Predviđanje značajki upravljivosti broda za prijevoz rasutog tereta nosivosti 100.000 tona

Ušić, Mišel

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Rijeka, Faculty of Engineering / Sveučilište u Rijeci, Tehnički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:190:864044

Rights / Prava: Attribution 4.0 International/Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-03-14

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of Engineering

SVEUČILIŠTE U RIJECI

TEHNIČKI FAKULTET

Diplomski sveučilišni studij brodogradnje

Diplomski rad

PREDVIĐANJE ZNAČAJKI UPRAVLJIVOSTI BRODA ZA PRIJEVOZ RASUTOG TERETA NOSIVOSTI 100.000 TONA

PREDICTION OF MANEUVERABILITY CHARACTERISTICS FOR A BULK CARRIER WITH A DEADWEIGHT OF 100.000 TONS

Rijeka, svibanj 2023.

Mišel Ušić 0069068853

SVEUČILIŠTE U RIJECI

TEHNIČKI FAKULTET

Diplomski sveučilišni studij brodogradnje

Diplomski rad

PREDVIĐANJE ZNAČAJKI UPRAVLJIVOSTI BRODA ZA PRIJEVOZ RASUTOG TERETA NOSIVOSTI 100.000 TONA

PREDICTION OF MANEUVERABILITY CHARACTERISTICS FOR A BULK CARRIER WITH A DEADWEIGHT OF 100.000 TONS

Mentor: prof. dr. sc. Roko Dejhalla, dipl.ing.

Rijeka, svibanj 2023.

Mišel Ušić 0069068853

IZJAVA

Sukladno Pravilniku o diplomskom radu, diplomskom ispitu i završetku diplomskih sveučilišnih studija Tehničkog fakulteta u Rijeci, članak 8., izjavljujem da sam samostalno izradio diplomski rad pod naslovom "Predviđanje značajki upravljivosti broda za prijevoz rasutog tereta nosivosti 100.000 tona" koristeći se znanjem stečenim tijekom studija uz konzultacije s mentorom, kao i znanjem stečenim na diplomskom sveučilišnom studiju brodogradnje.

Rijeka, svibanj 2023.

Mišel Ušić

ZAHVALA

Želio bih se zahvaliti svom profesoru i mentoru prof. dr. sc. Roku Dejhalli na svim savjetima i konzultacijama koje su mi bile pružene tijekom studiranja i izrade ovog rada.

Također, želio bih se zahvaliti svojoj obitelji koja mi je omogućila da studiram i pružila mi neophodnu potporu.

Posebno sam zahvalan svojoj prijateljici i kolegici Dori, koja je svojim doprinosom učinila tijek cijelog mog studiranja još izazovnijim i produktivnijim.

SVEUČILIŠTE U RIJECI TEHNIČKI FAKULTET POVJERENSTVO ZA DIPLOMSKE ISPITE

Rijeka, 18. ožujka 2022.

Zavod: Zavod za brodogradnju i inženjerstvo morske tehnologije Predmet: Diplomski rad Polje: 2.02 Brodogradnja

ZADATAK ZA DIPLOMSKI RAD

Pristupnik: Mišel Ušić (0069068853) Studij: Diplomski sveučilišni studij brodogradnje Modul: Projektiranje i konstrukcija plovnih objekata

Zadatak: PREDVIĐANJE ZNAČAJKI UPRAVLJIVOSTI BRODA ZA PRIJEVOZ RASUTOG TERETA NOSIVOSTI 100.000 TONA

Opis zadatka:

Za odabrane glavne dimenzije i koeficijente forme broda za prijevoz rasutog tereta nosivosti od 100.000 t, primjenom MARAD sustavnog niza modela brodova definirati formu broda te izraditi crtež linija.

Primjenom istog sustavnog niza modela brodova predvidjeti značajke upravljivosti broda za odabranu brzinu i stanje krcanja.

Rezultate prikazati na odgovarajući način numerički i grafički.

Rad mora biti napisan prema Uputama za pisanje diplomskih / završnih radova koje su objavljene na mrežnim stranicama studija.

Utic Minel

Zadatak uručen pristupniku: 21. ožujka 2022. Rok za predaju rada: 7. srpnja 2022.

Mentor:

Prof. dr sc. Roko Dejhalla

Predsjednik povjerenstva za diplomski ispit:

Actur

Prof. dr. sc. Albert Zamarin

SADRŽAJ

1. UVOD	
2. BRODSKA FORMA	
2.1. Osnivanje brodske forme	
2.1.1. Određivanje dužine broda	
2.1.2. Određivanje koeficijenta punoće istisnine broda	
2.1.3. Određivanje istisnine broda	
2.1.4. Određivanje brzine broda	
2.1.5. Usvojene vrijednosti	
2.2. MARAD sustavni niz modela brodova	
2.2.1. Odabir modela iz MARAD sustavnog niza	
2.3. Pramčano zaoštrenje	21
2.3.1. Kontura pramca	
2.4. Krmeno zaoštrenje	
2.4.1. Kontura krme	
2.4.2. Krmeno zrcalo	
2.5. Linije broda	
3. KORMILO I BRODSKI VIJAK	
3.1. Geometrijske karakteristike kormila	
3.2. Brodski vijak	
3.2.1. Određivanje sile otpora Holtropovom metodom	
3.2.2. Viskozni otpor broda <i>R</i> _V	
3.2.3. Otpor privjesaka <i>R</i> _{APP}	
3.2.4. Otpor valova <i>R</i> _W	41
3.2.5. Korelacijski otpor <i>R</i> _A	45
3.2.6. Ukupni otpor <i>R</i> _T	

3.3. Glavni pogonski motor	48
3.3.1. Određivanje potrebne sile poriva <i>T</i>	
3.3.2. Određivanje značajki brodskog vijka prema B-seriji	50
3.3.3. Odabir glavnog pogonskog motora	55
3.4. Geometrijske karakteristike brodskog vijka	59
4. PREDVIĐANJE ZNAČAJKI UPRAVLJIVOSTI	61
4.1. Stabilnost ravnog kursa	61
4.2. Pokusi upravljivosti	63
4.2.1. Kriteriji i norme za upravljivost broda	63
4.2.2. Pokus kružnice okretanja	65
4.2.3. Z-pokus	67
4.2.4. Početna sposobnost okretanja	69
4.3. Predviđanje značajki upravljivosti broda za prijevoz rasutog tereta	70
4.3.1. Jednadžbe gibanja u horizontalnoj ravnini	70
4.3.2. Empirijski pristup	73
4.4. Procjena upravljivosti za potpuno nakrcan brod nosivosti 100.000 tona	76
4.4.1. Pokus kružnice okretanja za potpuno nakrcan brod nosivosti 100.000 tona	77
4.4.2. Z-pokus (10-10) za potpuno nakrcan brod nosivosti 100.000 tona	78
4.4.3. Z-pokus (20-20) za potpuno nakrcan brod nosivosti 100.000 tona	80
4.4.4. Početna stabilnost okretanja za potpuno nakrcan brod nosivosti 100.000 tona	81
4.5. Ispitivanje upravljivosti za brod u stanju balasta	83
4.5.1. Pokus kružnice okretanja za brod u stanju balasta	86
4.5.2. Z-pokus (10-10) za brod u stanju balasta	87
4.5.3. Z-pokus (20-20) za brod u stanju balasta	89
4.5.4. Početna stabilnost okretanja za brod u stanju balasta	90
4.6. Prijedlozi poboljšanja značajki upravljivosti u preliminarnom projektu	92

5. ZAKLJUČAK	
LITERATURA	
POPIS OZNAKA I KRATICA	
POPIS SLIKA	
POPIS TABLICA	
PRILOZI	

SAŽETAK

Ovaj diplomski rad se fokusira na određivanje značajki upravljivosti broda za prijevoz rasutog tereta u stanju balasta i u potpuno nakrcanom stanju, nosivosti 100.000 tona.

U prvom dijelu rada se određuju dimenzije i koeficijenti forme broda primjenom MARAD sustavnog niza modela brodova.

Drugi dio opisuje područje osnivanja kormila i brodskog vijka kao dva bitna faktora koji utječu na ishode pokusa upravljivosti. Odabire se kormilo i brodski vijak gdje se provodi proračun ukupne sile otpora i odabir glavnog pogonskog stroja.

U zadnjem dijelu se opisuju značajke upravljivosti i provode pokusi upravljivosti. Predviđene se značajke upravljivosti odnose na brod za prijevoz rasutog tereta za odabranu brzinu i stanja krcanja odnosno, potpuno nakrcan brod nosivosti 100.000 tona i brod u stanju balasta. Komentirni su ishodi pokusa te ovisno o rezultatima predloženo je riješenje za poboljšanje značajki upravljivosti u preliminarnoj fazi osnivanja broda.

Ključne riječi: brod za prijevoz rasutog tereta, MARAD sustavni niz modela brdova, značajke upravljivosti, pokusi upravljivosti, pokus kružnice okretanja, Z-pokus.

SUMMARY

This thesis focuses on determining the maneuvering characteristics of a bulk carrier ship in ballast and fully loaded conditions with a deadweight of 100,000 tons.

In the first part of the thesis, the dimensions and form coefficients of the ship are determined using the MARAD systematic series of ship models.

The second part describes the establishment of the rudder and propeller as two important factors that affect the outcomes of the maneuvering tests. The selection of the rudder and propeller is made by calculating the total resistance force and selecting the main propulsion engine.

In the final part, the ship's controlability is described. The maneuvering characteristics of the bulk carrier ship for selected speeds and loading conditions, including a fully loaded ship with a carrying capacity of 100.000 tons and a ship in ballast condition, are predicted. The test results are commented on, and depending on the results, solutions are proposed to improve the maneuvering characteristics in the preliminary ship design phase.

Keywords: bulk carrier, MARAD systematic series of ship models, maneuvering characteristics, maneuvering tests, turning circle, Z-test.

1. UVOD

Procjena preciznih svojstva upravljivosti broda postala je neizostavan dio u procesu projektiranja plovnih objekata. Značajke upravljivosti broda od velike su važnosti unutar područja pomorskih luka i plovnih putova. Ispunjavanje potrebnih uvjeta upravljivosti čine plovidbu i manevarske operacije ostvarive na siguran način.

Velika je vjerojatnost da uslijed projektiranja značajki upravljivosti plovnih objekata postoji nedostatak potrebnih podataka. Uobičajen pristup karakterizira problem ograničenosti i ispravnosti postojećih rezultata s obzirom na pouzdanost odabrane metode evaluacije. Napredniji pristup predstavlja uporabu računalnih modela. Takav je pristup još uvijek neprikladan u opisivanju pouzdanog strujanja fluida oko trupa broda uključujući složene učinke viskoznosti i slobodne površine te međudjelovanje kormila i brodskog vijka.

Glavni zadatak ovog diplomskog rada je u preliminarnoj fazi projektiranja odrediti značajke upravljivosti broda za prijevoz rasutog tereta. U namjeri za što pouzdanijim materijalima za određivanjem značajki upravljivosti većih brodova punijih oblika, koristiti će se MARAD sustavni niz modela brodova [1].

Diplomski rad se sastoji od tri glavna dijela. U prvome dijelu rada određuju se glavne dimenzije i koeficijenti forme broda za prijevoz rasutog tereta nosivosti 100.000 tona. Primjenom MARAD sustavnog niza modela brodova definirana je se forma broda i izrađen pripadajući crtež linija.

Dva iznimno bitna faktora za upravljivost broda su kormilo i brodski vijak, na kojima se temelji drugi dio ovog rada. U drugom dijelu pokriva se područje osnivanja kormila i njegovih geometrijskih karakteristika. Kormilo stvara silu uzgona koja je potrebna kako bi se stvorio moment oko težišta sustava broda. Da bi kormilo stvaralo silu uzgona potrebno je definirati brzinu pritjecanja vode na kormilo, stoga potrebno je odabrati brodski vijak. U okviru ovog dijela obrađen je proračun ukupnog otpora Holtropovom metodom [3, 4, 5] kako bi se mogao odrediti poriv brodskog vijka što je usko povezano s odabirom glavnog pogonskog stroja. Odabir glavnog pogonskog stroja omogućuje usvajanje podataka vezanih za osnivanje brodskog vijka i njegovih geometrijskih karakteristika. Brodski vijak i kormilo su dva glavna parametra prilikom promatranja manevarskih sposobnosti broda koji direktno utječu na ishod pokusa upravljivosti. U zadnjem djelu ovog rada obrađena su svojstva upravljivosti. Opisani su pokusi upravljivosti kao što su pokus kružnice okretanja, Z-pokus i početna sposobnost okretanja te njihove smjernice odnosno, kriteriji i norme za upravljivost broda [8]. Spomenuta je matematička teorijska osnova za predviđanje značajki upravljivosti te se predstavljaju pojedini elementi koji utječu na gibanje broda sa tri stupnja slobode.

Značajke upravljivosti ispitane su za potpuno nakrcan brod nosivosti 100.000 tona i brod u stanju balasta. Također ovisno o ishodu dobivenih rezultata razmatrana je mogućnost poboljšanja značajki upravljivosti u preliminarnoj fazi osnivanja broda.

2. BRODSKA FORMA

Prilikom osnivanja plovnog objekta jedan od glavnih parametara koji treba uzeti u obzir je nosivost broda *DW*. Jedan od načina postizanja što veće nosivosti je usvajanje što manje vrijednosti omjera dužine i širine broda *L/B*. Sukladno tome, usvajanje veće vrijednosti širine broda uvjetuje povećanju koeficijenta punoće istisnine $C_{\rm B}$. Širina broda ima veliku važnost s obzirom na hidrodinamičke značajke plovnog objekta. Naime, usvajanjem veće vrijednosti omjera širine i gaza broda *B/T* pogoduje se smanjenju oplakivane površine trupa broda što uvjetuje manji otpor trenja $R_{\rm F}$. Kod kraćih brodova s punijom formom (veće vrijednosti $C_{\rm B}$ i *B*), manjom oplakivanom površinom i nižim brzinama smanjuje se otpor trenja $R_{\rm F}$.

Koristeći MARAD sustavni niz modela brodova [1] ostvaruju se svi prethodno navedeni parametri. Prilikom izrade MARAD sustavnog niza modela uzeti su u obzir rastući trendovi osnivanja plovnih objekata s naglaskom na manje vrijednosti omjera dužine i širine broda L/B te veće vrijednosti omjera širine i gaza broda B/T. Granične vrijednosti MARAD sustavnog niza modela prikazane su sljedećim izrazima [1]:

$$0,800 < C_{\rm B} < 0,875,$$
 (2.1)
 $4,5 < L/B < 6,5,$ (2.2)
 $3,0 < B/T < 4,75.$ (2.3)

2.1. Osnivanje brodske forme

Za odabir forme broda koristi se MARAD sustavni niz modela brodova i potrebno je definirati vrijednosti dužine broda L i koeficijent punoće istisnine $C_{\rm B}$. Pomoću MARAD sustavnog niza modela i dužinom broda L, usvaja se vrijednosti omjera L/B i B/T iz kojih se određuje širina B, gaz broda T i pripadajuća forma iz bezdimenzijskog sustavnog niza. Glavne dimenzije broda određene su prema [2].

2.1.1. Određivanje dužine broda

Dužina broda *L* koja se razmatra u MARAD sustavnom nizu modela brodova je dužina između perpendikulara L_{PP} odnosno, pramčane i krmene okomice broda što je prikazano izrazom (2.4):

$$L = L_{\rm PP}.$$
 (2.4)

Dužina broda L, se određuje preko zadane vrijednosti nosivosti koja iznosi 100.000 tona. Služeći se literaturom [2] moguće je odrediti traženu vrijednost dužine broda L s obzirom na zadanu nosivost broda DW u tonama.

Slika 2.1 [2] prikazuje dijagram prikupljenih podataka o dužini i nosivosti postojećih brodova za prijevoz rasutog tereta, u razdoblju od 2000. do 2005. godine.

Slika 2.1. Regresijska analiza dužine broda L, m u ovisnosti o nosivosti DW, t [2]

Moguće je primijetiti kako za nosivost broda od 100.000 tona postoji malo prikupljenih podataka što ukazuje na to da ne postoji mnogo brodova projektiranih za zadanu nosivost.

Sa slike 2.1 moguće je očitati usvojenu vrijednost dužine broda između perpendikulara L u metrima, odnosno:

$$L = L_{PP} = 240 \text{ m.}$$
 (2.5)

2.1.2. Određivanje koeficijenta punoće istisnine broda

Koeficijent punoće istisnine broda $C_{\rm B}$ također se određuje iz [2]. Zadani brod za prijevoz rasutog tereta spada u skupinu brodova sa većim vrijednostima koeficijenta punoće istisnine $C_{\rm B}$ što izgledom rezultira punijom formom.

Koristeći zadanu nosivost broda od 100.000 tona na dijagramu na slici 2.2 [2], moguće je usvojiti vrijednost koeficijenta punoće istisnine $C_{\rm B}$.

Slika 2.2. Regresijska analiza koeficijenta punoće istisnine C_B u ovisnosti o nosivosti DW, t [2]

Sa slike 2.2 usvaja se bezdimenzijska vrijednost koeficijenta punoće istisnine $C_{\rm B}$ što je prikazano izrazom (2.6):

$$C_B = 0,84.$$
 (2.6)

Vrijednost koeficijenta punoće istisnine C_B zadovoljava izraz (2.1), odnosno nalazi se između zadanih graničnih vrijednosti.

2.1.3. Određivanje istisnine broda

Poznavanje mase praznog opremljenog broda potrebno je kako bi se ustanovila vrijednost istisnine broda. Masa praznog opremljenog broda LS u tonama, uključuje masu strukture W_s , masu opreme W_0 , te masu strojarnice W_M .

Iz slike 2.3 [2] i ulaznim podatkom za nosivost broda od 100.000 tona, određuje se masa praznog opremljenog broda za rasuti teret *LS* u tonama.

Iz dijagrama sa slike 2.3 za masu praznog opremljenog broda LS, t usvaja se vrijednost:

 $LS = 16\ 000\ t.$ (2.7)

Vrijednost istisnine broda Δ , t sastoji se iz mase praznog opremljenog broda *LS* koja iznosi 16.000 tona i zdane nosivosti *DW* od 100.000 tona. U tablici 2.1 prikazani su usvojeni podaci vezani za istisninu broda.

Masa prazanog opremljenog broda	LS	16000	t
Zadana nosivost broda	DW	100000	t
Istisnina broda	Δ	116000	t

2.1.4. Određivanje brzine broda

Brzina broda u službi V_S u čvorovima, određuje se preko slike 2.4 [2].

Slika 2.4. Regresijska analiza brzine u službi V_S, čvorova u ovisnosti o dužini broda L, m [2]:

Sa slike 2.4 očitava se vrijednost od 15 čvorova te se ista usvaja kako je prikazano:

 $V_{\rm S} = 15$ čvorova. (2.8)

2.1.5. Usvojene vrijednosti

Sve očitane vrijednosti iz ovog poglavlja nalaze se u tablici 2.2:

Dužina broda između okomica	L	240	m
Koeficijent punoće istisnine	Св	0,840	-
Zadana nosivost broda	DW	100000	t
Istisnina broda	Δ	116000	t
Przipa broda u službi	Vs	7,717	m/s
Bizilia bioda u siuzbi	Vs	15	čvor
Masa opremljenog broda	LS	16000	t

Tablica 2.2. Usvojene vrijednosti glavnih dimenzija

2.2. MARAD sustavni niz modela brodova

Zbog sve veće potrebe za ostvarivanjem što veće nosivosti sa što kraćim brodovima kreće se s analiziranjem podataka postojećih brodova. Istraživanjem je pokazano kako ne postoji dovoljna količina podataka za brodove koji imaju vrijednost koeficijenta punoće istisnine C_B veću od 0,85 te omjer dužine i širine broda L/B jednaku ili manju od 6,5.

Osim problema nedovoljnih podataka za tražene parametre, nije postojao ni jedan sustavni niz koji bi opisivao linije brodske forme za tražene parametre. Potrebno je bilo osnovati brodsku formu koje će zadovoljiti parametre 0,800 $< C_{\rm B} < 0,875$ odnosno, 4,5 $< L/B \le 6,5$. Jednom kad je glavna brodska forma dobivena, moglo se definirati sestrinske forme, [1].

Odabirom bezdimenzijskih podataka za određenu sestrinsku formu i prilagođavanjem iste na potrebne dimenzije, moguće je predvidjeti značajke upravljivosti odabrane serije modela. Nova brodska forma sa traženim parametrima iz izraza (2.1) i (2.2) služi za osnivanje sestrinskih formi koje čine MARAD sustavni niz modela brodova. Ukupno je izvedeno šesnaest modela koji su prikazani na slici 2.5.

Slika 2.5. Bezdimenzijske serije modela brodskih formi [1]

Slika 2.5 prikazuje svih šesnaest modela podijeljenih u tri skupine, ovisno o koeficijentu punoće istisnine $C_{\rm B}$. Dobivenim modelima omogućilo se pokrivanje velikog raspona geometrijskih parametara s najmanjim praktičnim brojem modela. Modeli od "*A*" do "*F*" određeni su po kriteriju omjera dužine i širine *L/B*. Modeli od "*G*" do "*P*" su naknadno dodani kako bi se proširila mogućnost varijacije omjera širine i gaza *B/T* za razne kombinacije koeficijenta punoće istisnine $C_{\rm B}$ i omjera dužine i širine *L/B*.

2.2.1. Odabir modela iz MARAD sustavnog niza

Odabir brodske forme ostvaruje se usvajanjem modela iz MARAD sustavnog niza [1] koji najbolje opisuje usvojenu vrijednost koeficijenta punoće istisnine $C_{\rm B}$. Parametri modela na slici 2.5 podijeljeni su od "A" do "P" kako je prikazano u tablici 2.3:

MODELI																
PARAMETAR	A	В	С	D	E	P	a	н	I	J	х	L	М	N	0	Р
с _в	0.875	0.875	0.875	0.850	0.850	0.850	0,800	0,850	0.850	0,850	0.850	0.850	0.875	0,800	0.875	0.800
L/B	5.500	6,000	6.500	4,500	5.000	5.500	5.000	6.500	6.000	6.000	5.000	5,000	6.500	5,000	5.500	5.000
в∕т	3.000	3.000	3.000	3.000	3.000	3.000	3,000	3,000	3.750	4.500	3.750	4.500	3.750	3.750	3.750	4.500
LCB	2.500	2.500	2,500	2.500	2,500	2,500	2,500	2.500	2.500	2.500	2.500	2.500	2.500	2,500	2.500	2.500
с _м	0.994	0.994	0.994	0.994	0.994	0.994	0,994	0.994	0.994	0,994	0,994	0.994	0.994	0.994	0.994	0.994
1000 v/L³	9.639	8.100	6.902	13.992	11.331	9.366	10.667	6,706	6,296	5.247	9.067	7.556	5.523	8.533	7.713	7.111
s,∕⊽ [‡]	б.243	ó.302	6.463	5.749	5.946	6.127	5.942	6,457	6,706	7.144	6,376	6,745	6,883	6.331	6.533	6,750
S/{VL}	2,828	2.824	2.820	2.822	2.818	2.813	2.788	2,804	2.882	2.978	2.892	2.988	2.894	2.8ć2	2,904	2.960
ւ _բ /ւ	0.117	0,117	0.117	0,160	0,160	0,160	0,245	0,160	0.160	0,160	0,160	0,160	0.117	0,245	0.117	0.245
ւ _м /Ն	0.537	0.537	0.537	0.443	0.443	0.443	0,251	0,443	0.443	0.443	0.443	0.443	0.537	0,251	0.537	0.251
L _н /L	0.346	0,346	0.346	0.397	0.397	0.397	0.504	0.397	0.397	0.397	0.397	0.397	0.346	0.504	0,346	0.50
l _r /b	1.903	2.076	2,249	1,787	1.985	2.184	2,520	2,581	2.382	2.382	1.985	1.985	2.249	2.520	0.1903	2,520
C _{BE}	0,723	0.723	0,723	0,723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723
C _{BR}	0.742	0.742	0.742	0.742	0.742	0.742	0.742	0.742	0.742	0,742	0.742	0.742	0,742	0.742	0.742	0.742
C	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0,994	0,994	0.994	0.994	0.994	0.994	0.994	0.994

Tablica 2.3. Bezdimenzijski parametri trupa za sve modele [1]

Slijedi odabir forme koja zadovoljava uvjet usvojenog koeficijenta punoće istisnine $C_{\rm B}$. Kako je prikazano u tablici 2.2, vrijednost koeficijenta punoće istisnine $C_{\rm B}$ iznosi 0,84.

U Tablici 2.3 vidi se kako ne postoji model za tu vrijednost koeficijenta punoće istisnine. Potrebno je interpolirati vrijednosti modela između kojih se nalazi vrijednost $C_{\rm B} = 0.84$. Odabrani modeli za linearnu interpolaciju su "G" za vrijednost $C_B = 0,80$ i "H" za vrijednost $C_B = 0,85$. Za usvojenu vrijednost $C_B = 0,84$, interpolirati će se svi parametri sadržani u tablici 2.3. Usvojeni interpolirani podaci prikazani su u tablici 2.4:

PARAMETAR	VRIJEDNOSTI ZA MODEL "G"	VRIJEDNOSTI ZA MODEL "H"	INTERPOLIRANE VRIJEDNOSTI ZJ CB = 0,840		
Св	0,800	0,850	0,840		
L/B	5,000	6,500	6,200		
B/T	3,000	3,000	3,000		
LCB	2,500	2,500	2,500		
См	0,994	0,994	0,994		
1000 * ∇/ <i>L</i> ³	10,667	6,706	7,498		
$S/\nabla^{2/3}$	5,942	6,457	6,354		
Cs	2,788	2,804	2,801		
$L_{\rm E}/L$	0,245	0,160	0,177		
$L_{\rm M}/L$	0,251	0,443	0,405		
$L_{\rm R}/L$	0,504	0,397	0,418		
$L_{\rm R}/B$	2,520	2,581	2,569		
C BE	0,723	0,723	0,723		
C BR	0,742	0,742	0,742		
СВМ	0,994	0,994	0,994		

Tablica 2.4. Linearno interpolirani bezdimenzijski parametri MARAD formi G-H

Pomoću dužine broda L usvojene u tablici 2.2 te podataka iz tablice 2.4, moguće je pronaći vrijednosti širine B i gaza T u metrima:

$$B = \frac{L}{6,2}, \quad (2.9)$$

$$B = 38,71 \text{ metara },$$

$$T = \frac{B}{2,907}, \quad (2.10)$$

$$T = 12,9 \text{ metara.}$$

Iz tablice 2.4 moguće je još odrediti i dužine dijelova forme između perpendikulara. Svaki model brodske forme sastoji se od tri dijela koje čine pramčano zaoštrenje $L_{\rm E}$, paralelni srednjak $L_{\rm M}$ i krmeno zaoštrenje $L_{\rm R}$.

Određivanjem pramčanog $L_{\rm E}$ i krmenog $L_{\rm R}$ zaoštrenja dobiva se dužina paralelnog srednjaka $L_{\rm M}$. Zbroj sva tri dijela daje vrijednost dužine broda *L* odnosno, dužine između perpendikulara $L_{\rm PP}$:

$$L = L_{\rm PP} = L_{\rm E} + L_{\rm M} + L_{\rm R}$$
, (2.11)
 $L = L_{\rm PP} = 240$ metara.

Pramčano zaoštrenje ostaje isto za sve modele u sustavnom nizu dok se krmeno zaoštrenje odabire u ovisnosti o $L_{\rm R}/B$.

Krmeno zaoštrenje se još može podijeliti na početni dio krme i završetak krme. Početni dio krme i pramčani dio ostaju isti za svih šesnaest modela dok se krmeni završetak mora mijenjati ovisno o odabranim modelima koji su prikazani na slici 2.5.

Duljine pramčanog i krmenog zaoštrenja te paralelnog srednjaka usvojene su i prikazane na sljedeći način:

 $L_{\rm E} = L \cdot 0,177 = 42,48$ metara, (2.12) $L_{\rm M} = L \cdot 0,405 = 97,104$ metara, (2.13) $L_{\rm R} = L \cdot 0,418 = 100,416$ metara. (2.14)

Usvojene vrijednosti svih omjera nalaze se u tablici 2.5.

L PP = L	240	m
В	38,71	m
B/2	19,35	m
Т	12,90	m
LE	42,48	m
Lм	97,104	m
L R	100,416	m

Tablica 2.5. Usvojeni podaci dužina zaoštrenja, širine i gaza

Pomoću usvojenih vrijednosti iz tablice 2.4 i tablice 2.5, moguće je generirati linije brodske forme za pramčano i krmeno zaoštrenje.

2.3. Pramčano zaoštrenje

Kako bi se dobila forma pramca, pramčano zaoštrenje potrebno je podijeliti na određeni broj rebara. Cjelokupno pramčano zaoštrenje podijeljeno je u šest rebara na jednakom razmaku po dužini $L_{\rm E}$.

U Prilogu 1 jasno je vidljiva podjela pramčanog zaoštrenja unutar šest rebara. Podjela rebara unutar segmenata potrebna je radi pojašnjenja procesa izrade linija brodske forme. Točke za pramčano zaoštrenje moguće je dobiti uz pomoć bezdimenzijskih vrijednosti koje su prikazane u tablici 2.6 [1]:

VODN	A LINIJA	I. PRAMAC FORME BRODA ZA SVE MODELE MARAD NIZA - LE = 42,48 m										
		REBRA I x/L # MJERENO OD PRAMČANOG PERPENDIKULARA										
	X/LE	0,25	0,5	1	1,5	2	2,5	3	3,5	4	5	6
WL	(m)	1,771	3,539	7,081	10,620	14,159	17,701	21,240	24,779	28,321	35,399	42,480
0,00	0,000		•	0,0167	0,1200	0,2050	0,2979	0,3904	0,4792	0,5562	0,7717	0,8729
0,05	0,645		0,0921	0,2104	0,3008	0,3979	0,4983	0,5867	0,6862	0,7825	0,9175	0,9542
0,10	1,290	0,0529	0,1508	0,2687	0,3687	0,4662	0,5667	0,6621	0,7662	0,8471	0,9496	0,9812
0,15	1,935	0,0992	0,1925	0,3104	0,4187	0,5179	0,6179	0,7175	0,8095	0,8792	0,9675	0,9958
0,20	2,581	0,1312	0,2204	0,3417	0,4575	0,5587	0,6575	0,7542	0,8379	0,9000	0,9796	1,0000
0,25	3,226	0,1575	0,2421	0,3692	0,4862	0,5887	0,6883	0,7783	0,8546	0,9133	0,9850	1,0000
0,30	3,871	0,1767	0,2604	0,3921	0,5092	0,6129	0,7104	0,7962	0,8675	0,9225	0,9883	1,0000
0,35	4,516	0,1929	0,2779	0,4112	0,5279	0,6333	0,7283	0,8108	0,8767	0,9292	0,9917	1,0000
0,40	5,161	0,2046	0,2921	0,4262	0,5425	0,6492	0,7437	0,8217	0,8846	0,9342	0,9950	1,0000
0,45	5,806	0,2158	0,3067	0,4404	0,5571	0,6633	0,7558	0,8312	0,8917	0,9375	0,9979	1,0000
0,50	6,452	0,2250	0,3192	0,4529	0,5687	0,6754	0,7662	0,8387	0,8975	0,9408	0,9996	1,0000
0,55	7,097	0,2337	0,3308	0,4642	0,5804	0,6875	0,7758	0,8458	0,9021	0,9437	1,0000	1,0000
0,60	7,742	0,2412	0,3412	0,4752	0,5908	0,6979	0,7833	0,8517	0,9067	0,9467	1,0000	1,0000
0,65	8,387	0,2487	0,3504	0,4862	0,6008	0,7075	0,7904	0,8583	0,9108	0,9487	1,0000	1,0000
0,70	9,032	0,2546	0,3587	0,4954	0,6096	0,7158	0,7967	0,8637	0,9142	0,9517	1,0000	1,0000
0,75	9,677	0,2617	0,3671	0,5050	0,6196	0,7237	0,8033	0,8679	0,9179	0,9542	1,0000	1,0000
0,80	10,323	0,2687	0,3750	0,5142	0,6283	0,7312	0,8087	0,8721	0,9212	0,9567	1,0000	1,0000
0,85	10,968	0,2742	0,3817	0,5233	0,6371	0,7379	0,8146	0,8762	0,9242	0,9587	1,0000	1,0000
0,90	11,613	0,2796	0,3879	0,5308	0,6442	0,7433	0,8196	0,8804	0,9271	0,9604	1,0000	1,0000
0,95	12,258	0,2850	0,3950	0,5392	0,6517	0,7496	0,8250	0,8846	0,9300	0,9633	1,0000	1,0000
1,00	12,903	0,2917	0,4017	0,5467	0,6592	0,7550	0,8296	0,8883	0,9333	0,9646	1,0000	1,0000
1,10	14,194	0,3029	0,4133	0,5600	0,6721	0,7654	0,8379	0,8942	0,9383	0,9679	1,0000	1,0000
1,20	15,484	0,3187	0,4283	0,5754	0,6854	0,7754	0,8462	0,9008	0,9437	0,9725	1,0000	1,0000
1,30	16,774	0,3383	0,4433	0,5887	0,6971	0,7842	0,8533	0,9071	0,9479	0,9758	1,0000	1,0000
1,40	18,065	0,3629	0,4604	0,5937	0,7079	0,7925	0,8600	0,9133	0,9529	0,9787	1,0000	1,0000
1,50	19,355	0,3950	0,4833	0,6162	0,7187	0,8000	0,8658	0,9183	0,9562	0,9812	1,0000	1,0000

Tablici 2.6. Pramčano zaoštrenje forme broda za sve serije MARAD niza [1]

U tablici 2.6 prikazane su bezdimenzijkse poluširine rebara za usvojeni gaz broda od 12,09 metara u rasponu bezdimenzijskih koordinata s korakom od 0,05. Prikazana su rebra u rasponu od RI do R6 s pripadajućim međurebrima radi boljeg opisivanja brodske forme na područjima naglije promjene geometrije. Rebra predstavljaju podjelu pramčanog zaoštrenja $L_{\rm E}$.

Vrijednosti očitanja unutar tablice 2.6 su bezdimenzijske, što znači da ih je potrebno pomnožiti s vrijednošću B/2 kako bi se dobila stvarna udaljenost točaka rebara od simetrale. Stvarne vrijednosti udaljenosti poluširina rebara od središnjice u metrima su prikazane u tablici 2.7.

VODN	I. PRAMAC FORME BRODA ZA SVE SERIJE MARAD NIZA - LE = 42,48 m											
		REBRA I x/L & MJERENO OD PRAMČANOG PERPENDIKULARA (FP)										
14/1	X/LE	0,25	0,5	1	1,5	2	2,5	3	3,5	4	5	6
VVL	(m)	1,771	3,539	7,081	10,620	14,159	17,701	21,240	24,779	28,321	35,399	42,480
0,00	0,000			0,323	2,323	3,968	5,766	7,556	9,275	10,765	14,936	16,895
0,05	0,645	-	1,783	4,072	5,822	7,701	9,645	11,355	13,281	15,145	17,758	18,468
0,10	1,290	1,024	2,919	5,201	7,136	9,023	10,968	12,815	14,830	16,395	18,379	18,991
0,15	1,935	1,920	3,726	6,008	8,104	10,024	11,959	13,887	15,668	17,017	18,726	19,274
0,20	2,581	2,539	4,266	6,614	8,855	10,814	12,726	14,597	16,217	17,419	18,960	19,355
0,25	3,226	3,048	4,686	7,146	9,410	11,394	13,322	15,064	16,541	17,677	19,065	19,355
0,30	3,871	3,420	5,040	7,589	9,855	11,863	13,750	15,410	16,790	17,855	19,128	19,355
0,35	4,516	3,734	5,379	7,959	10,217	12,257	14,096	15,693	16,968	17,985	19,193	19,355
0,40	5,161	3,960	5,654	8,249	10,500	12,565	14,394	15,904	17,121	18,081	19,258	19,355
0,45	5,806	4,177	5,936	8,524	10,783	12,838	14,628	16,088	17,259	18,145	19,314	19,355
0,50	6,452	4,355	6,178	8,766	11,007	13,072	14,830	16,233	17,371	18,209	19,347	19,355
0,55	7,097	4,523	6,403	8,985	11,234	13,306	15,015	16,370	17,460	18,265	19,355	19,355
0,60	7,742	4,668	6,604	9,197	11,435	13,508	15,161	16,485	17,549	18,323	19,355	19,355
0,65	8,387	4,814	6,782	9,410	11,628	13,694	15,298	16,612	17,628	18,362	19,355	19,355
0,70	9,032	4,928	6,943	9,588	11,799	13,854	15,420	16,717	17,694	18,420	19,355	19,355
0,75	9,677	5,065	7,105	9,774	11,992	14,007	15,548	16,798	17,766	18,468	19,355	19,355
0,80	10,323	5,201	7,258	9,952	12,161	14,152	15,652	16,879	17,830	18,517	19,355	19,355
0,85	10,968	5,307	7,388	10,128	12,331	14,282	15,766	16,959	17,888	18,555	19,355	19,355
0,90	11,613	5,412	7,508	10,274	12,468	14,386	15,863	17,040	17,944	18,588	19,355	19,355
0,95	12,258	5,516	7,645	10,436	12,614	14,508	15,968	17,121	18,000	18,645	19,355	19,355
1,00	12,903	5,646	7,775	10,581	12,759	14,613	16,057	17,193	18,064	18,670	19,355	19,355
1,10	14,194	5,863	7,999	10,839	13,008	14,814	16,217	17,307	18,161	18,734	19,355	19,355
1,20	15,484	6,168	8,290	11,137	13,266	15,008	16,378	17,435	18,265	18,823	19,355	19,355
1,30	16,774	6,548	8,580	11,394	13,492	15,178	16,515	17,557	18,346	18,885	19,355	19,355
1,40	18,065	7,024	8,911	11,491	13,701	15,339	16,645	17,677	18,443	18,943	19,355	19,355
1,50	19,355	7,645	9,354	11,926	13,910	15,484	16,757	17,774	18,507	18,991	19,355	19,355

Tablica 2.7. Stvarne dimenzije pramčanog zaoštrenja

Pomoću navedenih podataka moguće je konstruirati linije brodske forme za pramčano zaoštrenje kako je prikazano nacrtom linija u Prilogu 1.

2.3.1. Kontura pramca

Osim rebara, potrebno je odrediti konturu pramca broda. MARAD sustavni niz modela brodova [1] omogućuje očitanje podataka za konturu pramca za svih šesnaest modela. Očitani podaci preračunati su u stvarne dimenzije što će omogućiti konstruiranje konture pramca.

Profil pramca označen je kao krivulja koja većim dijelom prolazi kroz pramčani perpendikular *P.P.* Potrebno je očitati podatke sa slike 2.6.

Slike 2.6. Kontura pramca za sve modele MARAD niza [1]

Očitane podatke za konturu pramca potrebno je prilagoditi stvarnim dimenzijama broda odnosno, dimenzijama pramčanog zaoštrenja L_E . Tablica 2.8 prikazuje očitane i stvarne vrijednosti u metrima, potrebne za konstrukciju konture pramca. Koordinata X predstavlja udaljenost od pramčanog perpendikulara dok koordinata Z udaljenost od osnovice.

OČITANO	- MARAD	STVARNE DIMENZIJE				
Z, m	<i>X</i> , m	Z., m	<i>X</i> , m			
0,000	0,022	0,000	7,077			
0,004	0,006	1,290	1,930			
0,008	0,002	2,581	0,676			
0,011	0,001	3,871	0,225			
0,015	0,000	5,161	0,000			
0,019	0,000	6,452	0,000			
0,023	0,000	7,742	0,000			
0,026	0,000	9,032	0,000			
0,030	0,000	10,323	0,000			
0,034	0,000	11,613	0,000			
0,038	0,000	12,903	0,000			
0,041	0,000	14,194	-0,026			
0,045	-0,001	15,484	-0,386			
0,049	-0,003	16,774	-0,804			
0,053	-0,005	18,065	-1,448			
0,056	-0,007	19,355	-2,252			

Tablica 2.8. 1	'očke konti	ure pramca
----------------	-------------	------------

2.4. Krmeno zaoštrenje

Krmeno zaoštrenje brodske forme prikazano je na sličan način poput pramčanog zaoštrenja pomoću bezdimenzijskih koeficijenata. Krmeno zaoštrenje podijeljeno je sveukupno u dvanaest rebara s odgovarajućim međurebrima radi boljeg opisivanja nagle promjene geometrije brodske forme. Prvo rebro kreće od krmenog perpendikulara i označeno je kao R0. Cjelokupni krmeni dio podijeljen je u dvanaest rebara na jednakim razmacima u krmenom zaoštrenju $L_{\rm R}$.

Bitna razlika kod krmenog zaoštrenja brodske forme je dodatna podjela u dva dijela. U prvi dio krmenog zaoštrenja spada početak krmenog dijela i sastoji se od bezdimenzijskih vrijednosti podijeljenih u osam rebara, počevši od rebra *R12* pa do rebra *R5*. Početak krmenog segmenta ostaje isti za svih šesnaest modela MARAD niza [1]. Tablica 2.9 prikazuje vrijednosti bez dimenzijskih koeficijenata:

			11. 1	OČETAK KRM	E BRODA ZA S	VE MODELE I	MARAD NIZA -	LR					
VODIN		REBRA I x/L # MJERENO OD PRAMČANOG PERPENDIKULARA											
140	x/LR	5	6	7	8	9	10	11	12				
WL	(m)	41,843	50,208	58,573	66,947	75,312	83,677	92,051	100,416				
0,000	0,000	0,1092	0,1629	0,2000	0,2533	0,3187	0,3804	0,4400	0,8729				
0,050	0,645	0,2871	0,3808	0,4862	0,6283	0,7746	0,8946	0,9408	0,9542				
0,100	1,290	0,3833	0,5083	0,6687	0,8029	0,8987	0,9479	0,9721	0,9812				
0,150	1,935	0,4683	0,6317	0,7812	0,8779	0,9262	0,9729	0,9879	0,9958				
0,200	2,581	0,5462	0,7233	0,8454	0,9212	0,9679	0,9871	0,9967	1,0000				
0,250	3,226	0,6212	0,7925	0,8883	0,9467	0,9812	0,9942	0,9992	1,0000				
0,300	3,871	0,6908	0,8437	0,9183	0,9642	0,9892	0,9987	1,0000	1,0000				
0,350	4,516	0,7554	0,8833	0,9400	0,9771	0,9937	1,0000	1,0000	1,0000				
0,400	5,161	0,8158	0,9154	0,9579	0,9854	0,9967	1,0000	1,0000	1,0000				
0,450	5,806	0,8646	0,9396	0,9704	0,9917	0,9979	1,0000	1,0000	1,0000				
0,500	6,452	0,9046	0,9600	0,9804	0,9937	1,0000	1,0000	1,0000	1,0000				
0,550	7,097	0,9333	0,9725	0,9879	0,9967	1,0000	1,0000	1,0000	1,0000				
0,600	7,742	0,9562	0,9833	0,9933	1,0000	1,0000	1,0000	1,0000	1,0000				
0,650	8,387	0,9721	0,9908	0,9967	1,0000	1,0000	1,0000	1,0000	1,0000				
0,700	9,032	0,9829	0,9967	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				
0,750	9,677	0,9925	0,9987	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				
0,800	10,323	0,9967	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				
0,850	10,968	0,9992	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				
0,900	11,613	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				
0,950	12,258	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				
1,000	12,903	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				
1,100	14,194	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				
1,200	15,484	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				
1,300	16,774	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				
1,400	18,065	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				
1,500	19,355	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000				

Tablica 2.9. Početak krme broda za sve modele MARAD niza – L_{R} [1]

VODNA	VODNA LINIJA		II. POČETAK KRME BRODA ZA SVE MODELE MARAD NIZA - 📙 R = 100,416, m									
		REBRA I X/LR MJERENO OD PRAMČANOG PERPENDIKULARA										
14/1	X/LR	5	6	7	8	9	10	11	12			
VVL	(m)	41,84	50,21	58,57	66,95	75,31	83,68	92,05	100,42			
0,000	0,000	2,114	3,153	3,871	4,903	6,168	7,363	8,516	16,895			
0,050	0,645	5,557	7,370	9,410	12,161	14,992	17,315	18,209	18,468			
0,100	1,290	7,419	9,838	12,943	15,540	17,394	18,346	18,815	18,991			
0,150	1,935	9,064	12,226	15,120	16,992	17,926	18,830	19,121	19,274			
0,200	2,581	10,572	13,999	16,363	17,830	18,734	19,105	19,291	19,355			
0,250	3,226	12,023	15,339	17,193	18,323	18,991	19,243	19,339	19,355			
0,300	3,871	13,370	16,330	17,774	18,662	19,146	19,330	19,355	19,355			
0,350	4,516	14,621	17,096	18,194	18,912	19,233	19,355	19,355	19,355			
0,400	5,161	15,790	17,717	18,540	19,072	19,291	19,355	19,355	19,355			
0,450	5,806	16,734	18,186	18,782	19,194	19,314	19,355	19,355	19,355			
0,500	6,452	17,508	18,581	18,975	19,233	19,355	19,355	19,355	19,355			
0,550	7,097	18,064	18,823	19,121	19,291	19,355	19,355	19,355	19,355			
0,600	7,742	18,507	19,032	19,225	19,355	19,355	19,355	19,355	19,355			
0,650	8,387	18,815	19,177	19,291	19,355	19,355	19,355	19,355	19,355			
0,700	9,032	19,024	19,291	19,355	19,355	19,355	19,355	19,355	19,355			
0,750	9,677	19,210	19,330	19,355	19,355	19,355	19,355	19,355	19,355			
0,800	10,323	19,291	19,355	19,355	19,355	19,355	19,355	19,355	19,355			
0,850	10,968	19,339	19,355	19,355	19,355	19,355	19,355	19,355	19,355			
0,900	11,613	19,355	19,355	19,355	19,355	19,355	19,355	19,355	19,355			
0,950	12,258	19,355	19,355	19,355	19,355	19,355	19,355	19,355	19,355			
1,000	12,903	19,355	19,355	19,355	19,355	19,355	19,355	19,355	19,355			
1,100	14,194	19,355	19,355	19,355	19,355	19,355	19,355	19,355	19,355			
1,200	15,484	19,355	19,355	19,355	19,355	19,355	19,355	19,355	19,355			
1,300	16,774	19,355	19,355	19,355	19,355	19,355	19,355	19,355	19,355			
1,400	18,065	19,355	19,355	19,355	19,355	19,355	19,355	19,355	19,355			
1,500	19,355	19,355	19,355	19,355	19,355	19,355	19,355	19,355	19,355			

Stvarne vrijednosti poluširina rebara od simetrale, prikazane su u metrima u Tablici 2.10:

Tablici 2.10. Stvarne dimenzije početnog dijela krmenog segmenta

Drugi dio krmenog zaoštrenja sastoji se od završetka krmenog dijela u obliku bezdimenzijskih vrijednosti podijeljenih u četiri rebra, počevši od rebra *R0* pa do rebra *R4* uz prisustvo određenih međurebara radi preciznijeg opisa forme. Rebro *R0* nalazi se na poziciji krmenog perpendikulara.

Bitna razlika u drugome dijelu krmenog zaoštrenja je potreba linearne interpolacije podataka. Završetak krmenog dijela jedinstven je za svaki ponuđeni model MARAD niza. Potrebno je interpolirati bezdimenzijske vrijednosti završetaka krmenih dijelova za modele "G" i "H". Kako nije usvojena određena serija, interpolirana je vrijednost modela "G" i "H" za vrijednost koeficijenta punoće istisnine $C_{\rm B} = 0,84$. Tablica 2.11 prikazuje linearno interpolirane bezdimenzijske vrijednosti dva modela između kojih se nalazi usvojena vrijednost koeficijenta punoće istisnine $C_{\rm B} = 0,84$:

VODNA	A LINIJA		II. KRAJ KRME BRODA - INTERPOLACIJA MODELA G-H MARAD NIZA - L R											
			REBRA I x/L # MIERENO OD PRAMČANOG PERPENDIKULARA											
14/1	x/LR	-1,5	-1	-0,5	0	0,5	1	1,5	2	2,5	3	3,5	4	
WL	(m)	-12,552	-8,365	-4,187	0	4,187	8,365	12,552	16,739	20,917	25,104	29,291	33,469	
0,000	0,000	-	-	-	•	-	-	0,0039	0,0081	0,0203	0,0474	0,0660	0,0717	
0,050	0,645	-		-			-	0,0332	0,0592	0,0888	0,1277	0,1590	0,1992	
0,100	1,290	-	-	-	-	-	0,0019	0,0451	0,0769	0,1155	0,1614	0,2072	0,2656	
0,150	1,935	-	-	-	-	-	0,0154	0,0514	0,0894	0,1370	0,1909	0,2492	0,3239	
0,200	2,581	-	-	-	-	-	0,0234	0,0542	0,0988	0,1554	0,2184	0,2906	0,3788	
0,250	3,226	-	-	-		-	0,0271	0,0566	0,1080	0,1749	0,2495	0,3382	0,4404	
0,300	3,871	-			•		0,0308	0,0581	0,1172	0,1961	0,2860	0,3924	0,5051	
0,350	4,516	-	-	-	-	-	0,0279	0,0593	0,1287	0,2214	0,3316	0,4560	0,5756	
0,400	5,161	-	-	-	-	-	0,0245	0,0628	0,1444	0,2604	0,3909	0,5324	0,6549	
0,450	5,806	-	-	-	-	-	0,0224	0,0690	0,1693	0,3193	0,4884	0,6213	0,7352	
0,500	6,452	-		-			0,0223	0,0818	0,2101	0,3978	0,5814	0,7052	0,8016	
0,550	7,097	-					0,0272	0,1087	0,3076	0,5309	0,6838	0,7884	0,8590	
0,600	7,742	-	-	-	-	-	0,0393	0,1859	0,4727	0,6589	0,7769	0,8551	0,9032	
0,650	8,387	-	-	-	-	-	0,1020	0,3980	0,6209	0,7584	0,8438	0,9002	0,9359	
0,700	9,032	-	-	-	-	-	0,2875	0,5571	0,7157	0,8256	0,8888	0,9309	0,9584	
0,750	9,677	-		-		0,1338	0,4740	0,6813	0,7980	0,8745	0,9223	0,9543	0,9752	
0,800	10,323	-	-	-		0,3760	0,6129	0,7619	0,8482	0,9075	0,9450	0,9699	0,9861	
0,850	10,968	-	-	-	0,0330	0,5673	0,7050	0,8151	0,8855	0,9304	0,9603	0,9811	0,9936	
0,900	11,613	-	-	-	0,4111	0,6347	0,7651	0,8542	0,9120	0,9433	0,9604	0,9877	0,9974	
0,950	12,258	-	-	0,2566	0,5332	0,6986	0,8054	0,8798	0,9293	0,9580	0,9781	0,9923	0,9992	
1,000	12,903	-	-	0,4185	0,6108	0,7444	0,8358	0,8996	0,9422	0,9669	0,9734	0,9952	1,0000	
1,100	14,194	0,0740	0,3993	0,5680	0,6971	0,7993	0,8722	0,9239	0,9580	0,9775	0,9908	0,9989	1,0000	
1,200	15,484	0,3314	0,5028	0,6303	0,7391	0,8261	0,8902	0,9338	0,9645	0,9819	0,9943	0,9996	1,0000	
1,300	16,774	0,4206	0,5507	0,6627	0,7602	0,8398	0,8994	0,9371	0,9655	0,9828	0,9945	0,9996	1,0000	
1,400	18,065	0,4627	0,5751	0,6797	0,7711	0,8456	0,9016	0,9372	0,9629	0,9828	0,9947	0,9996	1,0000	
1,500	19,355	0,4780	0,5850	0,6870	0,7753	0,8473	0,9018	0,9372	0,9655	0,9828	0,9947	0,9996	1,0000	

Tablica 2.11. Interpolirane vrijednosti serije "G" i "H" za završetak krmenog dijela

Vrijednost B/2 pomnožene sa bezdimenzijskim koeficijentima iz prethodne tablice prikazane su u Tablici 2.12.

VODN	a linija			II. KRAJ KR	MEBRODA - IN	ITERPOLACIJA	MODELA G-H	, ZA (С в = 0,84) MARAD NIZA	- L R = 100,4	16 m		
					RE	BRA I X/L R MJE	RENO OD PRAM	ČANOG PERPENI	DIKULARA				
	x/LR	-1,5	-1	-0,5	0	0,5	1	1,5	2	2,5	3	3,5	4
WL	(m)	-12,552	-8,365	-4,187	0,000	4,187	8,365	12,552	16,739	20,917	25,104	29,291	33,469
0,000	0,000	•	-	•	•	-	•	0,075	0,158	0,393	0,917	1,277	1,387
0,050	0,645		-		•	-		0,642	1,145	1,719	2,471	3,078	3,856
0,100	1,290		-		-		0,037	0,873	1,488	2,235	3,123	4,010	5,140
0,150	1,935	-	-	-	-	-	0,299	0,995	1,730	2,652	3,694	4,824	6,269
0,200	2,581	-	-	-	-	-	0,454	1,050	1,913	3,007	4,227	5,624	7,332
0,250	3,226	-	-	-	-	-	0,525	1,095	2,091	3,386	4,830	6,547	8,524
0,300	3,871		-	-	-	-	0,597	1,125	2,269	3,795	5,535	7,596	9,776
0,350	4,516		-	-	-	-	0,540	1,149	2,492	4,286	6,417	8,825	11,141
0,400	5,161	-	-	-	-	-	0,475	1,215	2,794	5,040	7,566	10,304	12,676
0,450	5,806	-	-	-	-	-	0,434	1,336	3,276	6,180	9,454	12,026	14,230
0,500	6,452	-	-	-	-	-	0,431	1,583	4,067	7,699	11,253	13,650	15,516
0,550	7,097		-	-	-	-	0,526	2,104	5,953	10,276	13,234	15,260	16,627
0,600	7,742		-	-	-	-	0,761	3,599	9,150	12,753	15,036	16,550	17,482
0,650	8,387	•	-	•	-	-	1,974	7,703	12,017	14,679	16,332	17,424	18,114
0,700	9,032	-	-	-	-	-	5,565	10,783	13,852	15,980	17,202	18,017	18,550
0,750	9,677	•	-	•		2,590	9,173	13,185	15,446	16,926	17,850	18,470	18,876
0,800	10,323		-	-	-	7,277	11,863	14,745	16,417	17,565	18,291	18,773	19,087
0,850	10,968				0,639	10,980	13,646	15,777	17,138	18,009	18,587	18,990	19,230
0,900	11,613	•	-	•	7,956	12,285	14,809	16,532	17,652	18,257	18,588	19,116	19,305
0,950	12,258	-	-	4,967	10,321	13,521	15,588	17,029	17,987	18,542	18,931	19,207	19,339
1,000	12,903	-	-	8,100	11,821	14,408	16,176	17,411	18,235	18,715	18,840	19,263	19,355
1,100	14,194	1,432	7,729	10,993	13,492	15,470	16,881	17,882	18,542	18,919	19,177	19,334	19,355
1,200	15,484	6,414	9,731	12,199	14,306	15,990	17,230	18,074	18,668	19,005	19,245	19,347	19,355
1,300	16,774	8,141	10,658	12,827	14,714	16,255	17,407	18,138	18,687	19,022	19,248	19,347	19,355
1,400	18,065	8,955	11,132	13,156	14,925	16,366	17,451	18,140	18,636	19,022	19,251	19,347	19,355
1,500	19,355	9,252	11,323	13,296	15,005	16,399	17,454	18,140	18,687	19,022	19,251	19,347	19,355

Tablica 2.12. Stvarne dimenzije završetka krmenog dijela

2.4.1. Kontura krme

Poput pramčane, točke krmene konture očitavaju se iz podataka za MARAD sustavni niz modela brodova [1]. Bitna razlika je podjela drugog dijela krmenog završetka u dvije izvedbe koje se razlikuju za vrijednosti omjera L_R/B koja je usvojena u tablici 2.5 i iznosi 2,569.

Koordinata X predstavlja udaljenost od krmenog perpendikulara dok koordinata Z udaljenost od osnovice. Prva izvedba krmenog zaoštrenja ima vrijednost L_R/B jednaku 1,6 i predstavlja kraći krmeni završetak, što je prikazano na slici 2.7:

Slika 2.7. Kraće krmeno zaoštrenje za $L_R/B = 1,6[1]$

Druga izvedba krmenog zaoštrenja ima vrijednost L_R/B jednaku 3,2 i predstavlja duži krmeni završetak, što je prikazano na slici 2.8:

Slika 2.8. Duže krmeno zaoštrenje za $L_R/B = 3,2$ [1]

Usvojena vrijednost omjera L_R/B u tablici 2.5 iznosi 2,569 i nalazi se između vrijednosti kraćeg i dužeg krmenog zaoštrenja. Potrebno je očitane podatke sa slika 2.7. i 2.8. linearno interpolirati za usvojenu vrijednost L_R/B koja iznosi 2,569.

Tablica 2.13 prikazuje očitane i stvarne vrijednosti u metrima dviju izvedbi krmenih zaoštrenja te njihovu linearnu interpolaciju za vrijednost omjera $L_{\rm B}/B = 2,569$.

OČITANO - MARAD		STVARNE	DIMENZIJE	OČITANO) - MARAD	STVARNE	DIMENZIJE	INTERPOLACIJA ZA	
ΚΡΜΔ ΖΔ	$I_{R}/R = 1.6$	ΚΡΜΔ ΖΔ	$I_{R}/R = 1.6$	ΚΡΜΑ ΖΑ	$I_{R}/R = 3.2$	ΚΡΜΔ ΖΔ	$I_{R}/R = 3.2$	L R/B	= 2,57
	210 0 - 1,0		2100 - 1,0		2100 - 3,2		LIVD - 3,2	STVARNE DIMENZIJE	
Z, m	<i>X</i> , m	Z, m	<i>X</i> , m	Z, m	<i>X</i> , m	Z, m	<i>X</i> , m	Z, m	<i>X</i> , m
0,000	0,035	0,000	9,759	0,000	0,036	0,000	10,038	0,000	9,928
0,004	0,025	1,290	6,971	0,004	0,025	1,290	6,971	1,290	6,971
0,008	0,021	2,581	5,716	0,008	0,021	2,581	5,855	2,580	5,800
0,009	0,019	3,097	5,298	0,009	0,019	3,097	5,298	3,097	5,298
0,013	0,019	4,473	5,298	0,013	0,019	4,473	5,298	4,473	5,298
0,015	0,021	5,161	5 <mark>,8</mark> 55	0,015	0,021	5,161	5,855	5,516	5,855
0,019	0,023	6,452	<mark>6,4</mark> 13	0,019	0,023	6,452	6,273	6,452	6,328
0,023	0,022	7,742	<mark>6,134</mark>	0,023	0,022	7,742	6,134	7,742	6,134
0,026	0,015	9,032	4,182	0,026	0,017	9,032	4,740	9,032	4,520
0,030	0,002	10,323	0,558	0,030	0,003	10,323	0,836	10,323	0,727
0,034	-0,009	11,613	-2,509	0,034	-0,011	11,613	-3,067	11,613	-2,847
0,038	-0,023	12,903	-6,273	0,038	-0,022	12,903	-6,134	12,903	-6,189
0,041	-0,023	14,194	-6,273	0,041	-0,022	14,194	-6,134	14,194	-6,189
0,045	-0,023	15,484	-6,273	0,045	-0,022	15,484	-6,134	15,484	-6,189
0,049	-0,023	16,774	-6,273	0,049	-0,022	16,774	-6,134	16,774	-6,189
0,053	-0,023	18,065	-6,273	0,053	-0,022	18,065	-6,134	18,064	-6,189
0,056	-0,023	19,355	-6,273	0,056	-0,022	19,355	-6,134	19,355	-6,189

Tablica 2.13. Usvojene vrijednosti krmenih završetaka za $L_R/B = 2,569$

2.4.2. Krmeno zrcalo

Jednom kada je određena kontura krme, moguće je odrediti završetak brodske forme odnosno točnu poziciju krmenog zrcala. U tablici 2.13 moguće je primijetiti početak krmenog zrcala na visini gaza T u iznosu od 12,09 metara. Krmeno zrcalo nalazi se 6,189 metara iza krmenog perpendikulara. Točan položaj krmenog zrcala nalazi se između rebra R-1 koje se nalazi na udaljenosti 8,365 metara i rebra R-0,5 na udaljenosti 4,187 metara od krmenog perpendikulara.

Potrebno je linearno interpolirati vrijednosti položaja točaka rebra *R-1* i *R-0,5* za vrijednost 6,189 metara kako bi dobili točke položaja rebra krmenog zrcala. Tablica 2.14 prikazuje usvojene vrijednosti pozicije krmenog zrcala u metrima:

VODNA	LINIJA, m	REBF	RA, m	KRMENO
14/1	<i>T= 12,9</i> m	R-1	R-0,5	ZRCALO
VVL	m	-8,365	-4,187	m
0,000	0,000	-	-	-
0,050	0,645	-	-	-
0,100	1,290	-	-	-
0,150	1,935	-	-	-
0,200	2,581	-	-	-
0,250	3,226	-	-	-
0,300	3,871	-	-	-
0,350	4,516	-	-	-
0,400	5,161	-	-	-
0,450	5,806	-	-	-
0,500	6,452	-	-	-
0,550	7,097	-	-	-
0,600	7,742	-	-	-
0,650	8,387	-	-	-
0,700	9,032	-	-	-
0,750	9,677	-	-	-
0,800	10,323	-	-	-
0,850	10,968	-	-	-
0,900	11,613	-	-	-
0,950	12,258	-	4,967	2,574
1,000	12,903	-	8,100	4,197
1,100	14,194	7,729	10,993	9,421
1,200	15,484	9,731	12,199	11,01
1,300	16,774	10,658	12,827	11,782
1,400	18,065	11,132	13,156	12,181
1,500	19,355	11,323	13,296	12,346

Tablica 2.14. Interpolirane vrijednosti krmenog zrcala između rebra R-1 i R-0,5

2.5. Linije broda

Preko usvojenih podataka moguće je definirati linije broda. U Prilogu 1 prikazana je konstrukcija linija broda s podjelom rebara u ovisnosti o različitim segmentima.

Uobičajen način prikaza linija broda je podjelom dužine između perpendikulara na određen broj rebara na jednakim udaljenostima. Stoga, u Prilogu 2 prikazan je konvencionalan način prikaza linija broda s dvadeset rebara s istim međusobnim razmakom.

Dimenzije nacrta u Prilogu 1 i Prilogu 2 su ISO A0, mjerilo 1:200.

3. KORMILO I BRODSKI VIJAK

Jedan od ključnih aspekata pokusa upravljivosti je procjena vremena potrebnog za izvođenje manevra. Kormilo igra važnu ulogu u ovom procesu jer pomaže u brzom i preciznom okretanju broda. Brza i precizna promjena smjera omogućava brodu da brzo reagira na promjene uvjeta na moru, poput jakog vjetra ili struje.

Prilikom ispitivanja pokusa upravljivosti broda, brodski vijak i glavni motor također su dvije od glavnih komponenti koje treba uzeti u obzir. Pažljivim odabirom ovih komponenti, može se osigurati učinkovito manevriranje u različitim uvjetima, dok se istovremeno postižu optimalne performanse i učinkovitost. Veličina i geometrija brodskog vijka mogu značajno utjecati na brzinu i mogućnost promjene smjera napredovanja. Primjerice, veći brodski vijak može pružiti veću silu poriva uz manji broj okretaja, ali može otežati manevriranje u uskim prostorima zbog svoje veličine i količine vode koju ubrzava.

Potrebno je odrediti kormilo i brodski vijak kako bi se mogle ispitati značajke upravljivosti broda za prijevoz rasutog tereta.

3.1. Geometrijske karakteristike kormila

Kormilo je jedan od najvažnijih dijelova broda koji pomaže u manevriranju i upravljanju brodom. Koristi se za promjenu smjera te održavanje ravnog kursa broda u vodi. Pokusima upravljivosti kormilo se koristi za različite manevre, uključujući promjenu smjera, okretanje, skretanje, usporavanje i ubrzanje.

Kako bi se predvidjele značajke upravljivosti broda u preliminarnoj fazi projektiranja, potrebno je odrediti značajke kormila. Za usvajanje geometrijskih karakteristika kormila koristiti će se podaci iz MARAD sustavnog niza modela brodova. Slika 3.1. prikazuje optimalan tip brodskog kormila za vrijednost omjera B/T = 3.

Slika 3.1. Odabrana izvedba kormila [1]

Kormilo je podijeljeno s osovinom kormila tako da je 25% dužine presjeka kormila ispred okomice odnosno, pramčanog perpendikulara. Takva izvedba spada u grupu konvencionalnih balansnih kormila. Presijek kormila je NACA 0015 profil.

Pomoću slike 3.1 [1] i linija broda iz poglavlja 2, moguće je omjerima odrediti potrebne glavne dimenzije kormila. Tablica 3.1 prikazuje usvojene geometrijske karakteristike kormila prikazane na slici 3.1:

GEOMETRIJSKE KARAKTERISTIKE KORMILA I SKEGA	STAND KOR	ARDNO MILO
VISINA KORMILA, m	<i>e</i> 1	10
DUŽINA PRESJEKA KORMILA, m	b 1	6,400
SREDNJA VISINA SKEGA, m	е 2	1,495
DUŽINA SKEGA, m	b 2	6,400
Projicirana površina kormila , m^2	Ат	80,764
PROJICIRANA POVRŠINA SKEGA , m ²	A F	29,680
ukupna površina kormila, m ²	A r	161,528
UDALIENOST ULAZNOG BRIDA OD KRMENOG PERPENDIKULARA	%	25

Tablica 3.1. Geometrijske karakteristike kormila

Pomoću softvera Autodesk Inventor i podataka iz MARAD sustavnog niza modela brodova [1], izrađen je trodimenzionalni grafički prikaz usvojenog kormila prikazan na slici 3.2:

Slika 3.2. Grafički prikaz balansnog kormila

3.2. Brodski vijak

Prilikom određivanja značajki upravljivosti broda, brodski vijak i glavni motor su dvije od glavnih komponenti koje treba uzeti u obzir. Pažljivim odabirom ovih komponenti, može se osigurati učinkovito manevriranje u različitim uvjetima, dok se istovremeno postižu optimalne performanse i učinkovitost. Veličina i geometrija brodskog vijka mogu značajno utjecati na brzinu i mogućnost promjene smjera napredovanja. Primjerice, veći brodski vijak može pružiti veću silu poriva uz manji broj okretaja, ali može otežati manevriranje u uskim prostorima zbog svoje veličine i količine vode koju ubrzava.

Određivanjem sile otpora broda moguće je definirati efektivnu snagu broda $P_{\rm E}$. Efektivna snaga je snaga koja je potrebna za kretanje plovila kroz vodu dok se kočena snaga motora $P_{\rm B}$ odnosi na stvarnu izlaznu snagu motora. Definiranje kočene snage dizelskog motora služi za odabir glavnog pogonskog stroja. Nakon odabira glavnog pogonskog motora i određivanja kočene snage dizelskog motora, moguće je definirati snagu predanu vijku $P_{\rm D}$ i brzinu vrtnje N te usvojiti odgovarajući promjer vijka $D_{\rm P}$.

3.2.1. Određivanje sile otpora Holtropovom metodom

Holtropova metoda [3, 4, 5] je široko korištena empirijska metoda za izračunavanje otpora broda. Razvili su je G.J. Holtrop i G.G.J. Mennen 1982. godine, a temelji se na statističkoj analizi velike baze podataka izvedenih pokusa plovidbe modela brodova. Holtropovom metodom ukupni otpor RT raščlanjen je na nekoliko komponenti:

$$R_T = R_V + R_{APP} + R_W + R_B + R_{TR} + R_A, \qquad (3.1)$$

gdje je:

 R_V – viskozni otpor broda,

 R_{APP} – otpor privjesaka,

 R_W – otpor valova,

 R_B – otpor pramčanog bulba,

 R_{TR} – otpor uronjenog krmenog zrcala,

 R_A – korelacijski otpor (model–brod).

Neke od komponenti ukupnog otpora RT jednake su nuli za promatrani brod u ovome radu. Promatrana forma nema pramčani bulb niti uronjeno krmeno zrcalo stoga otpor pramčanog bulba $R_{\rm B}$ i krmenog zrcala $R_{\rm TR}$ iznositi će nula.

Kod preliminarnog projektiranja brodova Holtropova metoda posebno je korisna jer omogućuje procjenu otpora broda prije nego što je izgrađen. Valja napomenuti da Holtropova metoda ima neka ograničenja i pretpostavke te možda nije precizna za sve vrste brodova. Ograničenja metode bazirana su na brzinu plovidbe iskazanu bezdimenzijski pomoću Froudeovog broja Fr, vrijednost koeficijenta istisnine C_B te omjera L/B. Tablica 3.2 prikazuje ograničenja metode i zadovoljavajuće usvojene vrijednosti za brod razmatran u ovo radu:

OGRANIČENJA	USVOJENO
<i>F</i> r ≤ 0,45	<i>F</i> r = 0,159
0,55 ≤ C _B ≤ 0,85	$C_{\rm B} = 0,84$
$3,9 \le L/B \le 9,5$	L/B = 6,2

Tablica 3.2. Ograničenja Holtropove metode

Sve komponente ukupnog otpora R_T promatraju se u rasponu brzina od 10 do 18 čvorova. Raspon promatranih brzina u čvorovima, moguće je prikazati preko Froudeovih brojeva izrazom:

$$Fr = \frac{V}{\sqrt{g \cdot L}}, \qquad (3.2)$$

gdje je:

- V-brzina napredovanja broda,
- L dužina broda na vodnoj liniji,
- g gravitacijsko ubrzanje.

Froudeov broj je bezdimenziska vrijednost koja se koristi za označavanje utjecaja gravitacijskog ubrzanja sile teže na gibanje tekućine.

Tablica 3.3. prikazuje osnovne podatke korištene za proračun ukupnog otpora RT pomoću Holtropove metode [3, 4, 5]:

Dužina na vodnoj liniji	LVL	240	m
Širina na vodnoj liniji	BVL	38,710	m
Visina broda	D	21	m
Maksimalni gaz	Тмах	12,900	m
Brzina broda	V	15	čvorova
Uzdužni položaj	Lon	127	
težišta istisnine	LCB	157	
Gravitacijsko ubrzanje	g	9,80665	m/s²
Gustoća morske vode	ρ	1,025	t/m³
Gustoća morske vode	ρ	1025	kg/m³
Kinematička viskoznost	ν	0,000001	m²/s
Koeficijent punoće istisnine	Св	0,840	-
Koeficijent punoće glavnog rebra	См	0,994	-
Koef. punoće površine vodne linije	CWP	0,884	-
Priz matički koeficijent	СР	0,845	-
Površina vodne linije	AWP	8216,430	m 2
Površina glavnog rebra	AM	496,363	m²
Oplakivana površina (trup)	STRUP	13195,034	m 2
Oplakivana površina (truptkormilo)	s	13325,034	m²
(trup+kornino)			
Uronjen volumen	V	113170,732	m³
Istisnina	Δ	116000	t

Tablica 3.3. Glavne vrijednosti za proračun ukupnog otpora R_T
3.2.2. Viskozni otpor broda R_V

Po Holtropovoj metodi [3, 4, 5] viskozni otpor odnosi se na otpor koji nastaje zbog trenja između trupa broda i vode. Za izračun viskoznog otpora oplakivane površine brodskog trupa koriste se empirijske formule koje uzimaju u obzir različite parametre broda. Svi podaci dobiveni unutar potpoglavlja 3.2.2. za raspon Froudeovih brojeva, prikazani su u tablici 3.5 na kraju potpoglavlja.

Viskozni otpor se može izraziti preko sljedeće jednadžbe:

$$R_V = (1+k)R_F,$$
 (3.3)

gdje je:

 R_F – otpor trenja,

(1+k) – faktor forme.

Faktor forme opisuje viskozni otpor oblika trupa u odnosu na otpor trenja R_F koji uzima u obzir samo otpor trenja dvodimenzionalne (2D) ravne ploče. Faktor forme prikazan je:

$$(1+k) = 0.93 + 0.487118 \cdot c_{14} \cdot \left(\frac{B}{L}\right)^{1.06806} \cdot \left(\frac{T}{L}\right)^{0.46106} \cdot \left(\frac{L}{L_R}\right)^{0.121563} \cdot \left(\frac{L^3}{\nabla}\right)^{0.36486} \cdot (1-C_P)^{-0.604247} , \qquad (3.4)$$
$$(1+k) = 1.287,$$

gdje je:

B – širina na vodnoj liniji,

T – gaz na vodnoj liniji,

- L dužina na vodnoj liniji,
- C_M koeficijent punoće glavnog rebra,
- ∇ uronjeni volumen,
- C_P prizmatički koeficijent,
- c14 koeficijent oblika krme,
- *L*_R duljina krmenog zaoštrenja.

Da bi se odredila vrijednost faktora forme(1+k), prvo se mora odrediti koeficijent oblika krme c_{14} i duljina krmenog zaoštrenja *L*R.

Koeficijent oblika krme izračunava se jednadžbom:

$$c_{14} = 1 + 0,011 \ C_{\text{STERN}}$$
, (3.5)
 $c_{14} = 1.$

 C_{STERN} je uzet kao C_{STERN} = 0 (prema izgledu krme) za normalni oblik presjeka kako je prikazano u tablici 3.4:

Tablica 3.4. Parametri izgleda krme

Pramac s gondolom	-25
Glavno rebro "V" oblika	-10
Normalno glavno rebro	0
Glavno rebro "U" oblika	10

Podatak o duljini krmenog zaoštrenja LR nalazi se u poglavlju 2. te iznosi 100,416 metara.

Izraz 3.6 prikazuje formulu za izračun otpora trenja:

$$R_F = \frac{1}{2} \cdot \rho \cdot C_F \cdot V^2 \cdot S, \qquad (3.6)$$

gdje je:

- $C_{\rm F}$ koeficijent otpora trenja broda,
- ρ gustoća morske vode,
- S oplakivana površina broda,
- V brzina broda.

Prvo je potrebno odrediti koeficijent otpora trenja broda CF. Za ovaj izračun koristit će se metoda ITTC 1957 (International Towing Tank Conferencee):

$$C_F = \frac{0.075}{(log Re - 2)^2}, \qquad (3.7)$$

gdje je:

Re-Reynoldsov broj.

Reynoldsov broj predstavlja odnos između inercijskih sila i sila trenja te se računa iz:

$$Re = \frac{V \cdot L}{\nu} \tag{3.8}$$

gdje su: V - brzina broda,

L – dužina broda na vodnoj liniji,

v – kinematička viskoznost.

Za izračun otpora trenja R_F , potrebno je još odrediti oplakivanu površinu broda S. Oplakivana površina broda određena je na dva načina: korištenjem formule zadane metodom Holtropa i Mennena te preko podataka MARAD sustavnog niza [1].

Prvi način dobivanja oplakivane površine broda preko metode Holtropa i Mennena prikazan je sljedećim izrazom [5]:

$$S_{HOLTROP} = L \cdot (2 \cdot T + B) \sqrt{C_M} \cdot \left(0,453 + 0,4425 \cdot C_B - 0,2862 \cdot C_M - 0,003467 \cdot \frac{B}{T} + 0,3696 \cdot C_{WP}\right) + 2,38 \cdot \frac{A_{BT}}{C_B}, \qquad (3.9)$$

 $S_{HOLTROP} = 13195,034 \text{ m}^2,$

gdje je:

- B širina broda,
- T-gaz broda,
- C_M koeficijent punoće glavnog rebra,

 $C_{\rm B}$ – koeficijent punoće istisnine,

 $C_{\rm WP}$ – koeficijent punoće površine vodne linije,

 $A_{\rm BT}$ – površina poprečnog presjeka pramčanog bulba, ($A_{\rm BT}$ = 0).

Drugi način svodi se na podatke MARAD sustavnih nizova modela brodova [1]. Za vrijednost koeficijent punoće istisnine *C*B od 0,84. Interpoliranim vrijednostima serija "G" i "H" za 0,84 dobiven je bezdimenzijski iznos koeficijenta oplakivane površine *C*s prikazan u tablici 2.5.

Pomoću koeficijenta oplakivane površine Cs iz izraza 3.10, moguće je dobiti vrijednost oplakivane površine SMARAD:

$$S_{MARAD} = C_S \cdot \sqrt{L \cdot \Delta}, \qquad (3.10)$$
$$S_{MARAD} = 14596,703 \text{ m}^2,$$

gdje je:

CS – koeficijent oplakivane površine,

L – dužina broda između perpendikulara,

 Δ – istisnina.

Razlika u oplakivanoj površini između metoda metode Holtropa i Mennena i MARAD sustavnog niza iznosi 1.401,668 m². Radi točnosti, koristiti će se vrijednost dobivena MARAD sustavnim nizom koja iznosi 1.4596,703 m², kako je i usvojeno u tablici 3.3.

Tablica 3.5. prikazuje sve vrijednosti spomenute izrazima u ovom potpoglavlju za raspon brzina odnosno Froudeovih brojeva:

		_				
V, čvor	<i>V</i> , m/s	Fr	<i>R</i> _E · 10 ⁻⁹	C _F .10 ³	<i>R</i> _F , N	<i>R</i> _V , N
10,0	5,144	0,106	1,039	1,523	272638	350898
10,5	5,402	0,111	1,091	1,514	298776	384539
11,0	5,659	0,117	1,143	1,506	326034	419621
11,5	5,916	0,122	1,195	1,497	354405	456137
12,0	6,173	0,127	1,247	1,490	383885	494080
12,5	6,431	0,133	1,299	1,482	414469	533442
13,0	6,688	0,138	1,351	1,475	446150	574217
13,5	6,945	0,143	1,403	1,468	478925	616401
14,0	7,202	0,148	1,455	1,462	512789	659985
14,5	7,459	0,154	1,507	1,456	547738	704966
15,0	7,717	0,159	1,559	1,450	583767	751337
15,5	7,974	0,164	1,610	1,444	620873	799094
16,0	8,231	0,170	1,662	1,438	659051	848231
16,5	8,488	0,175	1,714	1,433	698298	898744
17,0	8,746	0,180	1,766	1,428	738610	950628
17,5	9,003	0,186	1,818	1,423	779985	1003879
18,0	9,260	0,191	1,870	1,418	822418	1058492

Tablica 3.5. Viskozni otpor broda u odnosu na raspon brzina

Otpor privjesaka broda R_{APP} je otpor osovinskih nogavica, skrokova, osovina, ljuljnih kobilica, kormila, otvora za bočne vijke itd. U preliminarnoj fazi projektiranja broda kao privjesak promatrati će se samo kormilo. Svi podaci dobiveni unutar potpoglavlja 3.2.3, za raspon Froudeovih brojeva, prikazani su u tablici 3.6 na kraju potpoglavlja.

Otpor privjesaka broda dobiva iz:

$$R_{\rm APP} = 0.5 \cdot \rho \cdot V^2 \cdot (1+k2) \cdot S_{\rm APP} \cdot C_F , \qquad (3.11)$$

gdje je:

 ρ – gustoća morske vode,

V- brzina broda,

SAPP – ukupna uronjena površina privjesaka,

(1 + k2) – faktor otpora privjesaka (1,5 za kormilo),

*C*F – koeficijent otpora trenja.

Za početak potrebno je odrediti ukupnu uronjenu površinu kormila *S*_{APP}, kao jedinog promatranog privjeska. Površina kormila usvojena je u tablici 3.1 u poglavlju 3.

Koeficijent otpora trenja C_F , usvojen je u potpoglavlju 3.2.2 i prikazan je u tablici 3.5, dok tablica 3.6 prikazuje vrijednosti otpora privjesaka za različite raspone brzina i Froudeovih brojeva:

V, čvor	V,m/s	Fr	$C_{\rm F} \cdot 10^3$	(1+ <i>k</i> 2)	R APP, N
10,0	5,144	0,106	1,523	1,5	4029
10,5	5,402	0,111	1,514	1,5	4415
11,0	5,659	0,117	1,506	1,5	4818
11,5	5,916	0,122	1,497	1,5	5237
12,0	6,173	0,127	1,490	1,5	5673
12,5	6,431	0,133	1,482	1,5	6125
13,0	6,688	0,138	1,475	1,5	6593,
13,5	6,945	0,143	1,468	1,5	7077
14,0	7,202	0,148	1,462	1,5	7578,
14,5	7,459	0,154	1,456	1,5	8094
15,0	7,717	0,159	1,450	1,5	8627
15,5	7,974	0,164	1,444	1,5	9175
16,0	8,231	0,170	1,438	1,5	9739
16,5	8,488	0,175	1,433	1,5	10319
17,0	8,746	0,180	1,428	1,5	10915
17,5	9,003	0,186	1,423	1,5	11526
18,0	9,260	0,191	1,418	1,5	12153

Tablica 3.6. Otpor privjesaka broda u odnosu na raspon brzina

3.2.4. Otpor valova R_W

Otpor valova je komponenta otpora povezana s energijom utrošenom na stvaranje gravitacijskih valova. Ova komponenta sastoji se od otpora valnog reljefa i otpora lomljenja valova. Otpor valova je funkcija Froudeovog broja. Za procjenu *R*w, Holtrop je podijelio raspon Froudeovih brojeva u tri dijela što je prikazano kao:

$$R_{w}(F_{R}) = \begin{cases} R_{Wa}(F_{R}), & jednadžba: Rw(Fr)_{-a} & ako je Fr \leq 0,4\\ interpolacija, & jednadžba: Rw_srednji & ako je 0,4 < Fr \leq 0,55\\ R_{Wa}(F_{R}), & jednadžba: Rw((Fr)_{-b} & ako je Fr > 0,55 \end{cases}$$
(4.12)

Otpor valova za Froudeove brojeve $Fr \le 0.4$ računa se pomoću izraza 3.13:

$$Rw(Fr)_{-a} = c_1 c_2 c_5 \rho g V e^{[m_1 Fr^d + m_4 \cos(\lambda Fr^{-2})]}.$$
 (3.13)

Otpor valova za Froudeove brojeve Fr > 0,55 računa se pomoću izraza (3.14):

$$Rw(Fr)_{-b} = c_{17}c_2c_5\rho g Ve^{[m_3Fr^d + m_4\cos(\lambda Fr^{-2})]}.$$
 (3.14)

Preostali raspon Froudeovih brojeva $Rw_{srednji}$, $0.4 < Fr \le 0.55$ dobiva se linearnom interpolacijom jednadžbi $Rw(Fr)_{-a}$ i $Rw(Fr)_{-b}$ ili izrazom 3.15:

$$Rw_{mean} = Rw(Fr)_{-a} + \frac{(20Fr-8)}{3} [Rw(Fr)_{-b} - Rw(Fr)_{-a}], \quad (3.15)$$

gdje je:

- c_n koeficijent s obzirom na brodsku formu,
- m_1 koeficijent,
- m_3 koeficijent,
- m_4 koeficijent,
- λ duljina generiranih valova,
- d konstanta.

Maksimalna brzina je 18 čvorova dok je očekivana brzina 15 čvorova. Raspon Froudeovih brojeva je od 0,106 do 0,191 stoga, koristi se izraz 3.13 za $Rw(Fr)_{-a}$.

Za izračun otpora valova *Rw*, za različite vrijednosti Froudeovih brojeva, potrebno je odrediti koeficijente iz sljedećih izraza:

$$c_{1} = 2223105 \cdot c_{7}^{3,78613} \cdot \left(\frac{T}{B}\right)^{1,07961} \cdot (90 - i_{E})^{-1,37565}, \qquad (3.16)$$

$$c_{1} = 7,812, \\i_{E} = 1 + 89 \cdot \\\cdot e^{-(L/B)^{0,80856}} \cdot \\\cdot e^{(1 - C_{WP})^{0,30484}} \cdot \\\cdot e^{(1 - C_{P} - 0,0225 \cdot L_{CB})^{0,6367}} \cdot \\\cdot e^{(L/B)^{0,34574}} \cdot \\\cdot e^{(1000\nabla/L^{3})^{0,16302}}, \qquad (3.17)$$

$$i_{E} = 64,329^{\circ},$$

gdje je:

 $i_{\rm E}$ – kut tangente na vodnu liniju na pramcu u odnosu na simetralu broda.

$$c_2 = e^{\left(-1,89\cdot\sqrt{c_3}\right)},\tag{3.18}$$

 $c_2 = 1,000$,

$$c_3 = \frac{0.56 \cdot A_{\rm BT}^{1.5}}{B \cdot T \cdot (0.31 \cdot \sqrt{A_{\rm BT}} + T_F - h_B)},\tag{3.19}$$

 $c_3 = 0,$

gdje je:

 $T_{\rm F}$ – gaz na pramcu,

 $h_{\rm B}$ – težište poprečnog presjeka bulba, (h_B = 0),

 $A_{\rm BT}$ – uronjena površina krmenog zrcala kada brod miruje, ($A_{\rm BT}$ = 0).

$$c_{5} = 1 - \frac{0.8 \cdot A_{T}}{B \cdot T \cdot C_{M}},$$

$$c_{5} = 1,$$

$$A_{T} = 0 \text{ m}^{2},$$

$$d = -0.9,$$
gdje je:

$$A_{T} - \text{uronjeno krmeno zrcalo u stanju mirovanja, (A_{T} = 0),$$
(3.20)

d – konstanta.

$$c_7 = \frac{B}{L}$$
, za 0,11 < ($\frac{B}{L}$ = 0,161) < 0,25,
 $c_7 = 0,161$. (3.21)

$$\lambda = 1,446 \cdot C_P - 0,03 \cdot \left(\frac{L}{B}\right), \tag{3.22}$$
$$\lambda = 1,036.$$

$$m_1 = 0,0140407 \cdot L/T - 1,75254 \cdot \nabla^{1/3}/L - 4,79323 \cdot B/L - c_{16},$$

$$m_1 = -1,998.$$
(3.23)

$$c_{16} = 1,73014 - 0,7067 \cdot C_P$$
, for C_P > 0,8,
 $c_{16} = 1,133$. (3.24)

$$m_4 = c_{16} \cdot 0.4 \cdot e^{(-0.034 \cdot Fr^{-3.29})}.$$
(3.25)

Tablica 3.7 prikazuje usvojene vrijednosti koeficijenata iz prijašnjih izraza. Vrijednosti za m_4 i otpor valova R_W , mijenjaju se u ovisnosti o rasponu Froudeovih brojeva te su prikazane u tablici 3.8.

Faktor forme	(1+k)	1,287	-
Oblik krmenog zrcala	CKRME	0	-
Krmeno zaoštrenje	LR	100,420	m
Uzdužni položaj težišta istisnine	Lcв	7,083	%
Kut	iE	64,329	Stupnja
Koeficijent	а	-0,340	-
Koeficijent	mı	-1,998	-
Koeficijent	m3	-2,040	-
Koeficijent	d	-0,900	-
Koeficijent	λ	1,036	-
Koeficijent	C1	7,812	-
Koeficijent	C2	1,000	-
Koeficijent	C3	0,000	-
Koeficijent	C 4	0,040	-
Koeficijent	C5	1,000	-
Koeficijent	C7	0,161	-
Koeficijent	C8	7,856	-
Koeficijent	C9	7,856	-
Koeficijent	C11	0,614	-
Koeficijent	C14	1,000	-
Koeficijent	C15	-1,694	-
Koeficijent	C16	1,133	-
Koeficijent	C17	3,359	-
Koeficijent	C19	0,125	-
Koeficijent	C20	1,000	-
Koeficijent	C23	0,857	-

Tablica 3.7. Vrijednosti koeficijenata za izračun otpora valova R_W

Tablica 3.8. Otpor valova u ovisnosti o brzini broda

V, čvor	V, m/s	Fr	m 4	R _w , N
10,0	5,144	0,106	8,0192E-25	2568
10,5	5,402	0,111	2,6702E-21	4904
11,0	5,659	0,117	1,9835E-18	8855
11,5	5,916	0,122	4,5623E-16	15225
12,0	6,173	0,127	4,1563E-14	25076
12,5	6,431	0,133	1,8081E-12	39760
13,0	6,688	0,138	4,3367E-11	60951
13,5	6,945	0,143	6,4129E-10	90664
14,0	7,202	0,148	6,3821E-09	131271
14,5	7,459	0,154	4,5818E-08	185502
15,0	7,717	0,159	2,5079E-07	256450
15,5	7,974	0,164	1,0944E-06	347552
16,0	8,231	0,170	3,9472E-06	462581
16,5	8,488	0,175	1,2119E-05	605621
17,0	8,746	0,180	3,2453E-05	780971
17,5	9,003	0,186	7,732E-05	993334
18,0	9,260	0,191	0,00016666	1247807

3.2.5. Korelacijski otpor R_A

Izraz za korelacijski otpor dobiva se iz velike baze eksperimentalnih podataka za uspostavljanje veza između otpora brodova i njihovih različitih geometrijskih parametara, poput duljine *L*, širine *B*, gaza *T*, visine *D*. Uključivanjem širokog raspona tipova i veličina brodova u bazu podataka, formula može točno predvidjeti otpor brodova koji padaju izvan raspona originalnih podataka.

Osim toga, Holtropova metoda uključuje korekcije za učinke oblika pramca i krme, što dalje poboljšava odnos između modela i broda. Ove korekcije temelje se na empirijskim podacima i namijenjene su obuhvaćanju složenih interakcija između oblika trupa i optjecanja vode oko njega.

Formula za izračun koeficijenta korelacijskog otpora broda trebala bi pružiti točne rezultate za različite tipove brodova. To je osobito važno kada se rezultati ekstrapoliraju izvan raspona podataka korištenih za razvoj formule, gdje točnost rezultata postaje kritična. Stoga, dodatak korelacijskog otpora R_A u jednadžbi ukupnog otpora R_T je važno svojstvo koje jednadžbe, modeli i formule moraju posjedovati kako bi bile korisne i učinkovite za širok raspon primjena.

$$C_{A} = 0,006 \cdot (L + 100)^{-0.16} - 0,00205 + 0,003 \cdot \sqrt{L/7.5} \cdot C_{B}^{4} \cdot c_{2} \cdot (0,04 - c_{4}),$$
(3.26)
$$C_{A} = 0,303 \cdot 10^{-3},$$

gdje je:

 c_2 – koeficijent,

 C_4 – koeficijent u ovisnosti o T_F/L , za $T_F/L > 0.04$,

 $c_4 = 0,04.$

Izrazom 3.27 moguće je dobiti vrijednost korelacijskog otpora R_A , što je prikazano tablicom 3.9 vrijednostima korelacijskog otpora R_A za različite raspone brzina Froudeovih brojeva:

$$R_A = 0.5 \cdot \rho \cdot V^2 \cdot S \cdot C_A, \tag{3.27}$$

gdje je:

S – oplakivana površina,

 C_A – koeficijent korelacijskog otpora,

V – brzina broda.

V, čvor	<i>V,</i> m/s	<i>F</i> r	$C_A \cdot 10^3$	R _A , N
10,0	5,144	0,106	0,099	17646
10,5	5,402	0,111	0,099	19455
11,0	5,659	0,117	0,099	21352
11,5	5,916	0,122	0,099	23338
12,0	6,173	0,127	0,099	25411
12,5	6,431	0,133	0,099	27573
13,0	6,688	0,138	0,099	29823
13,5	6,945	0,143	0,099	32161
14,0	7,202	0,148	0,099	34587
14,5	7,459	0,154	0,099	37102
15,0	7,717	0,159	0,099	39705
15,5	7,974	0,164	0,099	42396
16,0	8,231	0,170	0,099	45176
16,5	8,488	0,175	0,099	48043
17,0	8,746	0,180	0,099	50999
17,5	9,003	0,186	0,099	54043
18,0	9,260	0,191	0,099	57175

Tablica 3.9. Korelacijski otpor u ovisnosti o brzini

3.2.6 Ukupni otpor $R_{\rm T}$

Holtropovom metodom ukupna sila otpora RT računa se prema izrazu 3.28, s obzirom na vrijednosti izračunate u prethodnim potpoglavljima:

$$R_T = R_V + R_{\rm APP} + R_W + R_{A,} \tag{3.28}$$

gdje je:

 R_V – viskozni otpor broda,

 R_{APP} – otpor privjesaka,

 R_W – otpor valova,

 R_A – korelacijski otpor (model–brod).

Tablica 3.10. prikazuje vrijednosti komponenta ukupnog otpora i ukupni otpor R_{T} :

V, KN	V, m/s	Fr	Rv, N	<i>R</i> _w , N	<i>R</i> _{APP} , N	<i>R</i> _A , N	<i>R</i> _T , N	R _T , kN
10,0	5,144	0,106	350899	2568	4029126	17647	473300	473,300
10,5	5,402	0,111	384540	4904	4415403	19456	518793	518,793
11,0	5 <mark>,6</mark> 59	0,117	419622	8855	4818227	21353	566245	566,245
11,5	5,916	0,122	456138	15225	5237512	23338	615647	615,647
12,0	6,173	0,127	494080	25076	5673177	25412	666990	666,990
12,5	<mark>6,4</mark> 31	0,133	533442	39761	6125145	27573	720265	720,265
13,0	<mark>6,688</mark>	0,138	574218	60952	6593344	29823	775463	775,463
13,5	6,945	0,143	616401	90665	7077702	32161	832577	832,577
14,0	7,202	0,148	659986	131271	7578154	34588	891600	891,600
14,5	7,459	0,154	704966	185503	8094635	37103	952523	952,523
15,0	7,717	0,159	751337	256450	8627083	39705	1015341	1015,341
15,5	7,974	0,164	799094	347553	9175440	42397	1080045	1080,045
16,0	8,231	0,170	848231	462581	9739648	45176	1146631	1146,631
16,5	8,488	0,175	898744	605608	10319653	48044	1215091	1215,091
17,0	8,746	0,180	950628	781028	10915403	50999	1285420	1285,420
17,5	9,003	0,186	1003879	993382	11526846	54044	1357612	1357,612
18,0	9,260	0,191	1058493	1247296	12153933	57176	1431662	1431,662

Tablica 3.10. Ukupni otpor broda RT

Slika 3.3. grafički prikazuje vrijednosti iz tablice 3.10:

Slika 3.3. Grafički prikaz ukupnog otpora RT i njegovih komponenti

3.3. Glavni pogonski motor

Geometrijske karakteristike brodskog vijka uvjetovane su odabirom glavnog pogonskog motora. Kako bi brod napredovao kroz vodu brzinom *V*, potrebno je odrediti silu poriva *T*, koju stvara brodski vijak. Silom poriva *T*, moguće je izračunati koeficijent poriva *K*T. Uz koeficijent napredovanja vijka *J* i koeficijent poriva *K*T, moguće je iz dijagrama slobodne vožnje prema B – seriji odrediti omjer uspona brodskog vijka P/D_P te stupanj djelovanja brodskog vijka η_0 .

Odabir glavnog pogonskog motora ovisan je o kočenoj snazi dizelskog motora $P_{\rm B}$. Prethodno određenom silom ukupnog otpora broda $R_{\rm T}$, moguće je odrediti efektivnu sagu $P_{\rm E}$. Vrijednost efektivne snage $P_{\rm E}$ i stupanja djelovanja brodskog vijka $\eta_{\rm P}$, omogućuje izračun za kočenu snagu dizelskog motora $P_{\rm B}$, čija vrijednost služi kao varijabla u odabiru glavnog pogonskog stroja.

Odabirom glavnog pogonskog stroja dobiva se informacija o brzini vrtnje brodskog vijka te ovisno o tome moguće je usvojiti promjer brodskog vijka D_P , kao i uspon brodskog vijka P.

3.3.1. Određivanje potrebne sile poriva T

Sila poriva T, potrebna je za određivanje značajki brodskog vijka pomoću dijagrama slobodne vožnje prema B – seriji. Izraz 3.29 prikazuje formulu za izračun sile poriva T:

$$T = \frac{R_T}{1-t},\tag{3.29}$$

gdje je:

RT – sila ukupnog otpora,

t-koeficijent smanjenja poriva.

Koeficijent smanjenja poriva *t* određuje se prema podacima dobivenih iz MARAD sustavnog niza modela brodova [1]. Očitanje se vrši pomoću omjera *L/B* koji iznosi 6.2, za koeficijenta punoće istisnine $C_{\rm B} = 0,84$ i omjer B/T = 3. Koeficijent smanjenja poriva *t*, moguće je očitati iz dijagrama sa slike 3.4.

Slika 3.4. Utjecaj omjera L/B na koeficijente trupa i propulzije [1]

Tablica 3.11 prikazuje očitane podatke koeficijenata trupa i propulzije za vrijednost omjera L/B = 6,2:

Tablica 3.11. Koeficijenti trupa i propulzij	ie za vrijednost omjera L/B = 6,2
--	-----------------------------------

1-t	0,785
1-w	0,660
η _R	0,980
ήн	1,140

Uz vrijednost sile ukupnog otpora R_T i koeficijenta smanjenja poriva *t*, moguće je za promatrani raspon brzina odrediti silu poriva *T*. Tablica 3.12 prikazuje vrijednosti sile poriva *T* brodskog vijka:

V, kN	V, m/s	Fr	1-t	<i>R</i> _T , N	Τ,Ν
10,0	5,144	0,106	0,785	473299	602929
10,5	5,402	0,111	0,785	518792	660882
11,0	5,659	0,117	0,785	566245	721331
11,5	5,916	0,122	0,785	615647	784263
12,0	6,173	0,127	0,785	666990	849668
12,5	6,431	0,133	0,785	720264	917534
13,0	6,688	0,138	0,785	775463	987851
13,5	6,945	0,143	0,785	832577	1060608
14,0	7,202	0,148	0,785	891599	1135796
14,5	7,459	0,154	0,785	952523	1213405
15,0	7,717	0,159	0,785	1015340	1293427
15,5	7,974	0,164	0,785	1080045	1375853
16,0	8,231	0,170	0,785	1146630,	1460676
16,5	8,488	0,175	0,785	1215091	1547887
17,0	8,746	0,180	0,785	1285420	1637478
17,5	9,003	0,186	0,785	1357612	1729442
18,0	9,260	0,191	0,785	1431661	1823773

Tablica 3.12. Vrijednosti sile poriva T

3.3.2. Određivanje značajki brodskog vijka prema B-seriji

Dijagrami slobodne vožnje ovise o omjeru raširene površine krila brodskog vijka A_E i površine vijčanog kruga A_0 . Omjeri površina A_E/A_0 izvedeni su u obliku serija B4 – 40, B4 – 55 i B4 – 70.

Za proračun značajki brodskog vijka pretpostavlja se interval brzine vrtnje. Preko pretpostavljenih brojeva okretaja određuje se promjer vijka D_P , omjer P/D_P te stupanj djelovanja brodskog vijka η_0 . Određeni raspon broja okretaja je od 100 min⁻¹ do 150 min⁻¹ sa korakom 10.

Nakon što je sila poriva T poznata, izrazom 3.30 moguće je odrediti koeficijent poriva $K_{\rm T}$:

$$K_T = \frac{T}{\rho \cdot n^2 \cdot D \, \mathbf{1}^4},\tag{3.30}$$

gdje je:

T – sila poriva,

n - broj okretaja vijka,

D1 – preliminarni promjer vijka.

Vrijednosti koeficijenta poriva K_T prikazane su u tablicama 3.13, 3.14 i 3.15. Preliminarni promjer vijka D_1 , određuje se izrazom 3.31:

$$D_1 = 0.5 \cdot T$$
, (3.31)
 $D_1 = 6.452 \text{ m},$

gdje je:

T-maksimalni gaz broda.

Preostaje odrediti vrijednost koeficijenta napredovanja vijka J izrazom 3.32:

$$J = \frac{V_A}{n \cdot D1}, \qquad (3.32)$$

gdje je:

VA- brzina pritjecanja vode vijku.

Da bi se određila vrijednost koeficijenta napredovanja vijka J za određeni raspon brzina potrebno je izračunati brzinu pritjecanja vode na vijak V_A izrazom 3.33:

$$V_A = V(1 - w), (3.33)$$

gdje je:

V-brzina broda,

w – koeficijent sustrujanja.

Vrijednost koeficijenta sustrujanja *w* očitava se sa slike 3.4 i navedena je u tablici 3.11. Vrijednosti koeficijenta napredovanja vijka *J* prikazane su u tablicama 3.13, 3.14 i 3.15.

Koeficijent poriva K_T očitava se iz dijagrama slobodne vožnje. S vrijednosti koeficijenta napredovanja vijka J ulazi se u dijagram i za omjer P_o/D očitavaju se vrijednosti K_T i K_Q . Slike 3.5, 3.6 i 3.7 prikazuju dijagrame slobodne vožnje serija B4 – 40, B4 – 55 i B4 – 70:

Slika 3.5. Dijagram slobodne vožnje, serija B4 – 40 [5]

Slika 3.6. Dijagram slobodne vožnje, serija B4 – 55 [5]

Slika 3.7. Dijagram slobodne vožnje, serija B4 – 70 [5]

Tablice 3.13, 3.14 i 3.15 prikazuju vrijednosti koeficijent napredovanja vijka J i koeficijent poriva K_T za raspon broja okretaja od 100 min⁻¹ do 150 min⁻¹ sa korakom 10. Tablice također prikazuju očitane vrijednosti omjera P/D_P te stupanj djelovanja brodskog vijka η_0 .

	B4-40				
N, 1/min	n, 1/s	<i>К</i> т	J	P/D p	η 0
100	1,667	<mark>0,</mark> 29	0,34	0,950	0,430
110	1,833	<mark>0,</mark> 24	0,31	0,800	0,400
120	2,000	<mark>0,</mark> 20	0,28	0,690	0,390
130	2,167	<mark>0,</mark> 17	0,26	0,590	0,390
140	2,333	<mark>0,</mark> 15	0,24	0,530	0,380
150	2,500	0, 13	0,23	0,490	0,365

Tablica 3.13. Vrijednosti P/D_P i η_0 za seriju B4-40, u ovisnosti o broju okretaja

Tablica 3.14. Vrijednosti P/D_P i η_0 za seriju B4-55, u ovisnosti o broju okretaja

B4-55				
n , 1/s	Кт	J	P/D P	η 0
1,667	0, 29	0,34	0,930	0,400
1,833	0, 24	0,31	0,785	0,410
2,000	<mark>0,</mark> 20	0,28	0,680	0,400
2,167	<mark>0,</mark> 17	0,26	0,600	0,390
2,333	<mark>0,</mark> 15	0,24	0,540	0,380
2,500	0 , 13	0,23	0,500	0,365
	B4-55 n , 1/s 1,667 1,833 2,000 2,167 2,333 2,500	B4-55 n, 1/s KT 1,667 0,29 1,833 0,24 2,000 0,20 2,167 0,17 2,333 0,15 2,500 0,13	B4-55 n, 1/s KT J 1,667 0,29 0,34 1,833 0,24 0,31 2,000 0,20 0,28 2,167 0,17 0,26 2,333 0,15 0,24	B4-55 n, 1/s KT J P/D P 1,667 0,29 0,34 0,930 1,833 0,24 0,31 0,785 2,000 0,20 0,28 0,680 2,167 0,17 0,26 0,600 2,333 0,15 0,24 0,540 2,500 0,13 0,23 0,500

Tablica 3.15. Vrijednosti P/D_P i η_0 za seriju B4-70, u ovisnosti o broju okretaja

B4-70					
N, 1/min	<i>n</i> , 1/s	<i>К</i> т	J	P/D _₽	η ο
100	1,667	<mark>0,</mark> 29	0,34	0,900	0,385
110	1,833	<mark>0,</mark> 24	0,31	0,790	0,390
120	2,000	<mark>0,</mark> 20	0,28	0,685	0,380
130	2,167	0, 17	0,26	0,615	0,380
140	2,333	<mark>0,</mark> 15	0,24	0,550	0,365
150	2,500	0, 13	0,23	0,500	0,350

Slike 3.8, 3.9 i 3.10 prikazuju dijagrame za vrijednosti P/D_P i η_0 u ovisnosti o brzini vrtnje N, za pojedinu seriju A_E/A_0 :

Slika 3.8. Vrijednosti P/D_P i η_0 u ovisnosti o brzini vrtnje N, za seriju B4-40

Slika 3.9. Vrijednosti P/D_P i η_0 u ovisnosti o brzini vrtnje N, za seriju B4-55

Slika 3.10. Vrijednosti P/D_P i $\eta_0 u$ ovisnosti o brzini vrtnje N, za seriju B4-70

Iz dijagrama sa slika 3.8, 3.9 i 3.10 očitavaju se vrijednosti za omjer P/D_P i brzinu vrtnje N za maksimalnu vrijednost stupanj djelovanja vijka η_0 . Tablica 3.16 prikazuje usvojene vrijednosti:

Tablica 3.16. Vrijednosti za omjer P/D_P i brzinu vrtnje N za maksimalni stupanj djelovanja vijka no

ηο	0,430
$P/D_{\rm P}$	0,800
N, min ⁻¹	110

Očitanja iz dijagrama slobodne vožnje B-serija služe da bi se usvojila maksimalna vrijednost stupnja djelovanja vijka η_0 kako bi se odredila vrijednost stupnja djelovanja propulzije η_P .

3.3.3. Odabir glavnog pogonskog motora

Jednom kad se odredio stupanj djelovanja vijka η_0 , moguće je odrediti stupanj djelovanja propulzije η_P , sljedećim izrazom:

$$\eta_P = \eta_S \cdot \eta_0 \cdot \eta_R \cdot \eta_H, \qquad (3.34)$$
$$\eta_P = 0,466,$$

gdje je:

- η_{S} stupanj djelovanja transmisije ($\eta_{S} = 0,97$),
- η_0 stupanj djelovanja vijka u slobodnoj vožnji,
- η_H koeficijent utjecaja trupa,
- η_R koeficijent prijelaza.

Koeficijent utjecaja trupa η_H i koeficijent prijelaza η_R moguće je očitati sa slike 3.4 iz MARAD sustavnog niza modela brodova, te se očitane vrijednosti nalaze u tablici 3.11. Vrijednost za stupanj djelovanja vijka η_0 nalazi se u tablici 3.16. Pomoću dobivene vrijednosti iz stupnja djelovanja propulzije η_P , može se odrediti kočena snaga motora P_B :

$$P_B = \frac{P_E}{\eta_P} , \qquad (3.35)$$
$$P_B = 16814 \text{ kW},$$

gdje je:

 $P_{\rm E}$ – efektivna snaga ($P_{\rm E}$ = 7835 kN),

 η_P – ukupni stupanj djelovanja propulzije.

Tablica 3.17 prikazuje vrijednosti za efektivnu snagu $P_{\rm E}$:

Tablica 3.17. Efektivna snaga P_E s obzirom na raspon brzine

V, kN	<i>V,</i> m/s	Fr	<i>R</i> _T , N	P _E , kW
10,0	5,144	0,106	473299	2434,865
10,5	5,402	0,111	518792	2802,346
11,0	5,659	0,117	566245	3204,318
11,5	5,916	0,122	615647	3642,237
12,0	6,173	0,127	666990	4117,552
12,5	6,431	0,133	720264	4631,703
13,0	6,688	0,138	775463	5186,126
13,5	6,945	0,143	832577 ₄	5782,251
14,0	7,202	0,148	891599	6421,501
14,5	7,459	0,154	952523	7105,295
15,0	7,717	0,159	1015340	7835,046
15,5	7,974	0,164	1080045	8612,162
16,0	8,231	0,170	1146630	9438,047
16,5	8,488	0,175	1215091,	10314,100
17,0	8,746	0,180	1285420	11241,715
17,5	9,003	0,186	1357612	12222,283
18,0	9,260	0,191	1431661	13257,189

Vrijednost snage motora $P_{\rm B}$ povećava se za 15%. Povećanje služi za rad u izvanrednim uvjetima u službi. Slijedi da je potrebna snaga motora:

$$P_{B_{MOTORA}} = 19336 \text{ kW}.$$

Za odabir glavnog pogonskog motora koristiti će se MAN-ov katalog i smjernice [6]. Promatra se brod nosivosti od 100.000 tona, stoga takav brod spada pod kategoriju "Capesize" odnosno, brodovi s nosivosti od 80.000 do 200.000 tona. Slika 3.11 prikazuje moguće opcije MAN-ovih motora za "Capesize" skupinu brodova:

Bulk carrier class	Capesize				
Ship size (at scantling draught)	dwt	85,000	107,000	150,000	175,000 (Dunkirkmax)
Scantling draught	m	13.8	13.6	16.3	18.3
Length overall	m	229.0	254.0	275	292.0 (max)
Length between pp	m	223.0	249.0	266	282.0
Breadth	m	37.0	43.0	45.0	45.0 (max)
Design draught	m	12.2	12.2	15.0	16.5
Sea margin	%	15	15	15	15
Engine margin	%	10	10	10	10
Average design ship speed	Knots	14.5	14.5	14.5	14.5
SMCR power and indicative rpm	kW (rpm)	10,080 (94)	12,120 (100)	14,450 (76)	15,750 (79)
Main engine options	1.	7/8G50ME-C9	8G50ME-C9	7/8G60ME-C9	7/8G60ME-C9
	2.	5/6S60ME-C8	6/7S60ME-C8	5/6G70ME-C9	5/6G70ME-C9
	3.	5G60ME-C9	5/6G60ME-C9	5/6S70ME-C8	5/6S70ME-C8
	4.			6/7S65ME-C8	6/7S65ME-C8
	5.				

Slika 3.11. Opcije glavnog pogonskog stroja u ovisnosti o nosivosti broda [6]

Slijedi odabir motora. U ovisnosti o snazi motora $P_{\rm B}$ uvećanu za dodatak od 15%, odabran je MAN-ov motor MAN B&W G60ME-C9.5 sa osam cilindara, čije su značajke prikazane na slici 3.12:

Slika 4.12. Glavni pogonski motor MAN B&W G60ME-C9.5 [6]

Maksimalna snaga P_{BMCR}, koju proizvođač garantira iznosi:

$$P_{\rm BMCR} = 21440 \text{ kW}.$$

Maksimalna snaga u službi iznosi 85% snage motora, koja u ovom slučaju iznosi:

$$P_{\rm BMCR0,85} = 18224 \text{ kW}.$$

Maksimalna brzina vrtnje N uzima se:

$$N = 97 \text{ min}^{-1}$$
.

Snaga predan vijku P_D računa se izrazom

$$P_D = \frac{P_{PBMCR0.85}}{\eta_S},$$
 (3.36)
 $P_D = 17677 \text{ kW}.$

Tablica 3.18 prikazuje sve izračunate vrijednosti unutar ovog potpoglavlja:

Рв	Рв 16813,403	
P BMOTORA	19335,413	kW
ΡE	7835,046	kW
η Ρ	0,466	-
η 0	0,410	-
ηs	0,970	-
η R	0,980	-
η h	1,140	-
P BMCR	21440	kW
P BMCR0,85	18224	kW
N	97	min ⁻¹
n	1,617	s ⁻¹
V	15	čvor
PD	17677,280	kW

Tablica 3.18. Usvojene vrijednosti za glavni pogonski motor

3.4. Geometrijske karakteristike brodskog vijka

Nakon što se odredila vrijednost snage predane vijku PD za očekivanu brzinu u službi od 15 čvorova moguće je odrediti konačni promjer vijka D_P . Preko podatka o snazi predanoj vijku PDibroja okretaja N očitanog iz kataloga proizvođača motora određuje se maksimalni promjer vijka D_P koji je moguće smjestiti na krmu broda. Slika 3.13 prikazuje mogući prostor na krmi u koji je moguće smjestiti vijak D_{MAX} :

Slika 3.13. Maksimalni dopušteni promjer brodskog vijka D_{MAX}

Sa slike 3.13 usvaja se maksimalni promjer brodskog vijka *D*MAKS kao stvarna vrijednost za brodski vijak D_P koja iznosi 7,4 metara. Usvojenu vrijednost promjera brodskog vijka moguće je očitati sa slike 3.13. Uz podatak o snazi predanoj vijku *P*D za očekivanu brzinu u službi od 15 čvorova i brzini vrtnje *N* te usvojenog promjera brodskog vijka $D_P = D$ MAKS moguće je dobiti vrijednost omjera uspona brodskog vijka *P*/*D*_P.

Vrijednost uspona brodskog vijka P/D_P iz tablice 3.19. dobivena je pomoću programa "Bser" koji pomoću ulaznih parametara određuje izlazne parametre za brodski vijak B serije. Kao ulazni parametar korišteno je broj krila Z = 4, Predana snaga vijku $P_D = 17.677,280$ kN, dozvoljeni maksimalni promjer vijka $D_P = 7,4$ m, brzina broda V = 5,093 m/s i brzina vrtnje brodskog vijka N = 93 min⁻¹.

Slika 3.14. prikazuje ulazne i izlazne vrijednosti parametara za program "Bser".

B-SERIES SHIP SCREW PROPELLER (M. USIC - diplomski) INPUT DATA Number of blades= 4 Propeller diameter= 7.400 m Propeller pitch= .000 m Expanded Area Ratio= .0000 Advance velocity= 5.093 m/s Propeller revolutions= 97.000 per minute Thrust= .000 kN Delivered power= 17677.280 kW Water density= 1025.90 kg/m3 Water viscosity= .118831E-05 m2/s OUTPUT DATA Number of blades= 4 Propeller diameter= 7.400 m (291.34 in) Propeller pitch= 6.842 m (269.37 in) Pitch ratio= .925 Propeller Disc Area= 43.0084 m2 Expanded Area Ratio= .0000 Advance velocity= 5.093 m/s Advance velocity= 9.900 kn Propeller revolutions= 97.00 per minute Propeller revolutions= 1.617 per second Advance ratio J= .4257 Thrust coefficient Kt= .2249 Torque coefficient 10Kq= .2922 Efficiency= .5215 Thrust=1808.656 kN Torque=1738.824 kNm Delivered power= 17662.660 kW Bp= 48.409 Delta= 237.877

Slika 3.14. Podaci dobiveni "Bser" programom

S obzirom da je ovo preliminarna faza projektiranja, za odabrani promjer brodskog vijka D_P i brzinu vrtnje N nije rađena provjera kavitacije. Tablica 3.19 prikazuje sve usvojene geometrijske karakteristike brodskog vijka koji će se koristiti pri ispitivanju značajki upravljivosti.

GEOMETRIJSKE KARAKTERISTIKE BRODSKOG VIJKA					
BROJ KRILA	Z	4			
PROMJER BRODSKOG VIJKA, m	D P	7,40			
USPON BRODSKOG VIJKA, m	P	6,842			
OMJER USPONA I PROMJERA VIJKA	P/D	0,925			

Tablica 3.19. Usvojene geometrijske karakteristike brodskog vijka

4. PREDVIĐANJE ZNAČAJKI UPRAVLJIVOSTI

Upravljivost plovnih objekata odnosi se na hidrodinamička svojstva brodova i njihovu sposobnost upravljanja putanjom, brzinom i smjerom tijekom plovidbe na otvorenom moru i u ograničenim vodama. Upravljivost broda uključuje nekoliko aspekata, kao što su započinjanje plovidbe, plovidbu u ravnom kursu, okretanje, usporavanje, zaustavljanje i vožnju krmom.

Upravljivost broda se može podijeliti u tri uža područja: održavanje kursa (kormilarenje), manevriranje i promjenu brzine. Održavanje kursa podrazumijeva održavanje ravnog kursa odnosno plovidbu u odabranom smjeru. Upravljivost broda podrazumijeva kontroliranu promjenu smjera gibanja, skretanje ili promjenu kursa. Razmatra se postignuta promjena, te polumjer i udaljenost koji su potrebni za provođenje promjene kursa. Promjena brzine podrazumijeva kontroliranu promjenu kursa kontroliranu promjenu brzine, uključujući zaustavljanje i vožnju krmom.

Prikazani su i objašnjeni pokusi upravljivosti i potrebni kriteriji i norme koje se moraju zadovoljiti prilikom ispitivanja značajki upravljivosti. Promatrani pokusi upravljivosti u ovom radu su pokus kružnice okretanja, Z-pokus i početna sposobnost okretanja.

Spomenuta je matematička teorijska osnova za predviđanje značajki upravljivosti te se predstavljaju pojedini elementi koji utječu na gibanje broda sa tri stupnja slobode.

Značajke upravljivosti ispitane su za potpuno nakrcan brod nosivosti 100.000 tona i brod u stanju balasta. Također ovisno o ishodu dobivenih rezultata razmatra se mogućnost poboljšanja značajki upravljivosti u preliminarnoj fazi projektiranja.

4.1. Stabilnost ravnog kursa

Tijelo se smatra u stanju stabilne ravnoteže, bilo da je u mirovanju ili gibanju, kada se nakon prestanka trenutne vanjske sile ili momenta nastoji vratiti u prvobitno stanje ravnoteže. Djelovanjem vanjske sile na brod koji se giba po pravcu ustaljenom brzinom moguće je opisati stabilnost gibanja broda. Sposobnost održavanja zadanog smjera ili po mogućnosti zadane putanje može se klasificirati pomoću sljedeća tri različita stupnja stabilnosti održavanja kursa [7]:

- Stabilnost ravnog kursa ili dinamička stabilnost opisuje gibanje za brod koji je nakon prestanka djelovanja poremećaja zadržao značajke ravnog kursa koje je imao prije djelovanja poremećaja, ali se promijenio smjer plovidbe. Kormilo je bilo nepomično tokom djelovanja vanjskog poremećaja.
- Za stabilnost gibanja po pravcu, nakon prestanka djelovanja poremećaja brod je zadržao ne samo značajke ravnog kursa koje je imao prije djelovanja poremećaja, već i smjer plovidbe. Na kormilo je utjecao kormilar ili autopilot.
- 3. Stabilnost položaja ili gibanja po putanji opisuje brod koji se nakon prestanka djelovanja poremećaja vraća u prethodnu putanju, odnosno brod zadržava ne samo isti kurs već plovi po istom pravcu. Na kormilo je utjecao kormilar ili autopilot

Za optimalno održavanje kursa brod bi se trebao vratiti na svoj prvobitni kurs nakon prestanka djelovanja poremećaja bez posredovanja kormilara. Različite vrste stabilnosti gibanja brodova razvrstavaju se prema značajkama njihovog početnog stanja ravnoteže koje se zadržavaju u završnim putanjama težišta brodova.

Slika 4.1 prikazuje brod s ustaljenom brzinom koji se gibao po pravcu prije djelovanja vanjskog poremećaja.

Slika 4.1. Stabilnosti gibanja broda

4.2. Pokusi upravljivosti

Ispitivanja upravljivosti broda su neophodna kako bi se provjerila sposobnost broda za uspješnim manevriranjem u različitim uvjetima. Takva razmatranja obično se provode u ranoj fazi projektiranja broda te prije primopredaje broda.

Cilj ispitivanja je provjeriti sposobnost upravljanja broda u različitim situacijama, uključujući promjene brzine, smjera, okretanja i zaustavljanja.

Standardni pokusi se moraju obaviti bez primjene ikakvih pomagala koja nisu trajno i brzo dostupna kod normalnog korištenja broda.

Tijekom ispitivanja, brod se obično testira u različitim uvjetima, uključujući različite brzine vjetra i struje, kako bi se osigurala njegova stabilnost i sigurnost.

Ispitivanja upravljivosti su važna jer omogućuju da se identificiraju potencijalni problemi u ranoj fazi i da se poduzmu potrebne mjere za poboljšanje manevarskih sposobnosti broda. Također omogućuju da se brod optimalno prilagodi različitim uvjetima i situacijama, što značajno doprinosi sigurnosti plovidbe.

4.2.1. Kriteriji i norme za upravljivost broda

Različita brodogradilišta i organizacije razvile su svoje testove upravljivosti, budući da ne postoji međunarodni standard za izvođenje takvih testova. Ovi testovi se temelje na iskustvu i naporima organizacija kao što su:

- IMO (International Maritime Organisation)
- ITTC (International Towing Tank Conference)

Sigurnost i upravljivost broda su usko povezane te se upravljivost mora uzeti u obzir već tijekom faze projektiranja. Kriteriji upravljivosti trebaju biti jednostavni, relevantni, razumljivi, mjerljivi i praktični. Norme Međunarodne pomorske organizacije (*International Maritime Organization*) za upravljivost opisuju kvalitetu i sposobnost postupanja s brodom te se smatraju od izravnog interesa u pomorstvu.

Ta svojstva se mogu predvidjeti u projektnoj fazi te izmjeriti ili procijeniti tijekom probnih vožnji. IMO je poboljšao kriterije za sposobnost početnog okretanja, prekida zaoštravanja, održavanja kursa i zaustavljanja. Te su norme prihvaćene pod IMO Rezolucijom MSC (*Maritime Safety Commitee*).137(76) iz 2002 [8].

Rezolucija [8] se temelji na činjenici da je upravljivost broda ključna za sigurnost plovidbe te da se može procijeniti na temelju konvencionalnih pokusa upravljivosti. Postoje dvije metode kojima se može dokazati sukladnost s normama: modelska ispitivanja i/ili računalne simulacije s matematičkim modelima, te pokusi sa stvarnim brodom. U oba slučaja, ako se utvrdi da brod značajno odstupa od zahtjeva u normama, mogu se zahtijevati dopunske radnje.

Norme su temeljene na tipičnim svojstvima upravljivosti koje se mogu vrlo dobro predvidjeti u projektnoj fazi te izmjeriti ili procijeniti iz prihvaćenih pokusa upravljivosti tijekom probnih vožnji.

Propisi [8] se primjenjuju na brodove s duljinom jednakom ili većom od 100 metara, bez obzira na način propulzije i vrstu kormila, kao i na tankere za kemikalije i plin, bez obzira na duljinu. Ako se na ove brodove izvrše značajne preinake ili izmjene koje mogu utjecati na njihovu upravljivost, potrebno je provjeriti daljnju usklađenost s propisima. Ako se na druge brodove koji nisu bili podložni propisima izvrše značajne preinake ili izmjene, ali nadležno tijelo smatra da se radi o novom brodu, tada se propisi primjenjuju. Međutim, ako nadležno tijelo utvrdi da bi izmjene mogle utjecati na upravljivost broda, potrebno je dokazati da te karakteristike ne dovode do pogoršanja upravljivosti broda. Propisi se ne primjenjuju na brza plovila.

Pri izvođenju pokusa upravljivosti postoje određeni nazivi i definicije koje se koriste radi lakše evaluacije manevarskih sposobnosti. Potrebno je poznavati i razlikovati sljedeće nazive [7]:

- Napredovanje udaljenost koju po pravcu prvobitnog kursa prijeđe sredina
 - broda od položaja kada je izdana zapovijed za kut otklona kormila do položaja kada je postignuta promjena kursa od 90° u odnosu na prvobitni kurs.
- Taktički promjer udaljenost koju prijeđe sredina broda od položaja kada je izdana zapovijed za otklon kormila do položaja kada je postignuta promjena kursa za 180 stupnjeva.

 Doplov - prevaljeni put mjeren duž putanje sredine broda od položaja kada je izdana zapovijed "punom snagom natrag" do trenutka kada se brod zaustavi u vodi.

4.2.2. Pokus kružnice okretanja

Pokus kružnice okretanja izvodi se za kut otklona kormila u lijevo i desno. Kut otklona kormila δ_{R} iznosi 35 stupnjeva jer iznad te vrijednosti kormilo gubi svojstva stvaranja uzgona.

Pokus se izvodi za brod u stanju punog opterećenja odnosno, za potpuno nakrcan brod i u stanju balasta. Slika 4.2. [7] prikazuje ispitivanje pokusa kružnice okretanja:

Slika 4.2. Pokus kružnice okretanja [7]

Pokus se izvodi na sljedeći način [8]:

1. Postići konstantnu brzinu broda prema planu izvođenja probne vožnje te uspostaviti stalan kurs broda. Pri dolasku na predviđenu poziciju do mjesta predviđenog za izvođenje ispitivanja započinje bilježenje podataka te nije više dozvoljeno mijenjanje brzine broda.

2. Proces kormilarenja izvodi se s kutom otklona kormila δ_R od 35 stupnjeva. Kormilo se okreće u lijevo za pokus kružnice okretanja na lijevu stranu te isto tako se ponavlja za otklon kormila u desno. Otklon kormila se izvodi od 0 stupnjeva sve do 35 stupnjeva gdje je prosječna brzina otklona kormila 2,5 sekunde po stupnju. Nakon otklona kormila nije dozvoljeno daljnje mijenjanje kuta.

3. Ispitivanje završava u trenutku promjene kursa za 540 do 720 stupnjeva, dakle nakon 2 puna kruga. Po završetku ispitivanja brod se vraća na zadani kurs, odnosno ponovno uspostavlja pravocrtnu putanju. Te se priprema za izvođenje pokusa za otklon kuta kormila u suprotnu stranu.

Kod kružnice okretanja broda napredovanje ne bi smjelo premašivati 4,5 dužina broda (L) i taktički promjer ne bi smio premašivati 5 dužina broda [8] kako je prikazano na slici 4.3.

Slika 4.3. Kriteriji pokusa kružnice okretanja

4.2.3. Z-pokus

Prema zahtjevima IMO-a [8], Z-pokus se mora izvesti za kuteve otklona kormila od ± 10 stupnjeva i ± 20 stupnjeva. Općenito za velike brodove punih formi, test se mora izvesti i za kuteve od ± 5 stupnjeva i ± 15 stupnjeva. Kutevi otklona kormila izračunavaju se u odnosu na ravnotežni kut, koji je srednji kut otklona kormila pri kojem brod održava pravocrtnu putanju, a putanja se određuje pomoću GPS-a [8].

Pokus počinje s otklonom kormila od 10° udesno, nakon čega se kormilo okreće na kut od 10° ulijevo kada se kurs broda promijeni za 10° u odnosu na prvotni kurs. Pokus se ponavlja sve dok brod ne presiječe osnovni kurs pet puta, te se bilježe podaci za svaki pokus.

Krivulja putanje broda izrađuje se za svaki pokus, zajedno s dijagramima kuta otklona kormila i kursa broda, kao i promjenom kursa, brzinom broda i brzinom vrtnje vijka u funkciji vremena. U tabličnom prikazu rezultata navode se vrijeme za svaki otklon kormila, promjena kursa, nulti kurs te vrijednosti kutnog premašaja, premašenog vremena i vremenskih perioda.

Slika 4.4. prikazuje rezultate dobivene mjerenjem pri izvođenju Z-pokusa:

Slika 4.4. Rezultati Z-Pokusa [7]

Pokus se izvodi na sljedeći način:

1. Dolaskom na lokaciju za ispitivanje, potrebno je uspostaviti konstantnu brzinu i kurs broda prema planu izvođenja. Nakon što se započne ispitivanje, brzinu broda više nije dozvoljeno mijenjati, a započinje i bilježenje podataka.

2. Kormilar okreće kormilo od 0 do 10 stupnjeva udesno i drži ga pod tim kutem.

3. Kada se brod približi promjeni kursa od 10 stupnjeva udesno, kormilar počinje mijenjati kurs. U trenutku kada se brod okrene za 10 stupnjeva udesno, kormilo treba skrenuti za 10 stupnjeva ulijevo i držati ga pod tim kutem. Kormilo prelazi kut od 20 stupnjeva.

4. Zbog inercije, brod će nastaviti skretati udesno i povećavati kut promjene smjera. To može dovesti do velike razlike između stvarnog i zadanog kuta smjera. Razlika se izražava kao kut premašaja ψ_{os} . Kada brod dostigne zadani kurs, treba ponoviti korak 3, ali ovaj put mijenjajući smjer promjene kursa iz lijeva u desno.

5. Kada se postigne početni kurs test se prekida, a brod se vraća na pravocrtnu putanju [8].

Pri izvođenju Z-pokusa sa slike 3.4. mjeri se sljedeće:

a) Vrijeme *t* do drugog izvršavanja promjene otklona kormila, To je vrijednost vremenskog kašnjenja broda, dakle vrijeme potrebno da brod prihvati zadanu promjenu smjera.

b) Kut premašaja ψ_{os} . Kut premašaja je razlika maksimalnog kuta zaošijanja ψ i kuta promjene smjera napredovanja koji je u tom trenutku jednak kutu otklona kormila, odnosno za $\psi = \delta$.

Budući da krivulja ima više maksimuma, razlikuju se prvi, drugi i treći kut premašaja. Prvi kut premašaja je dodatno odstupanje kursa koje se pojavljuje u Z-pokusu nakon drugog izvršenja. Drugi kut premašaja je dodatno odstupanje kursa kormila koje se pojavljuje u Z-pokusu nakon trećeg izvršenja.

• Kriterij za prvi kut premašaja kod Z-pokusa 10°/10° [8]:

$$10^{\circ} \quad ako \quad \frac{L}{v} \leq 10 \, s,$$

$$[5+0.5\cdot\left(\frac{L}{v}\right)]^{\circ} \quad ako \quad 10 \, s < \frac{L}{v} < 30 \, s, \quad (4.1)$$

$$20^{\circ} \quad ako \quad \frac{L}{v} \geq 30 \, s.$$

• Kriterij za drugi kut premašaja kod Z-pokusa 10°/10° [8]:

$$25^{\circ} \qquad ako \qquad \frac{L}{v} \leq 10 \ s,$$

$$[17,5+0.75\cdot\left(\frac{L}{v}\right)]^{\circ} \quad ako \qquad 10 \ s < \frac{L}{v} < 30 \ s, \qquad (4.2)$$

$$40^{\circ} \qquad ako \qquad \frac{L}{v} \geq 30 \ s.$$

4.2.4. Početna sposobnost okretanja

Početna sposobnost okretanja broda utvrđuje se na temelju početnog dijela Z-pokusa. Kod otklanjanja kormila za 10° u lijevo/desno, brod ne bi smio prijeći više od 2,5 dužina broda *L*, od trenutka kada se kurs broda promijenio za 10° u odnosu na prvobitni kurs [8]. Slika 4.5. prikazuje početak Z-pokusa te kriterij koji se mora zadovoljiti pokusom početne sposobnosti okretanja.

Slika 4.5. Početna sposobnost okretanja

4.3. Predviđanje značajki upravljivosti broda za prijevoz rasutog tereta

Ovo poglavlje sastoji se iz promatranja značajki upravljivosti za usvojenu formu broda, kormilo i brodski vijak. Prikazati će se jednadžbe gibanja u horizontalnoj ravnini i zamjena za njihovo rješavanje pomoću empirijskih formula. Provjeriti će se značajke upravljivosti za pokus kružnice okretanja, Z-pokus i pokus početne sposobnosti okretanja. Svaki pokus biti će izveden u stanju balasta i u potpuno nakrcanom stanju odnosno, u stanju zadane nosivosti od 100.000 tona.

4.3.1. Jednadžbe gibanja u horizontalnoj ravnini

Iako brod, kao i bilo koje drugo tijelo, ima šest stupnjeva slobode, razmatranje samo tri od njih obično je dovoljno za rješavanje većine problema upravljivosti. Gibanja su pretpostavljena u horizontalnoj ravnini, tako da se razmatraju samo zalijetanje, zanašanje i zaošijanje [10]:

$$m[\dot{u} - vr - x_{CG}r^{2}] = X, \qquad (4.3)$$

$$m[\dot{v} + ur + x_{CG}\dot{r}] = Y, \qquad (4.4)$$

$$I_{Z}\dot{r} + mx_{CG}[\dot{v} + ur] = N, \qquad (4.5)$$

gdje su:

- X zbroj svih sila koje djeluju na trup u smjeru X osi (zalijetanje),
- Y zbroj svih sila koje djeluju na trup u smjeru Y osi (zanašanje),
- N zbroj svih momenta koji djeluju na trupu u vodoravnoj ravnini (zaošijanje),
- u aksijalna komponenta brzine broda,
- \dot{u} aksijalna komponenta ubrzanja broda,
- v poprečna komponenta brzine broda,
- \dot{v} poprečna komponenta ubrzanja broda,
- r kutna brzina zaošijanja broda,
- \dot{r} kutno ubrzanje zaošijanja,
- m masa plovila,
- I_Z masa inercije plovila u odnosu na os Z.

Slika 4.6 prikazuje stupnjeve slobode koji će se razmatrati prilikom ispitivanja značajki upravljivosti u ovome radu. Prikazana forma generirana je pomoću prethodno usvojenih linija broda.

Slika 4.6. Stupnjevi slobode broda za ispitivanje značajki upravljivosti

Primjenom drugog Newtonovog zakona, u koordinatnom sustavu fiksiranom za brod, dobivaju se jednadžbe 4.3-4.5. Simboli na desnoj strani, *X*, *Y i N*, predstavljaju zbroj sila ili momenata koji djeluju u odgovarajućem smjeru. Na lijevoj strani jednadžbe, izražava se inercija, koja je u osnovi produkt mase ili momenta inercije u slučaju zaošijanja i ubrzanja [10].

Stvaranje sile hidrodinamičkog uzgona važno je za upravljanje i manevriranje plovila. Budući da hidrodinamičke sile s desne strane izraza 4.3-4.5 ovise o brzini i ubrzanjima i prikazuju se na sljedeći način:

$$X = F_X(u, v, \dot{v}, \dot{u}, r, \dot{r}),$$
(4.6)

$$Y = F_Y(u, v, \dot{v}, \dot{u}, r, \dot{r}),$$
 (4.7)

$$N = F_{\psi} (u, v, \dot{v}, \dot{u}, r, \dot{r}), \qquad (4.8)$$

gdje su:

 F_X , F_Y – komponente hidrodinamičke sile,

 F_{ψ} – hidrodinamički moment u horizontalnoj ravnini.

Spomenute linearne jednadžbe gibanja imaju ograničenu primjenu. Može ih se koristiti za predviđanje značajki upravljivosti, ako je plovilo stabilno i giba se po pravcu. Ako je putanja preuska, rezultat neće biti dovoljno precizan jer doprinosi nelinearnih članova postaju značajni i više se ne mogu ignorirati. Ako se plovilo ne giba stabilno po pravcu, linearni sustav jednadžbi se uopće ne može primijeniti.
Nelinearan sustav se koristi za opisivanje gibanja broda u horizontalnoj ravnini jer hidrodinamičke sile i momenti koji djeluju na brod ovise o kretanju broda te su nelinearni u prirodi. Hidrodinamičke sile i momenti su funkcija brzine, ubrzanja i kutne brzine broda. Linearne jednadžbe gibanja vrijede samo za male poremećaje i pretpostavljaju da su sile i momenti linearno povezani s kretanjem broda. Međutim, tijekom upravljanja brodom, sile i momenti mogu postati značajni i ne mogu se zanemariti. Nelinearni članovi u jednadžbama gibanja uzimaju u obzir ove efekte i pružaju točniji prikaz ponašanja broda tijekom kretanja. Stoga je nelinearni sustav potreban za točnu predikciju i analizu testova upravljivosti broda s tri stupnja slobode. Postoje brojne formulacije nelinearnih jednadžbi, ali najčešće su kubna i kvadratna nelinearnost [10].

Tablica 4.1. prikazuje nelinearne izraze za komponente hidrodinamičkih sila i momenata.

$\begin{split} m \Big[\dot{u} - vr - x_{cg} r^2 \Big] &= \frac{\rho}{2} L^3 X'_{\dot{u}} \dot{u} + \\ &+ \frac{\rho}{2} L^2 u^2 \Big[a_i + b_i \eta + c_i \eta^2 \Big] + \\ &+ \frac{\rho}{2} L^4 X'_{ir} r^2 + \frac{\rho}{2} L^2 X'_{iv} v^2 + \frac{\rho}{2} L^3 X'_{ir} vr + \\ &+ \frac{\rho}{2} L^2 X'_{iv\eta} v^2 (\eta - 1) + \\ &+ \frac{\rho}{2} L^2 u^2 \Big(X'_{\delta\delta\delta} \delta^2_R + X_{\delta\delta\eta\eta} \delta^2_R \eta^2 \Big) \end{split}$	Inercijske sile Ravnoteža između sile poriva i ukupnog otpora Otpor radi skretanja prilikom gibanja Korekcija kod točke vlastitog pogona Sila na kormilu			
$\begin{split} m \Big[\dot{v} + ur + x_{cg} \dot{r} \Big] &= \frac{\rho}{2} L^3 Y'_v \dot{v} + \frac{\rho}{2} L^4 Y'_r \dot{r} + \\ &+ \frac{\rho}{2} L^2 u Y'_v v + \frac{\rho}{2} L^3 u Y'_r r + \frac{\rho}{2} L^2 Y'_{v v } v v + \frac{\rho}{2} L^3 Y'_{v r } v r + \\ &+ \left(\frac{\rho}{2} L^2 u Y'_v \eta v + \frac{\rho}{2} L^3 u Y'_r \eta r + \frac{\rho}{2} L^2 Y'_{v v } v v \right) \cdot (\eta - 1) + \\ &+ \frac{\rho}{2} L^2 u^2 Y'_{\phi} \delta_R + \frac{\rho}{2} L^3 u Y'_{\delta r } \delta_R r + \frac{\rho}{2} L^2 u^2 Y'_{\delta \eta } \delta_R (\eta - 1) + \\ &+ \frac{\rho}{2} L^2 u^2 Y'_r + \frac{\rho}{2} L^2 u^2 Y'_{e \eta } (\eta - 1) \end{split}$	Inercijske sile r + Sila uzgona na trupu broda)+ Korekcija kod točke vlastitog pogona (r-1)+ Sil a na kormilu			
$\begin{split} I_{z}\dot{r} + mx_{cg} \left[\dot{v} + ur \right] &= \frac{\rho}{2} L^{5} N'_{t} \dot{r} + \frac{\rho}{2} L^{4} N'_{v} \dot{v} + \\ &+ \frac{\rho}{2} L^{4} u N'_{r} r + \frac{\rho}{2} L^{3} u N'_{v} v + \\ &+ \frac{\rho}{2} L^{5} N'_{r r } r \mid r \mid + \frac{\rho}{2} L^{3} N'_{v v } v \mid v \mid + \frac{\rho}{2} L^{4} N'_{v r } v \mid r \mid + \\ &+ \left(\frac{\rho}{2} L^{4} u N'_{r\eta} r + \frac{\rho}{2} L^{3} u N_{v\eta} v + \frac{\rho}{2} L^{3} N'_{v v \eta} v \mid v \mid \right) \cdot (\eta - 1) + \\ &+ \frac{\rho}{2} L^{3} u^{2} N'_{\delta} \delta_{\mathcal{R}} + \frac{\rho}{2} L^{4} u N'_{\delta r } \delta_{\mathcal{R}} \mid r \mid + \frac{\rho}{2} L^{3} u^{2} N'_{\delta \eta} \delta_{\mathcal{R}} (\eta - 1) + \\ &+ \frac{\rho}{2} L^{3} u^{2} N'_{*} + \frac{\rho}{2} L^{3} u^{2} N'_{*\eta} (\eta - 1) \end{split}$	Momenti inercije Moment linearne i nelinearne sile uzgona na trup broda Korekcija kod točke vlastitog pogona Moment kormila Moment bočne sile brodskog vijka			

Tablica 4.1. Sile i momenti za brod s tri stupnja slobode u nelinearnom obliku [10]

4.3.2. Empirijski pristup

Zadatak ovog rada je ispitivanje značajki upravljivosti za usvojenu formu broda. Za ispitivanje značajki upravljivosti za zadanu nosivost taj dio će se pokriti uporabom softvera MANSIM [11]. Programom MANSIM hidrodinamičke sile i moment, hidrostatska svojstva brodova i kinematički parametri su dovedeni u bezdimenzijski oblik. Softver se koristi unosom podataka vezanih za usvojeni brod. Podaci se dijele u četiri skupine odnosno, glavni podaci vezani za brod, brodski vijak, kormilo te hidrodinamičke komponente koje djeluju na brodski trup.

Svi hidrodinamički koeficijenti spomenuti u ovom poglavlju su u bezdimenzijskom obliku. Radi jednostavnosti u popisu oznaka i kratica na kraju rada nalazi se popis svih koeficijenata spomenutih u ovome radu. U ovome poglavlju biti će prikazane empirijske jednadžbe dok će njihova rješenja biti prikazana u sljedećim potpoglavljima, ovisno o stanju krcanja i o pokusu upravljivosti.

Hidrodinamički koeficijenti mogu se radi jednostavnosti pisati u bezdimenzijskom obliku pomoću formula u tablici 4.2:

PARAMETAR	SIMBOL	BEZDIMENZIJSKA PRETVORBA
Sila	Χ, Υ	$0.5\rho U^2 LT$
Moment	Ν	$0.5\rho U^2 L^2 T$
Brzina	<i>u, v</i>	U
Kutna brzina	r	U/L
Masa	m, m_x, m_y	$0.5\rho L^2T$
Moment inercije	I_z, J_z	$0.5\rho L^4T$

Tablica 4.2. Bezdimenzijski oblik hidrodinamičkih koeficijenata [11]

Sve dane formule temelje se na glavnim karakteristikama broda kao što su; m, L, B, T=d i C_B . Za početak potrebno je odrediti dodatne mase i moment inercije radi ubrzanja u smjerovima gibanja plovila. Tablica 4.3 prikazuje empirijske formule za izračun masa i momenta inercije:

REFERENCA	EMPIRIJSKA FORMULA
Clark et. al. (1983)	$m_x = m * 0,05$
Zhou et. al. (1983)	$m_Y = m \left[0,882 - 0.54C_B \left(1 - 1.6\frac{d}{B} \right) - 0.156(1 - 0.673C_B) \frac{L}{B} + 0.826\frac{d}{B}\frac{L}{B} \left(1 - 0.678\frac{d}{B} \right) - 0.638C_B\frac{d}{B}\frac{L}{B} \left(1 - 0.669\frac{d}{B} \right) \right]$
Zhou et. al. (1983)	$J_Z = m \left[\frac{1}{100} \left(33 - 76,85C_B (1 - 0,784C_B) + 3,43\frac{L}{B} (1 - 0,63C_B) \right) \right]^2$

Tablica 4.3. Empirijske formule za mase i moment inercije [11]

Podatke geometrijskih karakteristika za kormilo i brodski vijak usvojeni su u prijašnjim poglavljima. Preostaje usvojiti hidrodinamičke komponente.

Za brodski vijak hidrodinamičke komponente su koeficijenti trupa i propulzije iz [1] što je usvojeno u tablici 3.11.

Za kormilo moguće je dobiti hidrodinamičke koeficijente koristeći jednadžbe iz tablice 4.4 [11].

REFERENCA	EMPIRIJSKA FORMULA
Yoshimura and Masumoto (2012)	$a_H = 3{,}6C_B \frac{B}{L}$
Aoki et. al. (2006)	$x'_{H} = -0,45$
Lee et. al. (1998)	$t_R = 0.45 - 0.28C_B$
Kijima (1990)	$\varepsilon = -156, 2\left(C_B \frac{B}{L}\right)^2 + 41, 6\left(C_B \frac{B}{L}\right) - 1,76$
Yoshimura and Ma (2003)	$\kappa = 0.55 - 0.8C_B B/L$
Yoshimura and Ma (2003)	$l'_R = 1.7C_B \frac{B}{L} - 1.2$
Lee and Shin	$\gamma^{+} = 23,708 - 83,84C_{B} + 173,72 \left(\frac{2d}{L}\right) + 71,64C_{B}^{2} + 157 \left(\frac{2d}{L}\right)^{2} - 261,11C_{B}\left(\frac{2d}{L}\right)$
(1998)	$\gamma^{-} = 6,8736 - 16,77C_{B} + 3,5687\left(\frac{2d}{L}\right) + 4,68C_{B}^{2} - 253,14\left(\frac{2d}{L}\right)^{2} + 74,83C_{B}\left(\frac{2d}{L}\right)$

Tablica 4.4. Koeficijenti za brodski vijak [11]

Hidrodinamičke komponente sila i momenta za brodski trup moguće je dobiti empirijskim formulama koje su dane u [11] i prikazane su tablicama 4.5-4.7:

Tablica 4.5. Empirijske formule za hidrodinamičke komponente u slučaju zalijetanja broda [11]

REFERENCA	EMPIRIJSKA FORMULA
Yoshimura and Masumoto (2012)	$X_{VV} = 1,15\frac{C_B}{L/B} - 0,18$
Yoshimura and Masumoto (2012)	$X_{VVVV} = -6,68\frac{C_B}{L/B} + 1,1$
Yoshimura and Masumoto (2012)	$X_{rr} = -0.085 \frac{C_B}{L/B} + 0.008 - x_G m_y$
Yoshimura and Masumoto (2012)	$X_{vr} = m_y - 1.91 \frac{C_B}{L/B} + 0.08$

REFERENCA	EMPIRIJSKA FORMULA
Yoshimura and Masumoto (2012)	$Y_{\nu} = -\left(0.5\pi \frac{2d}{L} + 1.4\frac{C_B}{L/B}\right)$
Yoshimura and Masumoto (2012)	$Y_{vvv} = -0,185 \frac{L}{B} + 0,48$
Lee et. al. (1998)	$Y_r = (m + m_x) - 1.5C_B \frac{B}{L}$
Lee et. al. (1998)	$Y_{rrr} = \left[-0.0233C_B \frac{d}{B} + 0.0063\right] \frac{L}{d}$
Yoshimura and Masumoto (2012)	$Y_{vrr} = -\left[0,26(1-C_B)\frac{L}{B} + 0,11\right]$
Lee et. al. (1998)	$Y_{vvr} = \left(0,1234C_B \frac{d}{B} - 0,001452\right) \frac{L}{d}$

Tablica 4.6. Empirijske formule za hidrodinamičke komponente u slučaju zanašanja broda [11]

Tablica 4.7. Empirijske formule za hidrodinamičke komponente u slučaju zaošijanja broda [11]

REFERENCA	EMPIRIJSKA FORMULA
Ankudinov (1987)	$N_{\nu} = \left[-\pi \left(\frac{d}{L} \right)^2 \left(0.75 - 0.04 \frac{C_B B}{\pi d} \right) \right] \frac{L}{d}$
Yoshimura and Masumoto (2012)	$N_{vvv} = -[-0,69C_B + 0,66]$
Lee et. al. (1998)	$N_r = \left[-\pi \left(\frac{d}{L}\right)^2 \left(0,25 + 0,039\frac{B}{d} - 0,56\frac{B}{L}\right) \right] \frac{L}{d}$
Yoshimura and Masumoto (2012)	$N_{rrr} = \left[\frac{0.25C_B}{L/B}\right] - 0.056$
Yoshimura and Masumoto (2012)	$N_{vrr} = -0,075(1 - C_B)\frac{L}{B} - 0,098$
Kijima et. al. (1990)	$N_{vvr} = -\left[57,5\left(C_B\frac{B}{L}\right)^2 - 18,4\left(C_B\frac{B}{L}\right) + 1,6\right]$

Slijedi ispitivanje značajki upravljivosti za usvojenu formu broda, kormilo i brodski vijak.

4.4. Procjena upravljivosti za potpuno nakrcan brod nosivosti 100.000 tona

Ispitivanje značajki upravljivosti izvoditi će se uz pomoć softvera MANSIM [11] i empirijskih formula spomenutih u poglavlju 4.3. Pretpostaviti će se da je uzdužni položaj težišta sustava broda jednak uzdužnom položaju težišta istisnine broda ($L_{CG} = L_{CB}$). Iz računalnog modela forme broda moguće je očitati vrijednost uzdužnog položaja težišta istisnine, što je prikazano na slici 4.7.

Slika 4.7. Uzdužni položaj težišta istisnine broda, L_{CB}

Iz modela je usvojen uzdužni položaj težišta sustava L_{CG} , (za potpuno nakrcani brod i maksimalni dopušteni gaz od 12,09 metara) koji iznosi 137,09 metara od krmenog perpendikulara odnosno, 7,121 posto od glavnog rebra u smjeru pramca. Tablica 4.8 prikazuje konačne usvojene vrijednosti za ispitivanje značajki upravljivosti potpuno nakrcanog broda:

LPP = L	240	m
В	38,710	m
D	21	m
Т	12,09	m
LE	42,480	m
L R	100,416	m
Св	0,840	-
LS	16000	t
DW	100000	t
V	7,717	m/s
Vs	15	čvor
100	137,09	m
LCG	7,083	%
	LPP = L B D T L E L R C B LS DW V Vs LCG	LPP = L 240 B 38,710 D 21 T 12,09 L E 42,480 L R 100,416 C B 0,840 LS 16000 DW 100000 V 7,717 Vs 15 LCG 137,09 7,083 100000

Tablica 4.8. Podaci brodske forme

4.4.1. Pokus kružnice okretanja za potpuno nakrcan brod nosivosti 100.000 tona

Ispitivanje značajki za pokus kružnice okretanja, za potpuno nakrcan brod izvodi se pomoću dosad usvojenih geometrijskih karakteristika forme, kormila i brodskog vijka te pomoću empirijskih formula radi dobivanja hidrodinamičkih koeficijenata. Geometrijske karakteristike forme broda nalaze se u tablici 4.8. Tablica 4.9 prikazuje sve potrebne podatke za ispitivanje značajki upravljivosti kod pokusa kružnice okretanja s kutom otklona kormila $\delta_{R} = 35$ stupnja i brzinom broda V = 15 čvorova. Slika 4.8 prikazuje simulaciju pokusa kružnice okretanja.

	m	0,303	m_{X}'	0,015	m_{Y}'	0,215	Jz'	0,013
KOESIOUSNITI	$X_{\nu\nu}'$	-0,024	Yv'	-0,359	$Y_{vrr'}$	-0,368	Nr'	-0,047
KOEFICIJENTI	X _{vvvv} '	0,195	Y _{vvv} '	-0,667	Y _{vvr} '	0,616	N _{rrr} '	-0,022
BRODSKOG TROPA	X _{rr} '	0,011	Y_r'	0,115	N _v '	-0,121	N _{vrr} '	0,022
	X _{vr} '	0,037	Y _{rrr} '	-0,004	N _{vvv} '	-0,080	N _{vvr} '	-0,163
KOEFICIJENTI	HR (m)	6,400	λ	1,800	x_{H}'	-0,450	l_R'	-0,970
KORMILA	AR (m ²)	161,528	ан	0,374	3	1,009	+γ	0,742
	$x_{R'}(m)$	-120,000	tr	0,390	κ	0,452	- 7	0,305
KOEFICIJENTI	Dp (m)	7,400	V p(čvora)	15,000	A 0 (m ²)	43,008	tp	0,215
BRODSKOG VIJKA	Ст	0 ,003	np (s ⁻¹)	7,717	x _P (m)	-110,000	Wp	0,340

Tablica 4.9. Podaci za ispitivanje pokusa kružnice okretanja potpuno nakrcanog broda

Slika 4.8. Simulacija pokusa kružnice okretanja za potpuno nakrcan brod

Sa slike 4.8 vidi se ishod simulacije pokusa kružnice okretanja koja je dobivena korištenjem podataka brodske forme, kormila i brodskog vijka iz tablice 4.8 i 4.9. Obzirom na pretpostavku o simetričnosti rezultata, promatrati će se otklon kormila samo u jednu stranu (desno).

Slika 4.8 prikazuje potrebne podatke kako bi se ustanovilo da li očitane značajke zadovoljavaju kriterije iz IMO normi za upravljivost broda [8].

Tablica 4.10 prikazuje kako su potrebne norme i zahtjevi za promatrani brod dužine *L*, od 240 metara u potpuno nakrcanom stanju uspješno zadovoljene.

 ZAHTJEVI
 OČITANO

 NAPREDOVANJE
 <4,5 L</td>
 1080
 m
 621,78
 m

 TAKTIČKI PROMJER
 <5 L</td>
 1200
 m
 595,60
 m

Tablica 4.10. Očitanja pokusa kružnice okretanja za potpuno nakrcani brod

4.4.2. Z-pokus (10-10) za potpuno nakrcan brod

Ispitivanje značajki za Z-pokus (10-10), za potpuno nakrcan brod izvodi se pomoću dosad usvojenih geometrijskih karakteristika forme, kormila i vijka te pomoću empirijskih formula radi dobivanja hidrodinamičkih koeficijenata.

Geometrijske karakteristike brodske forme nalaze se u tablici 4.8. Tablica 4.11 prikazuje sve potrebne podatke za ispitivanje značajki upravljivosti Z-pokusa (10-10) dok slika 4.9 prikazuje simulaciju pokusa:

	m	0,303	m_{X}'	0,015	m_{Y}'	0,215	Jz'	0,013
	X _{vv} '	-0,024	Y _v '	-0,359	Y _{vrr} '	-0,368	Nr'	-0,047
KOEFICIJENTI	X _{vvvv} '	0,195	Y _{vvv} '	-0,667	Y _{vvr} '	0,616	N _{rrr} '	-0,022
BRODSKOG IKUPA	X _{rr} '	0,011	Y_r'	0,115	N _v '	-0,121	N _{vrr} '	0,022
	X _{vr} '	0,037	Y _{rrr} '	-0,004	N _{vvv} '	-0,080	N _{vvr} '	-0,163
KOEFICIJENTI	HR (m)	6,400	λ	1,800	x_{H}'	-0,450	l _R '	-0,970
KORMILA	$A R (m^2)$	161,528	ан	0,374	3	1,009	+γ	0,742
	$x_{R'}(m)$	-120,000	tr	0,390	κ	0,452	- 7	0,305
KOEFICIJENTI	Dp (m)	7,400	V p(čvora)	15,000	A o (m ²)	43,008	tp	0,215
BRODSKOG VIJKA	Ст	0 ,003	$n_{P}(s^{-1})$	7,717	x _P (m)	-110,000	Wp	0,340

Tablica 4.11. Podaci za ispitivanje Z-pokusa (10-10) potpuno nakrcanog broda

Slika 4.9 prikazuje simulaciju Z-pokusa (10-10) s korištenim podacima iz tablice 4.11:

Slika 4.9. Simulacija Z-pokusa (10-10) za potpuno nakrcan brod

Tablica 4.12 prikazuje očitane vrijednosti prvog i drugog kuta premašaja kod Z-pokusa (10-10) za brod u potpuno nakrcanom stanju:

Tablica 4.12. Očitani kutevi premašaja Z-pokusa (10-10) za potpuno nakrcani brod

KUT PREMA	ZAHTJEVI	OČITANO		
PRVI KUT PREMAŠAJA, ψ 1	20 [°]	2,848	stupanj	
DRUGI KUT PREMAŠAJA, ψ_2	za L/V \geq 30 s	40 °	5,047	stupanj

Zahtjevi za Z-pokus (10-10) iskazani izrazima 4.1-4.2, radi jednostavnosti mogu se prikazati grafički. Vrijednost L/V iznosi 31,1 sekunde, gdje je L jednako 240 metara a V je jednak brzini napredovanja broda od 15 čvorova odnosno, 7,717 metara po sekundi.

Slika 4.9 prikazuje kako su potrebni zahtjevi iz izraza 4.1-4.2 za simulirani Z-pokus (10-10) broda dužine *L*, u potpuno nakrcanom stanju, uspješno zadovoljeni.

Slika 4.10. Grafički prikaz rezultata Z-pokusa (10-10) za brod u potpuno nakrcanom stanju

4.4.3. Z-pokus (20-20) za potpuno nakrcan brod

Ispitivanje značajki za Z-pokus (20-20), za potpuno nakrcan brod izvodi se pomoću dosad usvojenih geometrijskih karakteristika forme, kormila i vijka te pomoću empirijskih formula. Geometrijske karakteristike brodske forme nalaze se u tablici 4.8. Koristiti će se podaci iz tablice 4.11 za Z-pokus (10-10) jedina je razlika otklon kuta kormila δ_R koji iznosi 20 stupnjeva u lijevo i desno. Slika 4.11 prikazuje simulaciju pokusa za otklon kormila u lijevo.

Slika 4.11. Simulacija Z-pokusa (20-20) za potpuno nakrcan brod

Tablica 4.13 prikazuje očitane vrijednosti prvog i drugog kuta premašaja kod Z-pokusa (20-20) za brod u potpuno nakrcanom stanju:

Tablica 4.13. Očitanja kuteva premašaja Z-pokusa (20-20) za potpuno nakrcani brod

KUT PREMA	ZAHTJEVI	OČITANO		
PRVI KUT PREMAŠAJA, ψ 1	20 °	5,221	stupanj	
DRUGI KUT PREMAŠAJA, ψ_2	za L/V \geq 30 s	40 °	11,910	stupanj

Slika 4.12 prikazuje kako su potrebni zahtjevi za Z-pokus (20-20) broda dužine L, u potpuno nakrcanom stanju, uspješno zadovoljeni.

Slika 4.12. Grafički prikaz očitanih rezultata Z-pokusa (20-20) za brod u potpuno nakrcanom stanju

4.4.4. Početna stabilnost okretanja za potpuno nakrcan brod

Za ispitivanje početne stabilnosti okretanja za potpuno nakrcan brod koristiti će se ishod Zpokusa (10-10). Na slici 4.13 prikazana je putanja broda za otklon kuta kormila δ_{R} od 0 do 10 stupnjeva.

Slika 4.13. Promjena prvobitnog kursa za 10 stupnjeva

Slika 4.13. prikazuje kako je brod postigao promjenu kursa za 10 stupnjeva u vremenu od 50 sekundi. Simulacijom pokusa početne stabilnosti okretanja u trajanju 50 sekundi može se prikazati kao udaljenost putanje broda što je prikazano na slici 4.14.

Slika 4.14. Napredovanje za promjenu prvobitnog kursa od 10 stupnjeva

Sa slike 4.14 može se očitati napredovanje broda od promjene kursa za 10 stupnjeva od početnog. Zadovoljavajuća usvojena vrijednosti i uvjet pokusa prikazani su tablicom 4.14:

Tablica 4.14. Usvojena vrijednost napredovanja za promjenu prvobitnog kursa od 10 stupnjeva

ZAHTJEV				OČITANO	
NAPREDOVANJE	< 2,5L	600	m	400	m

4.5. Ispitivanje upravljivosti za brod u stanju balasta

Za ispitivanje značajki upravljivosti broda u stanju balasta potrebno je odrediti gaz na kojemu će brod ploviti. Gaz u stanju balasta T_B potreban je za određivanje ukupne istisnine broda potrebne za određivanje hidrodinamičkih koeficijenata.

Gaz broda u stanju balasta T_B odrediti će se iz [2] formulom:

$$T_B = \frac{(D_P + e + 0.02L)}{2},$$
 (4.9)
 $T_B = 6.1 \text{ m},$

gdje su:

 D_P – promjer brodskog vijka,

e – udaljenost između vrha spuštenog krila brodskog vijka i osnovice broda (uzeto e = 0 m).

Prije ispitivanja značajki upravljivosti broda u stanju balasta, potrebno je obratiti pozornost na usvojeni gaz u stanju balasta T_B , i na promjer brodskog vijka D_P . Naime, promjer brodskog vijka D_P iznosi 7,4 metra dok je usvojeni gaz u stanju balasta T_B jednak 6,1 metar. Ovako usvojene vrijednosti nisu poželjne za rad brodskog vijka.

Kako bi spriječili da brodski vijak viri izvan površine vode, jedno od rješenja je da se brodu zada trim odnosno, razlika gazova na pramčanom i na krmenom perpendikularu.

Program za ispitivanje manevarskih sposobnosti MANSIM [8] korišten u ovom radu ne nudi mogućnost unosa različitih gazova na krmenom i pramčanom perpendikularu. Međutim, u program je moguće unijeti vrijednost uzdužnog položaja težišta istisnine L_{CB} . Pomak uzdužnog položaja težišta istisnine program tumači kao promjenu gazova na pramcu i krmi.

Usvojeni gaz u stanju balasta T_B izrazom 4.9 na vodnoj liniji VL₁, smatrati će se kao preporučljiva vrijednost. Određivanje gaza na perpendikularima izvodi se uz pretpostavku da se uzdužni položaj težišta istisnine broda u potpuno nakrcanom stanju T i u balasnom stanju T_B nije mijenjao ($L_{CB0} = L_{CB1}$). Na krmenom perpendikularu se određuje gaz broda T_{KB} koji je dovoljan za potpuni uron brodskog vijaka kada je brod u stanju balasta. Na pramčanom perpendikularu usvaja se gaz iz izraza 4.9, ($T_B = T_{PB}$) koji iznosi 6,1 metar.

Spajanjem te dvije točke na perpendikularima dobije se pravac koji se usvaja kao nova vodna broda linija u stanju balasta VL_2 . S obzirom da se trim nije vršio oko točke uzdužnog položaja težišta istisnine L_{CB0} , razlika "vodenih klinova" s lijeve i desne strane nije jednaka te se uzdužni položaj težišta istisnine za brod u stanju balasta prebacuje iz L_{CB0} u L_{CB2} što uzrokuje da brod poprimi zatežno stanje. Novi položaj težišta istisnine služiti će za ispitivanje značajki upravljivosti broda. Tablica 4.15 i slika 4.15 prikazuju pomak uzdužnog težišta istisnine L_{CB2} i odgovarajuće vodne linije.

Slika 4.15. Položaj uzdužnog težišta istisnine L_{CB2} za brod u stanju balasta

Generiran je računalni trodimenzijski model brodske forme koji je i presječen je na prethodno usvojenoj vodnoj liniji VL_2 u stanju balasta što je prikazano na slici 4.16.

Slika 4.16. Brodska forma sa srednjim gazom u stanju balasta T_B

Pomoću modela brodske forme presječene vodnom linijom VL_2 , moguće je dobiti uronjeni volumen podvodnog dijela. Za formu na slici 6.11 usvojen je volumen:

$$V_B = 47603,61 \text{ m}^3.$$

Nakon što se odredio uronjeni volumen moguće je odrediti ukupnu istisninu broda u stanju balasta:

$$\Delta_B = \nabla_B \cdot \rho_{\rm MV,} \qquad (4.10)$$
$$\Delta_B = 49031,72 \qquad t,$$

gdje su:

 $\nabla_{\!B}$ – uronjeni volumen podvodnog dijela forme u stanju balasta,

 $\rho_{\rm MV}$ – gustoća morske vode (1,03 t).

Jednom kad je dobivena istisnina broda u stanju balasta Δ_B , moguće je odrediti hidrodinamičke koeficijente forme. Tablica 4.15 prikazuje podatke potrebne za računanje hidrodinamičkih koeficijenata dobivenim empirijskim formulama:

	-		
Dužina broda	LPP = L	240	m
Širina broda	В	38,710	m
Visina broda	D	21	m
Gaz broda na pramčanom perpendikularu u stanju balasta	T BP	6,1	m
Gaz broda na krmenom perpendikularu u stanju balasta	Т вк	10	m
Pramčano zaoštrenje	LE	42,480	m
Krmeno zaoštrenje	L R	100,416	m
Koeficijent punoće istisnine	Св	0,840	-
Prazan opremljen brod	LS	16000	t
Zadana nosivost broda	DW	100000	t
Przina brada u službi	V	7,717	m/s
Brzina broda u sluzbi	Vs	15	čvor
Uzdužni položaj težišta sustava	100	137,09	m
(od glavnog rebra)	100	7 <u>,</u> 083	%
Uronjeni volumen broda u stanju balasta	₽в	47603,613	m ³
Istisnina broda u stanju balasta	⊿в	49031,721	t

Tablica 4.15. Usvojeni podaci za brod u stanju balasta

4.5.1. Pokus kružnice okretanja za brod u stanju balasta

Ispitivanje značajki za pokus kružnice okretanja, za brod u stanju balasta izvodi se pomoću empirijskih formula radi dobivanja hidrodinamičkih koeficijenata. Geometrijske karakteristike brodske forme nalaze se u tablici 4.15. Tablica 4.16 prikazuje sve potrebne podatke za ispitivanje značajki upravljivosti u pokusu kružnice okretanja s kutom otklona kormila $\delta_{\rm R} = 35$ stupnja i brzinom broda V = 15 čvorova. Slika 4.17 prikazuje simulaciju pokusa kružnice okretanja.

	m	0,271	m_{X}'	0,014	m_{Y}'	0,102	J_{Z}'	0,012
	X _{vv} '	-0,024	Y _v '	-0,270	Y _{vrr} '	-0,368	Nr'	-0,033
	X _{vvvv} '	0,195	$Y_{\nu\nu\nu}$ '	-0,667	Y_{vvr}'	0,589	N _{rrr} '	-0,022
BRODSKOG TROPA	X _{rr} '	-0,066	Y_r'	0,081	Nv'	-0,054	N _{vrr} '	0,011
	X _{vr} '	-0,081	Y_{rrr}'	-0,051	N _{vvv} '	-0,080	N _{vvr} '	-0,163
KOEFICIJENTI	H R (m)	6,400	λ	1,800	<i>x_H′</i>	-0,450	l_R'	-0,970
KORMILA	A R (m ²)	161,528	ан	0,374	3	1,009	+γ	0.7422
	x_{R}' (m)	-125,000	t R	0,390	ĸ	0,212	-7	0.304
KOEFICIJENTI	D p (m)	7,400	V p(čvora)	15,000	A 0(m ²)	43,008	t p	0,215
BRODSKOG VIJKA	Ст	0,003	np (s ⁻¹)	7,717	x p (m)	-110,000	W p	0,340

Tablica 4.16. Podaci za ispitivanje pokusa kružnice okretanja broda u stanju balasta

Slika 4.17. Simulacija pokusa kružnice okretanja za brod u stanju balasta

Sa slike 4.17 vidi se ishod pokusa kružnice okretanja koja je dobivena podacima brodske forme, kormila i brodskog vijka iz tablice 4.15 i 4.16. Slika 4.17 prikazuje potrebne parametre kako bi se ustanovilo da li predviđene značajke zadovoljavaju kriterije iz IMO normi za upravljivost broda [8]. Tablica 4.17 prikazuje kako su potrebne norme i zahtjevi za promatrani brod dužine *L*, od 240 metara u stanju balasta uspješno zadovoljene.

Tablica 4.17. Očitani ishodi pokusa kružnice okretanja za potpuno nakrcani brod

	OČITANO				
NAPREDOVANJE	< 4,5 <i>L</i>	1080	m	597,756	m
TAKTIČKI PROMJER	< 5 <i>L</i>	1200	m	697,13	m

4.5.2. Z-pokus (10-10) za brod u stanju balasta

Geometrijske karakteristike brodske forme za ispitivanje značajki Z-pokusa (10-10) broda u stanju balasta nalaze se u tablici 4.15 i 4.18 dok slika 4.18 prikazuje simulaciju pokusa.

Tablica 4.18. Podaci za ispitivanje Z-pokusa (10-10) broda u stanju balasta

4								
	m	0,271	m_{X}'	0,014	m_{Y}'	0,102	Jz'	0,012
KOFFICUENTI	X_{vv}'	-0,024	Y_{v}'	-0,270	Y_{vrr}'	-0,368	N _r '	-0,033
	X_{vvvv} '	0,195	$Y_{\nu\nu\nu}$ '	-0,667	Y_{vvr}'	0,589	N _{rrr} '	-0,022
DRODSKOG TROPA	X_{rr}'	-0,066	Y_r'	0,081	N _v '	-0,054	N _{vrr} '	0,011
	X_{vr}'	-0,081	Y_{rrr}'	-0,051	N _{vvv} '	-0,080	N _{vvr} '	-0,163
KOEFICIJENTI	H r (m)	6,400	λ	1,800	x_{H}'	-0,450	l_R'	-0,970
BRODSKOG	$AR(m^2)$	161,528	ан	0,374	3	1,009	+γ	0.7422
KORMILA	x_{R}' (m)	-125,000	tr	0,390	κ	0,212	-γ	0.304
KOEFICIJENTI	Dp (m)	7,400	V p(čvora)	15,000	Ao(m ²)	43,008	t p	0,215
BRODSKOG VIJKA	Ст	0,003	np (s ⁻¹)	7,717	x p (m)	-110,000	W p	0,340

Slika 4.18. Simulacija Z-pokusa (10-10) za brod u stanju balasta

Tablica 4.19 prikazuje očitane vrijednosti prvog i drugog kuta premašaja kod Z-pokusa (10-10) za brod u stanju balasta.

Tablica 4.19. Očitani kutevi premašaja Z-pokusa (10-10) za brod u stanju balasta

KUT PREMA	ZAHTJEVI	OČITANO		
PRVI KUT PREMAŠAJA, ψ 1	$za L/V \ge 30 s$	20°	1,497	stupanj
DRUGI KUT PREMASAJA, ψ_2	za <i>L/V ≥</i> 30 s	40 °	5,182	stupanj

Zahtjevi za Z-pokus (10-10) iskazani izrazima 4.1-2, radi jednostavnosti mogu se prikazati grafički. Vrijednost L/V iznosi 31,1 sekunde, gdje je L jednako 240 metara a V je jednak brzini napredovanja broda odnosno, 7,717 metara po sekundi.

Slika 4.19 prikazuje kako su potrebni zahtjevi iz izraza 4.1-2 za simulirani Z-pokus (10-10) broda dužine L, u stanju balasta, uspješno zadovoljeni.

Slika 4.19. Grafički prikaz očitanih rezultata Z-pokusa (10-10) za brod u stanju balasta

4.5.3. Z-pokus (20-20) za brod u stanju balasta

Ispitivanje značajki za Z-pokus (20-20), za brod u stanju balasta izvodi se pomoću dosad usvojenih geometrijskih karakteristika forme, kormila i vijka te pomoću empirijskih formula. Geometrijske karakteristike brodske forme nalaze se u tablici 4.15. Koristiti će se podaci iz tablice 4.18 za otklon kuta kormila δ_R koji iznosi 20 stupnjeva u lijevo i desno. Slika 4.20 prikazuje simulaciju Z-pokusa (20-20) za otklon kormila u lijevo.

Slika 4.20. Simulacija Z-pokusa (20-20) za brod u stanju balasta

Tablica 4.20 prikazuje očitane vrijednosti prvog i drugog kuta premašaja kod Z-pokusa (20-20) za brod u stanju balasta.

KUT PREMA	ZAHTJEVI	OČITANO			
PRVI KUT PREMAŠAJA, ψ 1	za L∕V≥	30 s	20°	4,579	stupanj
DRUGI KUT PREMASAJA, ψ_2	za $L/V ≥$	30 s	40 °	12,679	stupanj

Tablica 4.20. Očitani kutevi premašaja Z-pokusa (20-20) za brod u stanju balasta

Slika 4.21 prikazuje kako su potrebni zahtjevi za simulirani Z-pokus (20-20) broda dužine L, u stanju balasta, uspješno zadovoljeni.

Slika 4.21. Grafički prikaz očitanih rezultata Z-pokusa (20-20) za brod u stanju balasta

4.5.4. Početna stabilnost okretanja za brod u stanju balasta

Za ispitivanje početne stabilnosti okretanja za brod u stanju balasta koristiti će se ishod Z-pokusa (10-10) u stanju balasta. Na slici 4.22 prikazana je putanja broda za otklon kuta kormila δ_{R} od 0 do 10 stupnjeva u lijevo.

Slika 4.22. Promjena prvobitnog kursa broda u balastu za 10 stupnjeva

Slika 4.22. prikazuje kako je brod postigao promjenu kursa za 10 stupnjeva u vremenu od 44 sekunde. Simulacijom pokusa početne stabilnosti okretanja u trajanju 44 sekunde može se prikazati udaljenost putanje broda što je prikazano na slici 4.23.

Slika 4.23. Napredovanje broda u balasnom stanju za promjenu prvobitnog kursa od 10 stupnjeva

Sa slike 4.23 može se očitati napredovanje broda u balastu za promjenu kursa od 10 stupnjeva od početnog. Usvojene zadovoljavajuće vrijednosti prikazane su tablicom 4.21.

Tablica 4.21. Usvojena vrijednost napredovanja za promjenu prvobitnog kursa od 10 stupnjeva

ZAHTJEV				OČITANO	
NAPREDOVANJE	< 2,5L	600	m	365	m

4.6. Prijedlozi poboljšanja značajki upravljivosti u preliminarnom projektu

Izvedeni su svi odabrani pokusi ispitivanja značajki upravljivosti za brod u stanju balasta i u potpuno nakrcanom stanju. Može se zaključiti da svi pokusi su uspješno zadovoljili odgovarajuće kriterije i smjernice propisane raznim pomorskim organizacijama.

Kod pokusa kružnice okretanja u balasnom i potpuno nakrcanom stanju vide se razlike u napredovanju i u taktičkom promjeru. Slika 4.24 [12] prikazuje kako bi napredovanje i taktički promjer trebali izgledati ovisno o istisnini brodske forme a slika 4.25 prikazuje dobivene rezultate.

Slika 4.24. Pokus kružnice okretanja za različite vrijednosti istisnina [12]

Slika 4.25. Pokus kružnice okretanja za brod u stanju balasta i u potpuno nakrcanom stanju

Sa slika može se zaključiti kako brod s većom istisninom ima veće napredovanje. Iako su rezultati potpuno zadovoljavajući za sve pokuse, moguće je dodatno utjecati na poboljšanje značajki upravljivosti u preliminarnoj fazi osnivanja broda.

Za usvojenu geometriju brodske forme u ovome radu značajke upravljivosti su zadovoljavajuće međutim to u praksi može izgledati drugačije. Iz različitih razloga neki od geometrijskih parametara prilikom osnivanja brodske forme mogu biti unaprijed definirani od strane naručitelja broda i ne smiju se mijenjati što može ograničiti manevarske sposobnosti broda. U tom slučaju jedno od rješenja je manipulacija kormilom i silom uzgona koja se stvara na kormilu.

Povećanjem faktora vitkosti za kormilo doprinosi se stvaranju veće sile uzgona pri manjim kutovima otklona kormila što prikazuje slika 4.26 [12] i izraz:

$$\Lambda = \frac{\overline{s}^2}{A_{\rm R}} \tag{4.12}$$

gdje su:

 \overline{s}^2 - kvadrat srednje visine kormila,

 $A_{\mathbb{R}}$ - površina pomičnog dijela kormila.

Slika 4.26. Vrijednosti koeficijenta uzgona $C_{\rm L}$ za kormila različitih vitkosti i kutova otklona [12]

Druga mogućnost je odabir nekonvencionalnog oblika kormila. Slika 4.27 [12] prikazuje različite izvedbe kormila poput kormilo sa zakrilcem, konvencionalnog te Schillingovog (oblik presjeka izlaznog brida s oštrim završetcima) kormila.

Slika 4.27. Vrijednosti koeficijenta uzgona C_L za kormila raznih izvedbi [12]

Nadovezujući se na sliku 4.27 izvedena je računalna analiza strujanja fluida za usporedbu konvencionalnog balansnog kormila usvojenog za provjeru značajki upravljivosti broda u ovome radu i nekonvencionalne izvedbe kormila sa zakrilcem istih geometrijskih karakteristika kao i konvencionalno kormilo sa slike 3.2. Tablica 4.22 prikazuje geometrijske karakteristike dok slika 4.28 prikazuje trodimenzionalni model kormila sa zakrilcem izrađen programom Autodesk Inventor.

GEOMETRIJSKE KARAKTERISTIKE KORMILA I SKEGA	STANDARDNO KORMILO		
VISINA KORMILA, m	<i>e</i> 1	10	
DUŽINA PRESIJEKA KORMILA, m	b 1	6,400	
SREDNJA VISINA SKEGA, m	e 2	1,495	
ŠIRINA SKEGA, m	b 2	6,400	
PROJICIRANA POVRŠINA KORMILA, m ²	Ат	95,604	
PROJICIRANA POVRŠINA SKEGA , m ²	AF	29,680	
UKUPNA POVRŠINA KORMILA, m ²	Ам	161,528	
POZICIJA KRMENOG PERPENDIKULARA OD ULAZNOG BRIDA	%	25	
KUT OTKLONA ZAKRILCA NA KORMILU, stupanj	φ	35	
DUŽINA PRESIJEKA ZAKRILCA (25%b 1), m	X	1,500	

Tablica 4.22. Geometrijske karakteristike kormila sa zakrilcem

Slika 4.28. Grafički prikaz nekonvencionalnog kormila sa zakrilcem

Presijek kormila je NACA 0015 profil. Kako bi se ispitala sila uzgona između konvencionalnog i kormila sa zakrilcem koristiti će se metoda RDF (računalna dinamika fluida) unutar programa Ansys Fluent. Kut pritjecanja vode na kormilo δ_{R} iznosi 35 stupnjeva.

Potrebno je definirati brzinu pritjecanja vode na kormilo. Pritjecanjem vode kroz brodski vijak smanjuje se tlak te povećava se brzina strujanja fluida što je prikazano na slici 4.29 [9]:

Slika 4.29. Pritjecanje vode kroz propulzorski disk [9]

Slika 4.30 prikazuje sile koje djeluju na kormilo. Voda na kormilo struji brzinom U pod kutom α . Sila P je rezultirajuća sila koja nastaje uslijed sile hidrodinamičkog uzgona L koja je okomita na smjer pritjecanja vode te sile otpora D koja djeluje u smjeru pritjecanja vode.

Slika 4.30. Sile na vodoravnom presijeku kormila

Pomoću slike 4.29 i izraza iz [9] može se dobiti vrijednost brzine pritjecanja vode v_2 na korilo i koeficijent uzgona C_L :

$$v_2 = \frac{(2 \cdot T \cdot D_P)}{\rho_{MV}},$$
 (4.13)
 $v_2 = 18,68$ m/s,

gdje su:

T - poriv, $D_P - \text{promjer brodskog vijka,}$ $\rho_{MV} - \text{gustoća morske vode.}$

$$C_L = \frac{L}{0.5 \cdot \rho_{MV} \cdot U^2 \cdot A_R}, \qquad (4.14)$$

gdje su:

L — sila uzgona,

U – brzina vode daleko ispred kormila,

 A_R – projicirana površina kormila.

Kako bi se dobila vrijednost koeficijenta uzgona C_L potrebno je odrediti vrijednost uzgona L. Slike 4.31 i 4.32 prikazuju mrežu oko 2D profila kormila za koje će se izvoditi računalna simulacija.

Slika 4.31. Mreža za presjek konvencionalnog kormila

Slika 4.32. Mreža za presjek kormila sa zakrilcem

Slike 4.33 i 4.34 prikazuju oblik strujanja morske vode pod kutom δ_{R} od 35 stupnjeva, brzinom v_{2} na poprečni presjek kormila u iznosu od 18,68 metara po sekundi.

Slika 4.33. Strujanje morske vode oko konvencionalnog 2D presjeka kormila

Slika 4.34. Strujanje morske vode oko 2D presjeka kormila sa zakrilcem

Presjeci kormila na slikama 4.33 i 4.34 su promatrani kao 2D presjeci radi jednostavnosti simulacije gdje je umrežavanjem korišteno 380.000 elemenata za svaki presjek kormila. Presjeci su postavljeni pod kutem od 35 stupnjeva dok je brzina pritjecanja fluida v_2 dobivena izrazom 4.13 postavljena vodoravno s obzirom na apscisu.

U slučaju da neki od pokusa upravljivosti nisu ispali zadovoljavajući, jedno od rješenja je izmjena kormila i promjena sile uzgona koja se stvara na kormilu. Slikama 4.33 i 4.34 potvrđeno je da se korištenjem kormila sa zakrilcem može u velikoj mjeri povoljno utjecati na ishode pokusa upravljivosti broda.

Sa slika 4.33 i 4.34 i preko izraza 4.14 u tablici 4.23 prikazane su usvojene vrijednosti koeficijenta uzgona C_L čime se potvrđuje podatak sa slike 4.27 odnosno da za istu brzinu pritjecanja fluida i za isti kut otklona, kormilo sa zakrilcem ima veći koeficijent uzgona C_L nego konvencionalno kormilo.

KONVEN	ICIONALNO I	KORMILO	KORMILO SA ZAKRILCEM		
UZGON	L (kN)	765,602	UZGON	L (kN)	1288,347
KOEFICIJENT UZGONA	CL	0,311	KOEFICIJENT UZGONA	CL	0,523

Tablica 4.23. Usporedba koeficijenata uzgona C_L za različite izvedbe kormila

5. ZAKLJUČAK

Procjena značajki upravljivosti broda postala je neizostavan dio u procesu projektiranja plovnih objekata. Kako bi se osigurale povoljne značajke plovnog objekta potrebno je već u preliminarnoj fazi projektiranja ispitati značajke upravljivosti.

U prvome dijelu diplomskog rada pokriveno je područje osnivanja brodske forme koristeći MARAD sustavni niz modela brodova [1] za zadanu nosivost. Za vrijednost zadane nosivosti *DW* od 100.000 tona usvojen je bezdimenzijski koeficijent ponoće istisnine $C_{\rm B} = 0,84$ iz [2]. Za usvojenu vrijednost koeficijenta ponoće istisnine $C_{\rm B} = 0,84$ odrađena je linearna interpolacija između podataka za odabrane MARAD modele "*G*" ($C_{\rm B} = 0,80$) i "*H*" ($C_{\rm B} = 0,85$). Izrađeni su pripadajući crtež linija broda gdje su prikazana rebra, uzdužnice i vodne linije.

Osim same brodske forme značajke upravljivosti broda uvelike ovise o brodskom vijku i kormilu. Kormilo stvara silu uzgona koja je potrebna kako bi se oko broda stvorio moment zaošijanja. Za određivanje sile uzgona potrebno je definirati brzinu pritjecanja vode na kormilo, stoga potrebno je odrediti brodski vijak. Usvojeno je konvencionalno balansno kormilo te za usvojenu brodsku formu izračunat je ukupan otpor i odabran je glavni pogonski motor čime je omogućen odabir brodskog vijka.

Drugi dio diplomskog rada sastojao se u ispitivanju značajki upravljivosti usvojene forme broda. Ispitane su značajke upravljivosti za pokus kružnice okretanja, Z-pokus gdje je kut otklona kormila bio 10 i 20 stupnjeva te pokus početne sposobnosti okretanja. Uporabom softvera MANSIM uneseni su potrebni geometrijski podaci brodske forme, brodskog vijka i kormila te hidrodinamički koeficijenti koji su dobiveni empirijskim formulama. Izvedena ispitivanja odnosila su se za brod u potpuno nakrcanom stanju te za brod u stanju balasta koji je doveden u zatežno stanje kako bi se uronio brodski vijak.

Na kraju provedenih ispitivanja značajki upravljivosti za oba slučaja krcanja i za sve promatrane pokuse, zaključuje se kako usvojena forma zadovoljava sve kriterije i norme upravljivosti. Usvojeno brodsko kormilo zadovoljava svojstva upravljivosti za brod u oba stanja krcanja čime se zadovoljavaju sve značajke upravljivosti u preliminarnoj fazi projektiranja usvojene forme broda.

LITERATURA

- Roseman, D. P., "The MARAD systematic series of full-form ship models", Society of Naval Architects and Marine Engineers, Jersey City, N.J., 1987
- [2] Papanikolau A., "Ship Design Methodologies of Preliminary Design", SPRINGER, 2014
- [3] Holtrop J., "A statistical analysis of performance test results", Publication No. 540 of the N.S.M.B., Rotterdam, 1977
- [4] Holtrop J., "A statistical analysis of performance test results", Publication No. 689 of the N.S.M.B., Rotterdam, 1982
- [5] Holtrop J., "A statistical analysis of performance test results", Publication No. 769 of the N.S.M.B., Rotterdam, 1984
- [6] MAN Energy Solutions, "MAN B&W G60ME-C9.5-TII", Edition 1.0, November 2018, s Interneta, <u>G60ME-C9_5.pdf (man-es.com)</u>, 01.04.2023.
- [7] Radan D., "Uvod u hidrodinamiku broda", Sveučilište u Dubrovniku, siječanj 2004
- [8] RESOLUTION MSC.137(76) "STANDARDS FOR SHIP MANOEUVRABILITY, London, 2002
- [9] Vučinić, A., "Hidromehanika plovnih objekata (otpor i propulzija)", Tehnički fakultet Rijeka, 1997.
- [10] American Bureau of Shipping, "VESSEL MANEUVERABILITY", Houston TX, 2006
- [11] Sukas O.F., Kinaci .K., Bal S., "Theoretical background and aplication of MANSIM for ship maneuvering simulations" Faculty of Naval Architecture and Ocean Engineering, TURKEY
- [12] Roko D., "HPO 2 Upravljivost broda" (Radni materijal, verzija 2.5.) Tehnički fakultet Rijeka, listopad 2020.

POPIS OZNAKA I KRATICA

Glavne dimenzije:

- L duljina između okomica, m
- B širina, m
- T = gaz, m
- T_B srednji gaz u stanju balasta, m
- T_{BK} gaz na krmenom perpendikularu u stanju balasta, m
- T_{BP} gaz na pramčanom perpendikularu u stanju balasta, m
- VL0 vodna linija za brod u potpuno nakrcanom stanju
- VL1 vodna linija za brod u stanju balasta
- VL2 vodna linija za brod u zatežnom stanju

D – visina, m

- C_T koeficijent ukupnog otpora
- C_B koeficijent punoće istisnine
- *L_{CG}* uzdužni položaj težišta sustava, m (pramac +)
- L_{CB} uzdužni položaj težišta istisnine, m (pramac +)

ho – gustoća vode, kg/m³

- LE dužina pramčanog zaoštrenja, m
- L_M dužina paralelnog srednjaka, m
- L_R dužina krmenog zaoštrenja, m
- S oplakivana površina, m
- S_B oplakivana površina u stanju balasta, m
- Cs koeficijent oplakivane površine, m
- \varDelta istisnina broda, t
- \overline{V} uronjeni volumen broda, m³
- Δ_B istisnina broda u stanju balasta, t
- V_B uronjeni volumen broda u stanju balasta, m³

- V brzina broda, m/s
- *V*_{KN} brzina broda u čvorovima, čvor
- V_A brzina pritjecanja vode na brodski vijak, m/s

<u>Dodana masa i moment tromosti:</u>

- m_x dodana masa prilikom zalijetanja, kg
- m_y dodana masa prilikom zanošenja, kg
- J_z dodatni moment tromosti oko Z osi, m²kg

Početni parametri:

- Ui početna brzina broda, m/s
- δ_0 početni kut otklona kormila, stupanj
- δ stvarni kut otklona kormila, stupanj
- $\delta * kutna brzina otklona kormila, stupanj/s$
- n stvarna brzina okretanja propelera, s⁻¹
- ψ kurs broda, stupanj

Hidrodinamički koeficijenti:

 X_{vv} – druga derivacija promjene sile zalijetanja s obzirom na kutnu brzinu zaošijanja, kg/s² X_{vvvv} – četvrta derivacija promjene sile zalijetanja s obzirom na kutnu brzinu zaošijanja, kg/s⁴ X_{rr} – druga derivacija promjene sile zalijetanja s obzirom na kutnu brzinu zaošijanja, kg/s² X_{vr} – promjena sile zalijetanja s obzirom na promjenu kutne brzine zaošijanja, kg/s² Y_v – prva derivacija promjene sile zanašanja s obzirom na kutnu brzinu zaošijanja, kg/s Y_{vvv} – treća derivacija promjene sile zanašanja s obzirom na kutnu brzinu zaošijanja, kg/s³ Y_r – prva derivacija promjene sile zanašanja s obzirom na kutnu brzinu zaošijanja, kg/s³ Y_{rrr} – treća derivacija promjene sile zanašanja s obzirom na kutnu brzinu zaošijanja, N/(rad/s) Y_{rrrr} – treća derivacija promjene sile zanašanja s obzirom na kutnu brzinu zaošijanja, N/(rad/s) Y_{vrrr} – promjena sile zanašanja s obzirom na promjenu kutne brzine zaošijanja, N/(rad/s)³ Y_{vvrr} – promjena sile zanašanja s obzirom na promjenu kutne brzine zaošijanja, N/(m/s)³ Y_{vvrr} – promjena sile zanašanja s obzirom na promjenu kutne brzine zaošijanja, N/(m/s)³

103

 N_v – prva derivacija promjene momenta zaošijanja s obzirom na kutnu brzinu zaošijanja, kgm/s N_{vvv} – treća derivacija promjene momenta zaošijanja s obzirom na kutnu brzinu zaošijanja, kg/(m/s)² N_r – prva derivacija promjene momenta zaošijanja s obzirom na kutnu brzinu zaošijanja, kg·m²/s N_{rrr} – treća derivacija promjene momenta zaošijanja s obzirom na kutnu brzinu zaošijanja, Nm/(rad/s)³ N_{vrr} – promjena momenta zaošijanja s obzirom na kutnu brzinu zaošijanja, Nm/(rad/s)³ N_{vrr} – promjena momenta zaošijanja s obzirom na promjenu kutne brzine zaošijanja, N/(m/s)² N_{vvr} – promjena momenta zaošijanja s obzirom na promjenu kutne brzine zaošijanja, N/(m/s)²

Parametri brodskog kormila:

- H_{R-} srednja dužina presjeka kormila, m
- a_H faktor povećanja sile kormila
- ε omjer udjela sustrujanja na pozicijama propelera i kormila
- κ eksperimentalna konstanta za izražavanje uzdužne brzine strujanja kroz kormilo
- x_R uzdužna udaljenost brodskog kormila od sredine brodske sekcije, m
- l koeficijent usmjeravanja strujanja prilikom zaošijanja
- L sila uzgona, N
- λ faktor vitkosti kormila
- A_{RM} površina pokretnog dijela kormila, m²
- A_{RF} površina nepokretnog dijela kormila, m²
- γ + koeficijent usmjeravanja strujanja vode na desno
- γ – koeficijent usmjeravanja strujanja vode na lijevo

Parametri brodskog vijka:

- D_P promjer brodskog vijka, m
- t_{P-} koeficijent pada poriva
- x_P uzdužna udaljenost brodskog vijka od sredine broda, m
- w_P koeficijent sustrujanja

POPIS SLIKA

SLIKA 2.1. REGRESIJSKA ANALIZA DUŽINE BRODA L , M U O VISNOSTI O NOSIVOSTI DW , T [2]	. 14
SLIKA 2.2. REGRESIJSKA ANALIZA KOEFICIJENTA PUNOĆE ISTISNINE CB U OVISNOSTI O NOSIVOSTI DW , T [2]	. 15
SLIKA 2.3. REGRESIJSKA ANALIZA MASE PRAZNOG OPREMLJENOG BRODA U OVISNOSTI O NOSIVOSTI DW,t [2].	. 16
SLIKA 2.4. REGRESIJSKA ANALIZA BRZINE U SLUŽBI <i>VS</i> , ČVOROVA U OVISNOSTI O DUŽINI BRODA <i>L</i> , M [2]:	. 17
SLIKA 2.5. BEZDIMENZIJSKE SERIJE MODELA BRODSKIH FORMI [1]	. 18
SLIKE 2.6. KONTURA PRAMCA ZA SVE MODELE MARAD NIZA [1]	24
SLIKA 2.7. KRAĆE KRMENO ZAOŠTRENJE ZA $LRB = 1,6$ [1]	. 28
SLIKA 2.8. DUŽE KRMENO ZAOŠTRENJE ZA $LRB = 3,2$ [1]	28
SLIKA 3.1. ODABRANA IZVEDBA KORMILA [1]	. 32
SLIKA 3.2. GRAFIČKI PRIKAZ KONVENCIONALNOG BALANSNOG KORMILA	. 33
SLIKA 3.3. GRAFIČKI PRIKAZ UKUPNOG OTPORA RT I NJEGOVIH KOMPONENTI	. 47
SLIKA 3.4. UTJECAJ OMJERA L/B NA KOEFICIJENTE TRUPA I PROPULZIJE [1]	. 49
SLIKA 3.5. DIJAGRAM SLOBODNE VOŽNJE, SERIJA B4 – 40 [5]	. 52
SLIKA 3.6. DIJAGRAM SLOBODNE VOŽNJE, SERIJA B4 – 55 [5]	. 52
SLIKA 3.7. DIJAGRAM SLOBODNE VOŽNJE, SERIJA B4 – 70 [5]	. 52
SLIKA 3.8. VRIJEDNOSTI P/D I $\eta 0$ U OVISNOSTI O BRZINI VRTNJE N, ZA SERIJU B4-40	. 54
SLIKA 3.9. VRIJEDNOSTI P/D I $\eta 0$ U OVISNOSTI O BRZINI VRTNJE N, ZA SERIJU B4-55	. 54
SLIKA 3.10. VRIJEDNOSTI P/D I $\eta 0$ U OVISNOSTI O BRZINI VRTNJE N, ZA SERIJU B4-70	. 54
SLIKA 3.11. OPCIJE GLAVNOG POGONSKOG STROJA U OVISNOSTI O NOSIVOSTI BRODA [6]	. 57
SLIKA 4.12. GLAVNI POGONSKI MOTOR MAN B&W G60ME-C9.5 [6]	. 57
SLIKA 3.13. MAKSIMALNI DOP UŠTENI PROMJER BRODSKOG VIJKA DMAX	. 59
SLIKA 3.14. PODACI DOBIVENI "BSER" PROGRAMOM	. 60
SLIKA 4.1. STABILNOSTI GIBANJA BRODA	. 62
SLIKA 4.2. POKUS KRUŽNICE OKRETANJA [7]	. 65
SLIKA 4.3. KRITERIJI POKUSA KRUŽNICE OKRETANJA	. 66
SLIKA 4.4. REZULTATI Z-POKUSA [7]	. 67
SLIKA 4.5. POČETNA SPOSOBNOST OKRETANJA	. 69
SLIKA 4.6. STUP NJEVI SLOBODE BRODA ZA ISPITIVA NJE ZNAČAJKI UPRAVLJIVOSTI	. 71
SLIKA 4.7. UZDUŽNI POLOŽAJ TEŽIŠTA ISTISNINE BRODA, L _{CB}	. 76
SLIKA 4.8. SIMULACIJA POKUSA KRUŽNICE OKRETANJA ZA POTPUNO NAKRCAN BROD	77
SLIKA 4.9. SIMULACIJA Z-POKUSA (10-10) ZA POTPUNO NAKRCAN BROD	. 79
SLIKA 4.10. GRAFIČKI PRIKAZ REZULTATA Z-POKUSA (10-10) ZA BROD U POTPUNO NAKRCANOM STANJU	80
SLIKA 4.11. SIMULACIJA Z-POKUSA (20-20) ZA POTPUNO NAKRCAN BROD	. 80

SLIKA 4.12. GRAFIČKI PRIKAZ REZULTATA Z-POKUSA (20-20) ZA BROD U POTPUNO NAKRCANOM STANJU	81
SLIKA 4.13. PROMJENA PRVOBITNOG KURSA ZA 10 STUPNJEVA	82
SLIKA 4.14. NAPREDOVANJE ZA PROMJENU PRVOBITNOG KURSA OD 10 STUPNJEVA	82
SLIKA 4.15. POLOŽAJ UZDUŽNOG TEŽIŠTA ISTISNINE L _{CB2} ZA BROD U STANJU BALASTA	84
SLIKA 4.16. BRODSKA FORMA SA SREDNJIM GAZOM U STANJU BALASTA T _B	84
SLIKA 4.17. SIMULACIJA POKUSA KRUŽNICE OKRETANJA ZA BROD U STANJU BALASTA	86
SLIKA 4.18. SIMULACIJA Z-POKUSA (10-10) ZA BROD U STANJU BALASTA	87
SLIKA 4.19. GRAFIČKI PRIKAZ OČITANIH REZULTATA Z-POKUSA (10-10) ZA BROD U STANJU BALASTA	88
SLIKA 4.20. SIMULACIJA Z-POKUSA (20-20) ZA BROD U STANJU BALASTA	89
SLIKA 4.21. GRAFIČKI PRIKAZ OČITANIH REZULTATA Z-POKUSA (20-20) ZA BROD U STANJU BALASTA	90
SLIKA 4.22. PROMJENA PRVOBITNOG KURSA BRODA U BALASTU ZA 10 STUPNJEVA	90
SLIKA 4.23. NAPREDOVANJE BRODA U BALASNOM STANJU ZA PROMJENU KURSA OD 10 STUPNJEVA	91
SLIKA 4.24. POKUS KRUŽNICE OKRETANJA ZA RAZLIČITE VRIJEDNOSTI ISTISNINA	92
SLIKA 4.25. POKUS KRUŽNICE OKRETANJA ZA BROD U STANJU BALASTA I U POTPUNO NAKRCANOM STANJU .	92
SLIKA 4.26. VRIJEDNOSTI KOEFICIJENTA UZGONA CL ZA KORMILA RAZLIČITIH VITKOSTI I KUTOVA OTKLONA	93
SLIKA 4.27. VRIJEDNOSTI KOEFICIJENTA UZGONA CL ZA KORMILA RAZNIH IZVEDBI	94
SLIKA 4.28. GRAFIČKI PRIKAZ NEKONVENCIONALNOG KORMILA SA ZAKRILCEM	95
SLIKA 4.29. PRITJECANJE VODE KROZ BRODSKI VIJAK [9]	95
SLIKA 4.30. SILE NA VODORAVNOM PRESIJEKU KORMILA	96
SLIKA 4.31. MREŽA OKO KONVENCIONALNOG POPREČNOG PRESIJEKA KORMILA	97
SLIKA 4.32. MREŽA OKO POPREČNOG PRESIJEKA KORMILA SA ZAKRILCEM	97
SLIKA 4.33. STRUJA NJE MORSKE VODE OKO KONVENCIONALNOG 2D PROFILA KORMILA	98
SLIKA 4.34. STRUJANJE MORSKE VODE OKO 2D PROFILA KORMILA SA ZAKRILCEM	

POPIS TABLICA

TABLICA 2.1. ISTISNINA BRODA	16
TABLICA 2.2. USVOJENE VRIJEDNOSTI GLAVNIH DIMENZIJA	17
TABLICA 2.3. BEZDIMENZIJSKI PARAMETRI TRUPA ZA SVE MODELE [1]	19
TABLICA 2.4. LINEARNO INTERPOLIRANI BEZDIMENZIJSKI PARAMETRI MARAD FORMI G-H	20
TABLICA 2.5. USVOJENI PODACI DUŽINA ZAOŠTRENJA, ŠIRINE I GAZA	21
TABLICI 2.6. PRAMČANO ZAOŠTRENJE FORME BRODA ZA SVE SERIJE MARAD NIZA [1]	22
TABLICA 2.7. STVARNE DIMENZIJE PRA MČANOG ZAOŠTRENJA	23
TABLICA 2.8. VRIJEDNOSTI KONTURE PRAMCA	24
TABLICA 2.9. POČETAK KRME BRODA ZA SVE MODELE MARAD NIZOVA – LR [1]	25
TABLICI 2.10. STVARNE DIMENZIJE POČETNOG DIJELA KRMENOG SEGMENTA	26
TABLICA 2.11. INTERPOLIRANE VRIJEDNOSTI SERIJE "G" I "H" ZA ZAVRŠETAK KRMENOG DIJELA	27
TABLICA 2.12. STVARNE DIMENZIJE ZA VRŠETKA KRMENO G DIJELA	27
TABLICA 2.13. USVOJENE VRIJEDNOSTI KRMENIH ZAVRŠETAKA ZA $LRB = 2,569$	29
TABLICA 2.14. INTERPOLIRANE VRIJEDNOSTI KRMENOG ZRCALA IZMEĐU REBRA R-1 I R-0,5	
TABLICA 3.1. GEO METRIJSKE KARAKTERISTIKE KORMILA	
TABLICA 3.2. OGRANIČENJA HOLTROPOVE METODE	34
TABLICA 3.3. GLAVNE VRIJEDNOSTI ZA PRORAČUN UKUPNOG OTPORA R $_{ m T}$	35
TABLICA 3.4. PARAMETRI IZGLEDA KRME	37
TABLICA 3.5. VISKOZNI OTPOR BRODA U ODNOSU NA RASPON BRZINA	
TABLICA 3.6. OTPOR PRIVJESAKA BRODA U ODNOSU NA RASPON BRZINA	40
TABLICA 3.7. VRIJEDNOSTI KOEFICIJENATA ZA IZRAČUN OTPORA VALOVA R _W	44
TABLICA 3.8. OTPOR VALOVA U OVISNOSTI O BRZINI BRODA	44
TABLICA 3.9. KORELACIJSKI OTPOR U OVISNOSTI O BRZINI	46
TABLICA 3.10. UKUPNI OTPOR BRODA RT	47
TABLICA 3.11. KOEFICIJENTI TRUPA I PROPULZIJE ZA VRIJEDNOST OMJERA L/B = 6,2	49
TABLICA 3.12. VRIJED NOSTI SILE PORIVA T	50
TABLICA 3.13. VRIJEDNOSTI P/D I $\eta 0$ ZA SERIJU B4-40, U O VISNOSTI O BROJU OKRETAJA	53
TABLICA 3.14. VRIJED NOSTI P/D I $\eta 0$ ZA SERIJU B4-55, U O VIS NOSTI O BROJU OKRETAJA	53
TABLICA 3.15. VRIJEDNOSTI P/D I $\eta 0$ ZA SERIJU B4-70, U O VISNOSTI O BROJU OKRETAJA	53
TABLICA 3.16. VRIJEDNOSTI ZA OMJER P/D I BRZINU VRTNJE N ZA MAKSIMALNI STUPANJ DJELOVANJA VIJKA	A H ₀ .55
TABLICA 3.17. EFEKTIVNA SNAGA P _E S OBZIROM NA RASPON BRZINE	56
TABLICA 3.18. USVOJENE VRIJEDNOSTI ZA GLAVNI POGONSKI MOTOR	58
TABLICA 3.19. USVOJENE GEOMETRIJSKE KARAKTERISTIKE BRODSKOG VIJKA	60
TABLICA 4.1. SILE I MOMENTI ZA BROD S TRI STUPNJA SLOBODE U NELINEARNOM OBLIKU [10]	72
ABLICA 4.2. BEZDIMENZIJSKI OBLIK HIDRODINAMIČKIH KOEFICIJENATA [11]	73
--	----
ABLICA 4.3. EMPIRIJSKE FORMULE ZA MASE I MOMENT INERCIJE [11]	73
ABLICA 4.4. KOEFICIJENTI ZA BRODSKI VIJAK [11]	74
ABLICA 4.5. EMPIRIJSKE FORMULE ZA HIDRODINAMIČKE KOMPONENTE U SLUČAJU ZALIJETANJA BRODA [11]	74
ABLICA 4.6. EMPIRIJSKE FORMULE ZA HIDRODINAMIČKE KOMPONENTE U SLUČAJU ZANAŠANJA BRODA [11]	75
ABLICA 4.7. EMPIRIJSKE FORMULE ZA HIDRODINAMIČKE KOMPONENTE U SLUČAJU ZAOŠIJANJA BRODA [11]	75
ABLICA 4.8. PODACI BRODSKE FORME	76
ABLICA 4.9. PODACI ZA ISPITIVANJE POKUSA KRUŽNICE OKRETANJA POTPUNO NAKRCANOG BRODA	77
ABLICA 4.10. OČITANJA POKUSA KRUŽNICE OKRETANJA ZA POTPUNO NAKRCANI BROD	78
ABLICA 4.11. PODACI ZA ISPITIVANJE Z-POKUSA (10-10) POTPUNO NAKRCANO G BRODA	78
ABLICA 4.12. OČITANI KUTEVI PREMAŠAJA Z-POKUSA (10-10) ZA POTPUNO NAKRCANI BROD	79
ABLICA 4.13. OČITANJA KUTEVA PREMAŠAJA Z-POKUSA (20-20) ZA POTPUNO NAKRCANI BROD	81
ABLICA 4.14. USVOJENA VRIJEDNOST NAPREDOVANJA ZA PROMJENU PRVOBITNOG KURSA OD 10 STUPNJEVA	82
ABLICA 4.15. USVOJENI PODACI ZA BROD U STANJU BALASTA	85
ABLICA 4.16. PODACI ZA ISPITIVANJE POKUSA KRUŽNICE OKRETANJA BRODA U STANJU BALASTA	86
ABLICA 4.17. OČITANI ISHODI POKUSA KRUŽNICE OKRETANJA ZA POTPUNO NAKRCANI BROD	87
ABLICA 4.18. PODACI ZA ISPITIVANJE Z-POKUSA (10-10) BRODA U STANJU BALASTA	87
ABLICA 4.19. OČITANI KUTEVI PREMAŠAJA Z-POKUSA (10-10) ZA BROD U STANJU BALASTA	88
ABLICA 4.20. OČITANI KUTEVI PREMAŠAJA Z-POKUSA (20-20) ZA BROD U STANJU BALASTA	89
ABLICA 4.21. USVOJENA VRIJEDNOST NAPREDOVANJA ZA PROMJENU PRVOBITNOG KURSA OD 10 STUPNJEVA	91
ABLICA 4.22. GEOMETRIJSKE KARAKTERISTIKE KORMILA SA ZAKRILCEM	94
ABLICA 4.23. USPOREDBA KOEFICIJENATA UZGONA CL ZA RAZLIČITE IZVEDBE KORMILA	99

PRILOZI

Prilog 1. Linije broda

Prilog 2. Konvencionalan način prikaza linija broda

Image: state stat	<u>.</u>	 	 	 · · · · · · · · · · · · · · · · · · ·
Image: state in the state				
Image: state in the state				

$L_{R} = 100$	0416mm						
R 5	R 6	R 7	R 8	R 9	R 10	R 11	R 12

KRMA

VL 3	VL 2		VL 1			
·	·	,	·	 ·	·	· · · · ·

Lr = 1	00416mm							
5	R 6	R 7	R 8	R 9	R 10	R 11	R 12	

V	7L 3 VL 2	VL 1					

R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16
						26						