 34.6914 11.1246 0.0155 289.2149

NIHTK 11.3299 0.0518 88.4858 11.4194 0.0494 145.6427 10.9668 0.0151 655.5563

AIHTK 11.1089 0.0490 1678.3128 10.7800 0.0457 1974.9071 11.1514 0.0156 45.1737

ECMEK 11.1355 0.0489 976.8801 11.1584 0.0468 698.0162 11.1377 0.0156 75.6190

DOREK 11.0696 0.0489 2144.8454 10.3658 0.0437 2200.6648 11.0899 0.0154 125.9507

HTPK 11.3095 0.0513 23.7355 11.3893 0.0494 23.3636 11.1117 0.0155 83.2873

FHTPK 12.7955 0.5513 9.9963 13.3113 0.6202 9.8692 13.3016 0.4865 38.4122

The calculation of the expected TFD sparsity level, calculated by (5.12), seems waste-

ful, since the algorithm based on the localized Rényi entropy returns the instantaneous

number of components, which is then followed by summation w.r.t. time, in which the

previously obtained time dependency is discarded. The instantaneous number of compo-

nents can be used in order to hard-threshold each time slice of the TFD independently,

i.e. with the different value of K, leaving only K(t) = Kmnc(t) highest valued samples

per time slice. The here-proposed sparse reconstruction algorithm is based on the TwIST

algorithm [12], and is similar to the FICI based sparse reconstruction algorithm, discussed

in Section 5.2, i.e. steps 2 and 3 of the FICI based sparse reconstruction algorithm are

replaced with the following step.
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2. The hard-thresholded TFD, [ς̃z(t, f)]
[n+1], is calculated as:

[ς̃z(t, f)]
[n+1] = HK(t)

{
[ςz(t, f)]

[n+1]
}
, (5.13)

where the operatorHK(t) denotes a time-independent hard-thresholding which leaves

only the K(t) = Kmnc(t) highest valued TFD samples per time slice t.

The flowchart of the here-proposed algorithm is shown in Fig. 5.12, and it is imple-

mented in a MATLAB functions fun_bpn_LocRenyiReconstruction.m and

fun_CompNumRenyi.m, the codes of which are given in Appendix D.

Example 5.4. In this example, the sparse TFDs obtained with the ℓ0 norm based re-

construction algorithm and the time independent hard-thresholding have been calculated

for the previously defined signals zLFM(t), znonLFM(t), and zbat(t). Three different CS-AF

sensing masks have been used: the manually selected CS-AF sensing mask (denoted as

FIX), the adaptively detected rectangular CS-AF sensing mask (denoted as REC), and

the adaptively detected elliptical CS-AF sensing mask (denoted as ELL). The parameters

of the algorithm based on the localized Rényi entropy are the same as in Example 4.5,

that is, the used instantaneous number of components has already been calculated in

Example 4.5, and are shown in Fig. 4.12. The TwIST relaxation parameters have been

set as: αtwist = 1, and βtwist = 1, while the algorithm stopping criterium has been set

as: ǫ = 0.1%. The obtained sparse TFDs are shown in Fig. 5.13, with the reconstruction

results summarized in Table 5.9.

By visual comparison of the obtained results (shown in Fig. 5.13), with the previously

obtained ℓ0 norm based sparse TFDs (shown in Figs. 3.3 - 3.5, Figs. 5.3 - 5.5 and Fig.

5.11), it can be concluded that the obtained ℓ0 norm based sparse TFDs are the best TFDs

yet obtained with the ℓ0 norm minimization, as the auto-terms have the best concentra-

tion, and furthermore, non of the components got hard-thresholded in the reconstruction

algorithm. This is substantiated with the lowest concentration measures and the Rényi

entropies of the resulting sparse TFDs, as it can be seen from comparison of the obtained

Table 5.9: Rényi entropies, Rαr

z , concentration measures, MS
z , and the algorithm execution times of the

reconstruction algorithms based on the ℓ0 norm minimization with the time independent thresholding.
The bold value indicates the best performing reconstruction algorithm according to the respective measure
for the considered signal.

zLFM(t) znonLFM(t) zbat(t)

Rαr

z MS
z t Rαr

z MS
z t Rαr

z MS
z t

αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms] αr = 3 ps = 2 [ms]

Ideal 9.2568 0.0111 − 8.9944 0.0078 − − − −
FIX 11.6513 0.0500 201.9226 10.1726 0.0441 5076.5932 11.3005 0.0183 809.9706

REC 11.0908 0.0452 1176.7283 10.8688 0.0457 4006.1233 11.2869 0.0181 428.4814

ELL 10.8741 0.0441 1410.4746 10.8283 0.0459 3216.5214 11.1241 0.0176 1139.3701
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Figure 5.12: Flowchart of the here-proposed sparse reconstruction algorithm based on the ℓ0 norm
minimization with the time independent thresholding.
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Figure 5.13: The reconstructed sparse TFDs based on the ℓ0 norm minimization with the time indepen-
dent thresholding: (a)-(c) signal zLFM(t) with the manually selected, the adaptively detected rectangular,
and the adaptively detected elliptical CS-AF sensing mask, respectively, (d)-(f) signal znonLFM(t) with
the manually selected, the adaptively detected rectangular, and the adaptively detected elliptical CS-
AF sensing mask, respectively, (g)-(i) signal zbat(t) with the manually selected, the adaptively detected
rectangular, and the adaptively detected elliptical CS-AF sensing mask, respectively.
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results (shown in Table 5.9), with the previously obtained results (shown in Table 3.1,

Table 5.1, Table 5.2, and Table 5.5), despite the previously discussed inconsistency in

the concentration measures when a signal component is missing. However, the described

noticeable improvement in the performance of the sparse reconstruction algorithm has

costed in the significantly larger algorithm execution times, resulting in the highest mea-

sured execution times among the ℓ0 norm based sparse reconstruction algorithms. This

is mainly the case because, before hard-thresholding each time slice of the sparse TFD

has to be independently sorted in the ascending order. In addition, the concentration

measures achieved in this example are even better than the concentration measures of the

ℓ1 norm based sparse TFDs (shown in Table 3.2, and Tables 5.3 - 5.5), with still higher,

but more comparable algorithm execution times.

5.4 Summary

In this chapter, three methods for the concentration enhancement of the signal TFD have

been proposed. The first method adaptively detects the largest possible rectangular or

elliptical CS-AF sensing mask which ensures the highest possible number of cross-term

free samples to be processed by the sparse reconstruction algorithm. In the conducted

experiments it has been shown that using the CS-AF sensing mask obtained in the here-

proposed way results in the significant concentration enhancement of the resulting sparse

TFDs and in the reconstruction algorithm execution time reduction, when compared to

the sparse TFD reconstruction using the manually selected CS-AF sensing mask, that

is with the CS-AF sensing mask described in the literature. The remaining two here-

proposed methods are the adaptive sparse reconstruction algorithms based on the FICI

rule and the localized Rényi entropy, respectively. The FICI based sparse reconstruction

algorithm can be used for the ℓ0 norm and the ℓ1 norm minimization, and in both cases,

as demonstrated in the conducted experiments, it has resulted in the significant reduction

of the algorithm execution time, when compared to the currently available state-of-the-art

sparse reconstruction algorithms. On the other hand, the sparse reconstruction algorithm

based on the localized Rényi entropy can be used for the ℓ0 norm minimization, and in

the conducted experiments has resulted in the best concentrated sparse TFDs among the

tested sparse reconstruction algorithms. Both of the sparse reconstruction algorithms can

be used in conjunction with the here-proposed adaptive CS-AF sensing mask selection

method in order to enhance the concentration of the reconstructed sparse TFDs, even

further, as confirmed by examples presented in this Chapter.
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Chapter 6

Conclusion and Future Work

6.1 Main Conclusions

Time-frequency distributions are powerful set of tools for nonstationary signal analysis,

as they provide insight into distribution of the signal energy as a function of both time

and frequency, simultaneously. However, the commonly used TFD calculation methods,

namely the QTFDs and the higher order TFDs, generate the unwanted artefacts, also

called the cross-terms, corrupting the useful auto-terms and making the interpretation of

the TFD more difficult. Methods based on the compressive sensing and signal recovery

using the sparsity constraints have been utilized in order to gain the highly concentrated

sparse TFDs. However, the resulting sparse TFDs are highly dependent on the number

of experimentally selected input parameters, thus decreasing the overall viability of the

methods in broad application. The goal of this thesis has been to overcome the limitations

of the sparsity based methods applied in the time-frequency signal processing, ultimately

resulting in a highly concentrated sparse TFDs with the cross-terms being significantly

suppressed. The goal is achieved through the adaptive methods proposed in this thesis,

and summarized bellow.

The method described in Section 4.1 and Section 5.1 adaptively detects the optimal

compressive sensing area in the ambiguity function. The idea behind the proposed method

is to capture the biggest rectangular or elliptical compressive sensing area around the

AF origin without the cross-terms inclusion. This is achieved by searching the zero-

doppler and the zero-lag AF slices for the energy spikes caused by the cross-terms. In the

conducted experiments when the CS-AF area is selected with the here-proposed method,

the TFD reconstruction based on the ℓ0 norm and the ℓ1 norm minimization has resulted in

the significantly more concentrated sparse TFDs with the faster reconstruction algorithm

convergence rate, when compared to the sparse signal reconstruction using traditionally

selected CS-AF area.

The method presented in Section 4.2.4 and Section 5.2 adaptively detects the optimal
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thresholding value in the TFD reconstruction process and can be utilized in both ℓ0 norm

and ℓ1 norm minimization based sparse TFD reconstruction. The method is based on

the fast intersection of confidence intervals rule in combination with the TwIST sparse

reconstruction algorithm. It has been shown that the here-proposed FICI based sparse

reconstruction algorithm is one of the fastest converging algorithms among the currently

available state-of-the-art sparse reconstruction algorithms, while keeping the satisfactory

TFD concentration level, and eliminating the influence of the experimental threshold value

selection on the resulting sparse TFD.

The method introduced in Section 5.3 uses information obtained with the localized

Rényi entropy about the instantaneous number of components present in the TFD. This

information is used to eliminate the need of a priori knowledge about the sparsity level of

the resulting TFD in the ℓ0 norm based sparse TFD reconstruction process. The proposed

localized Rényi entropy based sparse reconstruction algorithm has outperformed all of the

tested ℓ0 norm and ℓ1 norm based reconstruction algorithms in terms of the concentration

of the resulting sparse TFDs.

Furthermore, as supported by the results presented in the thesis, combination of the

here-proposed CS-AF area selection method with the here-proposed sparse reconstruction

algorithms based on the FICI rule and the localized Rényi entropy has led to further

improvement of the sparse TFD concentration.

6.2 Future Research Directions

The optimization problem outlined in Section 3.3.1 of this thesis has been solved by the

sparse reconstruction algorithms based on the ℓ0 and the ℓ1 norm minimization. In the

conducted experiments, the ℓ0 norm based reconstruction algorithms have shown faster

convergence rate, while the ℓ1 norm based reconstruction algorithms have produced more

concentrated sparse TFDs. The sparse TFD reconstruction based on the mixed ℓ0/ℓ1 norm

minimization should be carefully investigated in order to combine the advantages of both

approaches. Furthermore, the here-proposed methods could be applied in such framework

to obtain highly concentrated sparse TFDs. In addition, the formulated optimization

problem can be solved by the various other methods, one such being the orthogonal

matching pursuit. Influence of the here-proposed method for the adaptive CS-AF area

selection on such optimization procedures should also be investigated.

In this thesis QTFD class has been used as a starting point for the sparse TFD

calculation; it would be interesting to explore other classes of the TFDs as a starting

points. It is well known that the linear TFDs do not contain cross-terms, and as such,

the whole ambiguity function could be used in the reconstruction process. However,

the starting linear TFD is significantly less concentrated than the QTFD, imposing a

higher requirements on the sparse reconstruction algorithm. On the other hand, higher
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order TFDs could be used in order to obtain more concentrated TFDs. Such TFDs,

however, imply more cross-terms between the each pair of the auto-terms, resulting in

the smaller compressive sensing area in the ambiguity function, which also means higher

optimization requirements. The selection of the starting TFD class seems to involve a

trade-off between the size of the compressive sensing area in the ambiguity function,

and the inherent initial TFD concentration, thus it should be investigated in which way

adaptive methods proposed in this thesis correlate with the other classes of TFDs.

In this thesis, performance evaluation of the obtained sparse TFDs has been done by

the concentration measure, MS
z , and by the Rényi entropy, Rαr

z . Both of the selected

measures produce lower values for the more concentrated TFDs. However, the downside

of the selected evaluation measures is lack of the lower limit, that is, if all of the samples

in the evaluated TFD are set to zero, both measures will be also equal to zero, thus the

TFD in question would be the "best" possible TFD according to the selected evaluation

methods. This is of course, not the case, since the TFD in question would not provide any

information about the considered signal. In general, if some of the TFD auto-term samples

are set to zero, the selected performance measures would favour the TFD with the missing

information instead of the original TFD. This is evident from the conducted experiments

in which the sparse TFD reconstruction process eliminated one of the signal components,

resulting in a lower values of the measures, when compared to the sparse TFD containing

all of the signal components. This is the reason why in the conducted experiments, the

measures of the modeled ideal TFDs have also been given; to serve as a lower limit in

interpretation of the obtained results. However, when dealing with the real-life signals,

the ideal TFD is not available, thus lower values of evaluation measures could be easily

misinterpreted. To avoid such mistakes in the thesis the additional comparison tool has

been the subjective visual inspection. Development of the objective evaluation method

for the sparse TFDs, which would take into the account all of the above mentioned specific

problems when dealing with a sparse TFD, would therefore be an important contribution

to the field of sparse time-frequency signal analysis.
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Appendix A

MATLAB Code for

Multiplication with the Domain

Transformation Matrices, ψ and

ψH

1 function tfd = fun_ambi2tf(amb, N, Ntf, Ntf_fin, amb_mask)

2 %function tfd = fun_ambi2tf(amb, N, Ntf, Ntf_fin, amb_mask)

3 %Transformation from the ambiguity function to the time−frequency domain.

4 %

5 % Inputs:

6 % amb − Required, 2D Array. Ambiguity function (AF).

7 % N − Optional, integer or a 2 element array [Nx, Ny]. Number

8 % of points around the AF origin (N <= size(amb)) to take

9 % into the account (default: N = size(amb))).

10 % Nx − number of doppler bins. Ny − number of lag instances.

11 % Ntf − Optional, integer or a 2 element array [Ntfx, Ntfy].

12 % Number of points in the TF domain (Ntf >= N). Before the

13 % transformation AF domain is zero−padded (default: Ntf = N)

14 % Ntfx − number of frequency bins. Ntfy − number of time

15 % instances.

16 % Ntf_fin − Optional, integer or a 2 element array

17 % [Ntfx_fin, Ntfy_fin]. The final number of TFD points.

18 % If Ntf_fin > Ntf TFD is zero−padded to the Ntf_fin. If

19 % Ntf_fin < Ntf TFD is cut to Ntf_fin

20 % (default: Ntf_fin = Ntf).

21 % Ntfx_fin − number of frequency bins.

22 % Ntfy_fin − number of time instances.
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23 % amb_mask − Optional, 2D Array of size [Nx, Ny]. Ambiguity function

24 % mask, amb = amb * amb_mask.

25 % (default: amb_mask = ones(Nx, Ny)).

26 %

27 % Outputs:

28 % tfd − Optional, 2D array [Ntfx_fin, Ntfy_fin]. Time−frequency
29 % distribution (TFD). If no output is specified function plots

30 % the resulting TFD.

31 %

32 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 % Copyright (2017): Ivan Volaric

34

35 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 % INITALIZIATION

37 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 %Default values, if not specified by the user.

39 if (nargin == 0),

40 error('The number of inputs must be at least 1.');

41 elseif (nargin == 1),

42 N = size(amb); Ntf = [N(2)+1−rem(N(1),2),N(1)];
43 Ntf_fin = Ntf; amb_mask = ones(N);

44 elseif (nargin == 2),

45 Ntf = flip(N); Ntf_fin = Ntf; amb_mask = ones(N);

46 elseif (nargin == 3),

47 Ntf_fin = Ntf; amb_mask = ones(N);

48 elseif (nargin==4),

49 amb_mask = ones(N);

50 end;

51

52 %Check if inputs are valid.

53 if (~ismatrix(amb))

54 error('amb must be a matrix.');

55 end

56 [Norg_x, Norg_y] = size(amb);

57 try

58 [N_x,N_y] = ambi2tf_checkinput(N,'N');

59 [Ntf_x,Ntf_y] = ambi2tf_checkinput(Ntf,'Ntf');

60 [Ntf_fin_x,Ntf_fin_y] = ambi2tf_checkinput(Ntf_fin,'Ntf_fin');

61 catch exception

62 throw(exception)

63 end

64

65 if ((N_x > Norg_x) || (N_y > Norg_y))

66 error('N must me smaller or equal than size(amb).');

67 end

68 if ((Ntf_x < N_y) || (Ntf_y < N_x))

69 error('Ntf must me greater or equal than N.');
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70 end

71 if (~ismatrix(amb_mask))

72 error('amb_mask must be a matrix.');

73 end

74 if (~size(amb_mask)==[N_x, N_y])

75 error('amb_mask must be size of [Nx, Ny].');

76 end

77

78 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
79 % ADJUSMENT OF THE AF DIMENSIONS

80 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
81 %Reduction of the AF dimensions to the [Nx, Ny] (if larger).

82 if ((N_x < Norg_x) || (N_y < Norg_y))

83 amb_temp = zeros(N_x,N_y);

84 amb_temp(:,:) = amb((1+ceil(Norg_x/2−N_x/2)):1:ceil(Norg_x/2 ...

85 + N_x/2),(1+ceil(Norg_y/2−N_y/2):1:ceil(Norg_y/2+N_y/2)));
86 amb = amb_temp;

87 end

88

89 %Masking of the AF.

90 amb = amb.*amb_mask;

91

92 %AF zero−padding to the [Ntfx, Ntfy] (if smaller).

93 if ((Ntf_x > N_y+rem(N_y,2)) || (Ntf_y > N_x))

94 amb_temp = zeros(Ntf_y,Ntf_x);

95 amb_temp((1+ceil(Ntf_y/2−N_x/2)):1:(ceil(Ntf_y/2+N_x/2)),...
96 (1+ceil(Ntf_x/2−N_y/2)):1:(ceil(Ntf_x/2+N_y/2))) = amb(:,:);

97 amb = amb_temp;

98 end

99

100 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
101 % DOMAIN TRANSFORMATION

102 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
103 Ntf_x = max(Ntf_x,2);

104 amb = amb([floor(Ntf_y/2)+1:Ntf_y 1:floor(Ntf_y/2)],:);

105 ambi = ifft(amb).';

106 %Time−delay representation.

107 tdr = zeros(Ntf_x,Ntf_y);

108 tdr((1:ceil(Ntf_x/2)),:) = ambi((ceil(Ntf_x/2)):...

109 (Ntf_x−(~rem(Ntf_x,2))),:);
110 tdr((Ntf_x:−1:floor(Ntf_x/2)+2),:) = ambi((ceil(Ntf_x/2)−1:−1:1),:);
111 %Time−frequency distribution.

112 tfd = real(fft(tdr));

113

114 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
115 % ADJUSMENT OF THE TFD DIMENSIONS

116 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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117 temp_x = max(Ntf_fin_x,Ntf_x); temp_y = max(Ntf_fin_y,Ntf_y);

118 tfd_temp = zeros(temp_x,temp_y);

119 tfd_temp1 = zeros(Ntf_fin_x,Ntf_fin_y);

120 tfd_temp((1+ceil(temp_x/2−Ntf_x/2)):1:ceil(temp_x/2+Ntf_x/2),...
121 (1+ceil(temp_y/2−Ntf_y/2)):1:ceil(temp_y/2+Ntf_y/2)) = tfd(:,:);

122 tfd_temp1(:,:) = tfd_temp((1+ceil(temp_x/2−Ntf_fin_x/2)):1:(ceil...
123 (temp_x/2+Ntf_fin_x/2)),(1+ceil(temp_y/2−Ntf_fin_y/2)):1:ceil...
124 (temp_y/2+Ntf_fin_y/2));

125 tfd = tfd_temp1;

126

127

128 %If no outputs specified −> plot the resulting TFD.

129 if (nargout == 0)

130 ftf = (0.5*(0:Ntf_fin_y−1)/Ntf_fin_y); ttf = 1:Ntf_fin_x;

131 figure; colormap(flipud(gray));

132 imagesc(ttf,ftf,tfd); axis('xy');

133 title('Time−frequency representation');

134 xlabel('Time, t'); ylabel('Normalized Frequency, f');

135 xlim([0 Ntf_fin_x]); ylim([0 0.5]);

136 set(gca,'xtick',floor(Ntf_fin_x*[0 0.5 1]),'ytick',[0 0.25 0.5]);

137 end

138 end

139

140 function [N_x,N_y] = ambi2tf_checkinput(N,Nname)

141 if (isscalar(N))

142 N_x = N; N_y = N;

143 elseif ((isrow(N)) && (length(N)==2))

144 N_x = N(1); N_y = N(2);

145 else

146 error('%c must be a scalar or vector [%c_x, %c_y].', ...

147 Nname, Nname, Nname);

148 end

149 if ((N_x<=0) || (N_y<=0))

150 error('%s must be greater than zero.', Nname);

151 end

152 end

1 function amb = fun_tf2ambi(tfd, N, Namb, Namb_fin, amb_mask)

2 %function amb = fun_tf2ambi(tfd, N, Namb, Namb_fin, amb_mask)

3 %Transformation from the time−frequency domain to the ambiguity function.

4 %

5 % Inputs:

6 % tfd − Required, 2D Array. Time−frequency distribution (TFD).

7 % N − Optional, integer or a 2 element array [Nx, Ny]. Number of

8 % points of the TFD (N <= size(tfd)) to take into the

9 % account (default: N = size(tfd)).
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10 % Nx−number of frequency bins. Ny−number of time instances.

11 % Namb − Optional, integer or a 2 element array [Nambx, Namby].

12 % Number of points of the AF (Namb >= N). Before the

13 % transformation AF is zero−padded (default: Namb = N).

14 % Nambx−number of doppler bins.

15 % Namby−number of lag instances.

16 % Namb_fin − Optional, integer or a 2 element array

17 % [Nambx_fin, Namby_fin]. The final number of the AF points.

18 % If Namb_fin > Nam, AF is zero−padded to the Namb_fin. If

19 % Namb_fin < Namb, AF is cut to the Namb_fin

20 % (default: Namb_fin = Namb).

21 % Nambx_fin−number of doppler bins.

22 % Namby_fin−number of lag instances.

23 % amb_mask − Optional, 2D Array of size [Nambx_fin, Namby_fin].

24 % Ambiguity function mask, amb = amb * amb mask.

25 % (default: amb mask = ones(Nambx_fin, Namby_fin)).

26 %

27 % Outputs:

28 % amb − Optional, 2D Array [Nambx_fin, Namby_fin]. Ambiguity

29 % function (AF). If no output is specified function plots

30 % the resulting TFD.

31 %

32 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 % Copyright (2017): Ivan Volaric

34

35 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 % INITALIZIATION

37 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 %Default values, if not specified by the user.

39 if (nargin == 0),

40 error('The number of inputs must be at least 1.');

41 elseif (nargin == 1),

42 N = size(tfd); Namb = flip(N); Namb_fin = Namb;

43 amb_mask = ones(Namb_fin);

44 elseif (nargin == 2),

45 Namb = flip(N); Namb_fin = Namb; amb_mask = ones(Namb_fin);

46 elseif (nargin == 3),

47 Namb_fin = Namb; amb_mask = ones(Namb_fin);

48 elseif (nargin==4),

49 amb_mask = ones(Namb_fin);

50 end;

51

52 %Check if inputs are valid.

53 if (~ismatrix(tfd))

54 error('tfd must be a matrix.');

55 end

56 [Norg_x, Norg_y] = size(tfd);
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57 try

58 [N_x,N_y] = tf2ambi_checkinput(N,'N');

59 [Namb_x,Namb_y] = tf2ambi_checkinput(Namb,'Namb');

60 Namb_y=Namb_y−(~rem(Namb_y,2)); %force oddness

61 [Namb_fin_x,Namb_fin_y] = tf2ambi_checkinput(Namb_fin,'Namb_fin');

62 Namb_fin_y=Namb_fin_y−(~rem(Namb_fin_y,2)); %force oddness

63 catch exception

64 throw(exception)

65 end

66

67 if ((N_x > Norg_x) || (N_y > Norg_y))

68 error('N must me smaller or equal than size(tfd).');

69 end

70 if ((Namb_x < N_y) || (Namb_y < N_x − rem(Namb_y,2)))

71 error('Namb must me greater or equal than N.');

72 end

73

74 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
75 % ADJUSMENT OF THE TFD DIMENSIONS

76 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77 %Reduction of the TFD dimensions to the [Nx, Ny] (if larger).

78 if ((N_x < Norg_x) || (N_y < Norg_y))

79 tfd_temp = zeros(N_x, N_y);

80 tfd_temp(:,:) = tfd((1+ceil(Norg_x/2−N_x/2)):1:ceil(Norg_x/2 ...

81 +N_x/2),(1+ceil(Norg_y/2−N_y/2):1:ceil(Norg_y/2+N_y/2)));
82 tfd = tfd_temp;

83 end

84

85 %TFD zero−padding to the [Nambx, Namby] (if smaller).

86 if ((Namb_x > N_y) || (Namb_y > N_x))

87 tfd_temp = zeros(Namb_y, Namb_x);

88 tfd_temp((1+ceil(Namb_y/2−N_x/2)):1:(ceil(Namb_y/2+N_x/2)),(1+...
89 ceil(Namb_x/2−N_y/2)):1:(ceil(Namb_x/2+N_y/2))) = tfd(:,:);

90 tfd = tfd_temp;

91 end

92

93 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94 % DOMAIN TRANSFORMATION

95 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
96 %Doppler−frequency representation.

97 tfdi = ifft(tfd);

98 dfr(1:floor(Namb_y/2),:) = tfdi(floor(length(tfdi(:,1))/2)+2: ...

99 length(tfdi(:,1)),:);

100 dfr(Namb_y:−1:(floor(Namb_y/2)+1),:)= tfdi(ceil(Namb_y/2):−1:1,:);
101 %Ambiguity function.

102 amb = fft(dfr.');

103 amb = amb([ceil(Namb_x/2)+1:Namb_x 1:ceil(Namb_x/2)],:);
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104

105 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
106 % ADJUSMENT OF THE AF DIMENSIONS

107 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
108 temp_x = max(Namb_fin_x,Namb_x); temp_y = max(Namb_fin_y,Namb_y);

109 amb_temp = zeros(temp_x,temp_y);

110 amb_temp1 = zeros(Namb_fin_x,Namb_fin_y);

111 amb_temp((1+ceil(temp_x/2−Namb_x/2)):1:ceil(temp_x/2+Namb_x/2),(1+...
112 ceil(temp_y/2−Namb_y/2)):1:ceil(temp_y/2+Namb_y/2)) = amb(:,:);

113 amb_temp1(:,:) = amb_temp((1+ceil(temp_x/2−Namb_fin_x/2)):1: ...

114 (ceil(temp_x/2+Namb_fin_x/2)),(1+ceil(temp_y/2−Namb_fin_y/2)):...
115 1:ceil(temp_y/2+Namb_fin_y/2));

116 amb = amb_temp1;

117

118 %masking of the AF

119 amb = amb .* amb_mask;

120

121

122 %if no outputs specified −> plot the resulting AF

123 if (nargout == 0)

124 tautf = (−Namb_fin_x/2+1):1:(Namb_fin_x/2−1);
125 xitf = (−(Namb_fin_y−rem(Namb_fin_y,2))/2:(Namb_fin_y + ...

126 rem(Namb_fin_y,2))/2−1)/Namb_fin_y;
127 figure; colormap(flipud(gray));

128 imagesc(tautf,xitf,abs(amb)); axis('xy');

129 title('Ambiguity function');

130 xlabel('Lag, \tau'); ylabel('Doppler, \nu');

131 xlim([−Namb_fin_x/2 Namb_fin_x/2]); ylim([−0.5 0 0.5]);

132 set(gca,'xtick',floor(Namb_fin_x/2)*[−1,0,1],...
133 'ytick',[−0.5,−0.25,0,0.25,0.5]);
134 end

135 end

136

137 function [N_x,N_y] = tf2ambi_checkinput(N,Nname)

138 if (isscalar(N))

139 N_x = N; N_y = N;

140 elseif ((isrow(N)) && (length(N)==2))

141 N_x = N(1); N_y = N(2);

142 else

143 error('%c must be a scalar or vector [%c_x, %c_y]', ...

144 Nname, Nname, Nname);

145 end

146 if ((N_x <= 0) || (N_y <= 0))

147 error('%s must be greater than zero', Nname);

148 end

149 end
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Appendix B

MATLAB Code for Detection of

Intersection Between the

Cross-terms and the Ambiguity

Function Axes

1 function [Ntau, Nnu] = fun_adaptiveCSAF(x, verbose)

2 %function [Ntau, Nnu] = fun_adaptiveCSAF(x, verbose)

3 % Detects points on the Ambiguity function (AF) axes where the first pair

4 % of cross−terms is intersecting the respective axis.

5 %

6 % Inputs:

7 % x − Required, 1D array. Signal in the time domain.

8 % verbose − Optional, boolean. If true, function plots the results

9 % for debugging (default: plot = false).

10 %

11 % Outputs:

12 % Ntau − Required, lag instance at which first pair of the cross−terms
13 % intersect AF lag axis.

14 % Nnu − Required, doppler bins at which first pair of the cross−terms
15 % intersect AF doppler axis.

16 %

17 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 % Copyright (2017): Ivan Volaric

19

20 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 % INITALIZIATION

22 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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23 %Default values, if not specified by the user.

24 if (nargin == 0),

25 error('The number of inputs must be at least 1.');

26 elseif (nargin == 1),

27 verbose = false;

28 end

29

30 %Check if inputs are valid.

31 if (~isvector(x))

32 error('x must be a vector.')

33 end

34 if (verbose == 1)

35 verbose = true;

36 elseif (verbose == 0)

37 verbose = false;

38 end

39 if (~islogical(verbose))

40 error('plot must be a boolean variable.')

41 end

42

43 N = length(x);

44 %Number of allowed transitions from negative to positive values.

45 numt_lim = 1;

46 %Moving average filter options.

47 filt = ones(floor(N/12),1); filt = filt/length(filt);

48 %Final threshold value.

49 tol = 0.2;

50

51 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 % INTERSECTION DETECTION

53 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 %Instantaneous power −> Nnu.

55 %Fourier transform of the instantaneous power.

56 IPft = fftshift(abs(fft(abs(x).^2)));

57 %Normalization + just one half.

58 IPft = IPft/max(IPft); IPft = IPft(floor(N/2+1):N);

59 %Filtering with moving average.

60 IPft_filt = conv(IPft,filt,'same');

61 %Normalized derivative.

62 IPft_filt_diff = diff(IPft_filt,1);

63 IPft_filt_diff = IPft_filt_diff/max(IPft_filt_diff);

64 Nnu = inflectionPoint(IPft_filt_diff, numt_lim, tol);

65

66 %Power spectral density −> Ntau.

67 %Inverse Fourier transform of the power spectral density.

68 PSDft = fftshift(abs(ifft(abs(fft(x)).^2)));

69 %Normalization + just one half.
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70 PSDft = PSDft/max(PSDft); PSDft = PSDft(floor(N/2+1):N);

71 %Filtering with moving average.

72 PSDft_filt = conv(PSDft,filt,'same');

73 %Normalized derivative.

74 PSDft_filt_diff = diff(PSDft_filt,1);

75 PSDft_filt_diff = PSDft_filt_diff/max(PSDft_filt_diff);

76 Ntau = inflectionPoint(PSDft_filt_diff, numt_lim, tol);

77

78 %Readjustment of the bigger parameter.

79 if (Nnu >= Ntau)

80 Nnu = ceil(Nnu*0.9);

81 elseif (Ntau >= Nnu)

82 Ntau = ceil(Ntau*0.9);

83 end

84

85 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 % PLOT THE RESULTS (DEBUG)

87 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88 if (verbose)

89 %For comparison with filtered counterparts.

90 IPft_diff = diff(IPft,1);

91 IPft_diff = IPft_diff/max(IPft_diff);

92 PSDft_diff = diff(PSDft,1);

93 PSDft_diff = PSDft_diff/max(PSDft_diff);

94

95 %Figures position and axes.

96 monitor = get(0, 'ScreenSize');

97 tau1 = 0:1:(ceil(N/2)−1); nu1 = (0:1:(ceil(N/2)−1));
98 tau2 = 1:1:(ceil(N/2)−1); nu2 = (1:1:(ceil(N/2)−1));
99

100 %F{PSD/IP} − AF zero lag and doppler slices.

101 figure('Outerposition',[0 monitor(4)−400 400 400]);

102 subplot(2,1,1);

103 plot(tau1,PSDft); grid on; hold on;

104 plot(tau1,PSDft_filt,'r'); legend('Original','Filtered');

105 stem(Ntau,PSDft_filt(Ntau+1),'k.');

106 xlabel('\tau'); xlim([0 N/2−1]); ylabel('F^{−1}\{PSD\}');
107 subplot(2,1,2);

108 plot(nu1,IPft); grid on; hold on;

109 plot(nu1,IPft_filt,'r'); legend('Original','Filtered');

110 stem(Nnu,IPft_filt(Nnu+1),'k.');

111 xlabel('\nu'); xlim([0 N/2−1]); ylabel('F\{IP\}');

112

113 %d F{PSD/IP} − Derivatives of the AF axes.

114 figure('Outerposition',[400 monitor(4)−400 400 400]);

115 subplot(2,1,1);

116 plot(tau2,PSDft_diff); hold on; grid on;
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117 plot(tau2,PSDft_filt_diff, 'r'); legend('Original','Filtered');

118 stem(Ntau+1,PSDft_filt_diff(Ntau+1),'k.');

119 xlabel('\tau'); xlim([0 N/2−1]); ylabel('d F^{−1}\{PSD\}');
120 subplot(2,1,2);

121 plot(nu2,IPft_diff); hold on; grid on;

122 plot(nu2,IPft_filt_diff,'r'); legend('Original','Filtered');

123 stem(Nnu+1,IPft_filt_diff(Nnu+1),'k.');

124 xlabel('\nu'); xlim([0 N/2−1]); ylabel('d F\{IP\}');

125 end

126 end

127

128 function [point] = inflectionPoint(data, numt_lim, tol)

129 N = length(data);

130 numt = 0; %Transition counter

131

132 %Create artificial transition if data starts with zero.

133 if (data(1) < max(data)/100)

134 data(1) = − data(1);

135 end

136

137 %Counting the transitions from negative to positive values.

138 for i = (2:1:N)

139 if ((data(i) > 0) && (data(i−1) <= 0))

140 numt = numt + 1;

141 if (numt >= numt_lim)

142 break;

143 end

144 end

145 end

146 i=i−1;
147

148 %Local maximum after numt_lim transitions.

149 for j = (i:1:(N−1))
150 if ((data(j) > data(j+1)) && (data(j) > data(j−1)) ...

151 && (data(j+1) > 0) && (data(j) > tol))

152 point = ceil(0.9*(j−1));
153 break;

154 end

155 end

156

157 %Smallest allowed number of points.

158 point = min(point, round(sqrt(N*2)));

159

160 %Force the number of points to be an odd number.

161 point = point−(~mod(point,2));
162 end
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Appendix C

MATLAB Code for the FICI

Based Sparse Reconstruction

Algorithm

1 function [tf_new,time] = fun_bpn_FICI_TwIST(y, A, AT, Zc, Rc, alpha, ...

2 beta, eps_th, Nit, regul)

3 %function [tf_new,time] = fun_bpn_FICI_TwIST(y, A, AT, Zc, Rc, alpha, ...

4 % beta, eps_th, Nit, regul)

5 %Sparse reconstruction algorithm based on the FICI rule.

6 %

7 % Inputs:

8 % y − Required, 2D array of observed data.

9 % A − Required, function handle for the function that implements

10 % the multiplication by the domain transformation matrix (A*y)

11 % AT − Required, function handle for the function that implements

12 % the multiplication by the conjugate of A.

13 % Zc − Required, the ICI threshold value.

14 % Rc − Required, allowed amount of the confidence intervals

15 % intersection.

16 % alpha − Optional, relaxation parameter alpha of TwIST

17 % (default: alpha = 0.5).

18 % beta − Optional, relaxation parameter beta of TwIST

19 % (default: beta = 0.5).

20 % eps_th − Optional, stopping threshold. Algorithm stops when relative

21 % change in the l2 norm of the estimated solution falls below

22 % eps_th (default: eps_th = 1e−3).
23 % Nit − Optional, maximum number of iterations allowed in the

24 % main phase of the algorithm (default: Nit = 200).

25 % regul − Optional, regularization function. Can be either 's' for
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26 % soft−thresholding and l1 norm minimization or 'h' for

27 % hard−thresholding and l0 norm minimization

28 % (default: regul = 's').

29 %

30 % Outputs:

31 % tf_new − Required, solution of the reconstruction algorithm.

32 % time − Required, algorithm execution time in ms.

33 %

34 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 % Copyright (2017): Ivan Volaric

36

37 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 % INITALIZIATION

39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 %Default values, if not specified by the user.

41 if (nargin < 5),

42 error('The number of inputs must be at least 5.');

43 elseif (nargin == 5)

44 alpha = 0.5; beta = 0.5; eps_th = 1e−3;
45 Nit = 200; regul = 's';

46 elseif (nargin == 6)

47 beta = 0.5; eps_th = 1e−3; Nit = 200; regul = 's';

48 elseif (nargin == 7)

49 eps_th = 1e−3; Nit = 200; regul = 's';

50 elseif (nargin == 8)

51 Nit = 200; regul = 's';

52 elseif (nargin == 9)

53 regul = 's';

54 end

55

56 %Check if inputs are valid.

57 if ((~ismatrix(y)) && (~isvector(y)))

58 error('y must be a matrix or a vector.');

59 end

60 if ((~isa(A,'function_handle')) || (~isa(AT,'function_handle')))

61 error('A and AT must be a function handles.');

62 end

63 if (Zc < 0)

64 error('Zc must be a positive number.');

65 end

66 if ((Rc < 0) || (Rc > 1))

67 error('Rc must be between 0 and 1.');

68 end

69 if ((alpha < 0) || (alpha > 1))

70 error('alpha must be between 0 and 1.');

71 end

72 if ((beta < 0) || (beta > 2*alpha))
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73 error('beta must be between 0 and 2*alpha.');

74 end

75 if ((Nit < 0) || (~isinteger(Nit)))

76 error('Nit must be a positive integer number.');

77 end

78 if strcmp(regul, 'soft')

79 regul = 's';

80 elseif strcmp(regul, 'hard')

81 regul = 'h';

82 end

83 if ((~strcmp(regul, 's')) && (~strcmp(regul, 'h')))

84 error('regul must be either "s" or "h".');

85 end

86

87 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88 % MAIN ALGORITHM LOOP

89 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
90 tf_last = AT(y); tf_last_last=tf_last; tic;

91 for i = 1:1:Nit

92 %Update the solution of the previous iteration.

93 correct_tf = AT(y − A(tf_last)) + tf_last;

94 %Find the threshold value.

95 threshold = fun_FICIThreshold(sort(abs(correct_tf...

96 (correct_tf~=0)),'ascend'),Zc,Rc);

97 %Solution of the current iteration.

98 tf_new = (1−alpha)*tf_last_last + (alpha−beta)*tf_last + ...

99 beta*wthresh(correct_tf, regul ,threshold);

100 %Stoping criterion.

101 diff = abs((norm(tf_new,2)^2 − norm(tf_last,2)^2) / ...

102 norm(tf_last,2)^2);

103 if (diff < eps_th)

104 break;

105 end

106 %Save solutions from the previous two iterations.

107 tf_last_last = tf_last; tf_last = tf_new;

108 end

109 time = toc; % Algorithm execution time.

110 tf_new(tf_new<0) = 0; %Set all negatives TFD values to 0.

111 end

1 function [threshold] = fun_FICIThreshold(x, Zc, Rc)

2 %function [threshold] = fun_FICIThreshold(x, Zc, Rc)

3 %Internal function of the fun_bpn_FICI_TwIST.m. Returns the threshold

4 %value based on the fast intersection of the confidence intervals.

5 %

6 % Inputs:
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7 % x − Required, 1D array. Elements of the array have to be sorted

8 % in the ascending order with removed zero entries.

9 % Zc − Required, the ICI threshold value.

10 % Rc − Required, allowed amount of the confidence intervals

11 % intersection.

12 %

13 % Outputs:

14 % threshold − Required, first element of array x at which amount of

15 % the confidence intervals intersection is bellow Rc.

16 %

17 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 % Copyright (2017): Ivan Volaric

19

20 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 % INITALIZIATION

22 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 %Check if inputs are valid.

24 if (nargin < 3),

25 error('The number of inputs must be 3.');

26 end

27 if (~isvector(x))

28 error('x must be a vector.')

29 end

30 if (Zc < 0)

31 error('Zc must be a positive number.');

32 end

33 if ((Rc < 0) || (Rc > 1))

34 error('Rc must be between 0 and 1.');

35 end

36

37 num_s = 0; sum_s = 0;

38 sigma = std(x);

39 Dgmin = NaN; Ddmax = NaN;

40

41 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 % INTERSECTION OF CONFIDENCE INTERVALS

43 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 for i = 1:1:length(x);

45 num_s = num_s + 1;

46 sum_s = sum_s + x(i);

47

48 %Upper and lower boundary of the confidence interval.

49 CI_len = Zc*sigma/sqrt(num_s);

50 Dg = (sum_s/num_s) + CI_len;

51 Dd = (sum_s/num_s) − CI_len;

52

53 %Minimum of upper and maximum of lower boundary.
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54 Dgmin = min(Dgmin, Dg);

55 Ddmax = max(Ddmax, Dd);

56

57 if ((Dgmin−Ddmax)/(2*CI_len) < Rc)

58 threshold = x(i+1);

59 break;

60 end

61 end

62 end
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Appendix D

MATLAB Code for the Localized

Rényi Entropy Based Sparse

Reconstruction Algorithm

1 function [tf_new, time] = fun_bpn_LocRenyiReconstruction(y, A, AT, nc, ...

2 Km, alpha, beta, eps_th, Nit)

3 %function [tf_new, time] = fun_bpn_LocRenyiReconstruction(y, A, AT, nc,...

4 % Km, alpha, beta, eps_th, Nit)

5 %Sparse reconstruction algorithm based on the localized Renyi entropy.

6 %

7 % Inputs:

8 % y − Required, 2D array of observed data.

9 % A − Required, function handle for the function that implements

10 % the multiplication by the domain transformation matrix (A*y)

11 % AT − Required, function handle for the function that implements

12 % the multiplication by the conjugate of A.

13 % nc − Required, 1D array of instantaneous number of components.

14 % Km − Optional, relaxation parameter for nc. nc is multiplied

15 % with the Km. (default: Km = 7).

16 % alpha − Optional, relaxation parameter alpha of TwIST

17 % (default: alpha = 0.5).

18 % beta − Optional, relaxation parameter beta of TwIST

19 % (default: beta = 0.5).

20 % eps_th − Optional, stopping threshold. Algorithm stops when relative

21 % change in the l2 norm of the estimated solution falls below

22 % eps_th (default: eps_th = 1e−3).
23 % Nit − Optional, maximum number of iterations allowed in the

24 % main phase of the algorithm (default: Nit = 200).

25 %

153



Ivan Volarić TF Domain Signal Enhancement Using Adaptive CS

26 % Outputs:

27 % tf_new − Required, solution of the reconstruction algorithm.

28 % time − Required, algorithm execution time in ms.

29 %

30 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 % Copyright (2017): Ivan Volaric

32

33 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 % INITALIZIATION

35 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 %Default values, if not specified by the user.

37 if (nargin < 4),

38 error('The number of inputs must be at least 4.');

39 elseif (nargin == 4)

40 Km = 7; alpha = 0.5; beta = 0.5; eps_th = 1e−3; Nit = 200;

41 elseif (nargin == 5)

42 alpha = 0.5; beta = 0.5; eps_th = 1e−3; Nit = 200;

43 elseif (nargin == 6)

44 beta = 0.5; eps_th = 1e−3; Nit = 200;

45 elseif (nargin == 7)

46 eps_th = 1e−3; Nit = 200;

47 elseif (nargin == 8)

48 Nit = 200;

49 end

50

51 %Check if inputs are valid.

52 if ((~ismatrix(y)) && (~isvector(y)))

53 error('y must be a matrix or a vector.');

54 end

55 if ((~isa(A,'function_handle')) || (~isa(AT,'function_handle')))

56 error('A and AT must be a function handles.');

57 end

58 if (~isvector(nc))

59 error('nc must be a vector.');

60 end

61 if (Km < 0)

62 error('Km must be a positive number.');

63 end

64 if ((alpha < 0) || (alpha > 1))

65 error('alpha must be between 0 and 1.');

66 end

67 if ((beta < 0) || (beta > 2*alpha))

68 error('beta must be between 0 and 2*alpha.');

69 end

70 if ((Nit < 0) || (~isinteger(Nit)))

71 error('Nit must be a positive integer number.');

72 end
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73

74

75 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
76 % MAIN ALGORITHM LOOP

77 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 tf_last = AT(y); tf_last_last = tf_last;

79 nc = ceil(nc*Km) + 1;

80 [~, N1] = size(tf_last);

81

82 tic;

83 for i = 1:1:Nit

84 %Update the solution of the previous iteration.

85 correct_tf = AT(y − A(tf_last)) + tf_last;

86 %Time−slice independent hard thresholding.

87 for j = 1:1:N1

88 [~, tf_ind] = sort(correct_tf(:,j),'descend');

89 correct_tf(tf_ind(nc(j):end),j) = 0;

90 end

91 %Solution of the current iteration.

92 tf_new = (1−alpha)*tf_last_last + (alpha−beta)*tf_last + ...

93 beta*correct_tf;

94 %Stoping criterion.

95 diff = abs((norm(tf_new,2)^2 − norm(tf_last,2)^2) / ...

96 norm(tf_last,2)^2);

97 if (diff < eps_th)

98 break;

99 end

100 %Save solutions from the previous two iterations.

101 tf_last_last = tf_last; tf_last = tf_new;

102 end

103 time = toc;

104 end

1 function [c_num] = fun_CompNumRenyi(x, x_ref, tfd, alpha, dt)

2 %function [c_num] = fun_CompNumRenyi(x, x_ref, tfd, Renyi_alpha, dt)

3 % Calculates the instantaneous number of components present in the TFD

4 % based on the localized Renyi entropy.

5 %

6 % Inputs:

7 % x − Required, 1D array. Signal in time domain.

8 % x_ref − Optional, 1D array. The referent signal in time domain.

9 % (default: x_ref = fmconst(N, 0.1)).

10 % tfd − Optional, function handle for calculation of the TFD

11 % (default: tfd = @(x) fun_emb(x, 0.1 , 0.12)).

12 % alpha − Optional, order of the Renyi entropy (default: alpha = 7).

13 % dt − Optional, localization parameter defining length of the
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14 % observed time interval (default: dt = 11).

15 %

16 % Outputs:

17 % c_num − Required, instantaneous number of components present

18 % in the TFD.

19 %

20 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 % Copyright (2017): Ivan Volaric

22

23 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % INITALIZIATION

25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 %Default values, if not specified by the user.

27 N = length(x);

28 if (nargin < 1),

29 error('The number of inputs must be at least 1.');

30 elseif (nargin == 2)

31 x_ref = fmconst(N, 0.1); tfd = @(x) fun_emb(x, 0.1 , 0.12);

32 alpha = 7; dt = 11;

33 elseif (nargin == 3)

34 tfd = @(x) fun_emb(x, 0.1 , 0.12); alpha = 7; dt = 11;

35 elseif (nargin == 4)

36 alpha = 7; dt = 11;

37 elseif (nargin == 5)

38 dt = 11;

39 end

40

41 %Check if inputs are valid.

42 if ((~isvector(x)) || (~isvector(x_ref)))

43 error('x and x_ref must be a vectors.');

44 end

45 if (~isa(tfd,'function_handle'))

46 error('tfd must be a function handle.');

47 end

48 if (alpha < 2)

49 error('alpha must be larger then 2.');

50 end

51 if ((dt < 0) || (~isinteger(dt)))

52 error('dt must be a positive integer number.');

53 end

54

55 nt_val = 0.10; %Noise thresholding parameter.

56 c_num = zeros(N,1);

57 tfd_x = tfd(x); tfd_x_ref = tfd(x_ref);

58

59 %Noise thresholding.

60 tfd_x(tfd_x(:) < nt_val*max(tfd_x(:))) = 0;
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61 tfd_x_ref(tfd_x_ref(:) < nt_val*max(tfd_x_ref(:))) = 0;

62

63 %Minimum energy criterion.

64 min_E_crit = 0.01 * sum(tfd_x(:))/(N/dt);

65

66 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 % MAIN ALGORITHM LOOP

68 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
69 for p = dt:1:(N−dt+1)
70 if (sum(tfd_x(:,p)) < min_E_crit)

71 %Skip current time instance if minimum energy criterion is

72 %not satisfied.

73 continue;

74 end;

75

76 %Localization of the x around the current time instance.

77 tfd_x_p = zeros(size(tfd_x));

78 tfd_x_p(:,(p−dt+1):1:(p+dt−1)) = tfd_x(:,(p−dt+1):1:(p+dt−1));
79

80 %Localization of the x_ref around the current time instance.

81 tfd_x_ref_p = zeros(size(tfd_x_ref));

82 tfd_x_ref_p(:,(p−dt+1):1:(p+dt−1)) = ...

83 tfd_x_ref(:,(p−dt+1):1:(p+dt−1));
84

85 %Number of components in the current time slice.

86 c_num(p) = abs(2^(fun_TFDPerf_Renyi(tfd_x_p, alpha) − ...

87 fun_TFDPerf_Renyi(tfd_x_ref_p, alpha)));

88 end

89 %Number of components before time instance dt.

90 c_num(1:1:dt) = c_num(dt);

91 %Number of components after time instance N−dt.
92 c_num((N−dt+1):1:N) = c_num(N−dt+1);
93 end

94

95 %Calculates Renyi entropy.

96 function M = fun_TFDPerf_Renyi(x,alpha)

97 x = x/sum(x(:)); %Normalization over energy.

98 M=0;

99 for i = 1:1:numel(x)

100 M = M + (x(i)^(alpha));

101 end

102 M = 1/(1−alpha) * log2(M);

103 end

104

105 %Calculates enhanced modified B distribution.

106 function x_emb = fun_emb(x, alpha, beta)

107 N=length(x);
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108 lag_vector = linspace(−N/2, N/2−1, N−(~mod(N,2)));
109 doppler_vector = linspace(−0.5, 0.5, N);

110 [lag_grid, doppler_grid] = meshgrid(lag_vector, doppler_vector);

111

112 kernel_emb = abs(gamma(beta+1i*pi*doppler_grid)).^2/(gamma(beta))...

113 .^2.*abs(gamma(alpha+1i*pi*lag_grid/N)).^2/(gamma(beta)).^2;

114

115 x_amb = ambifunb(x);

116 x_emb = fun_ambi2tf(x_amb.*kernel_emb);

117 end

118

119 %Generates a sine signal with a constant frequency.

120 function y = fmconst(N, fnorm)

121 t0 = round(N/2); tmt0 = (1:N)−t0;
122 y = exp(1j*2*pi*fnorm*tmt0);

123 y = y/y(t0);

124 end
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