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ABSTRACT

This dissertation addresses the challenges in the spectral representation of non-
stationary signals using joint time-frequency distributions (TFDs). Heuristic time-frequency
methods introduce additional interfering energy clusters, while the wrong choice of pa-
rameters in advanced methods may lead to the loss of useful components, thus restricting
their practical use.

Existing concentration and entropy measures, along with their optimization methods,
are appropriate when the structure of the useful components is preserved. However, these
methods lack local positional information on the useful components, thereby making it
difficult to account for the possible undesired loss of such components. The absence
of a suitable criterion and optimization procedure for advanced methods, such as the
compressive sensing (CS) method, has led to an experimental selection of the method’s
parameters, which requires specialist knowledge and increases the unreliability of its
application for a wide range of signals.

To surmount these challenges, this dissertation proposes performance criteria based on
the localized Rényi entropy (LRE) and the estimated instantaneous frequencies and group
delays, formulated as objective functions of multi-objective meta-heuristic optimization
algorithms. Two methods are also proposed to further improve the TFD reconstruction
method: a locally adaptive sparse reconstruction algorithm based on the LRE and an
improved selection of the CS area. The here-proposed methods are tested on synthetic and
real-life signals, with a focus on their application in electroencephalogram signal analysis.
The obtained results show improvements compared with the existing state-of-the-art
concentration measures, optimization procedures, and TFD reconstruction algorithms.

Keywords: Time-frequency signal analysis, localized Rényi entropy, multi-objective
meta-heuristic optimization, compressive sensing, ambiguity function, instantaneous fre-
quency, data clustering, electroencephalogram.
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PROŠIRENI SAŽETAK

Analiza korisnih informacija iz signala od velike je važnosti u raznim primjenama
u praksi. Korištenje klasične Fourierove transformacije (FT) pokazalo se neefikasno za
nestacionarne signale čiji frekvencijski spektar pokazuje ovisnost o vremenu. Njihova
analiza zahtijeva korištenje napredne tehnike prikaza signala u zajedničkoj vremensko-
frekvencijskoj (VF) domeni. Unatoč brojnih prednosti VF analize signala u odnosu na
klasični pristup, neizvedivo je postići savršenu lokalizaciju energije u idealnoj vremensko-
frekvencijskoj distribuciji (VFD) signala u stvarnim primjenama.

Linearne VFD, poput kratkotrajne FT, računski su jednostavne, ali ograničene su
kompromisom između vremenske i frekvencijske razlučivosti. Kvadratne VFD (KVFD)
češće se koriste u praksi, ali njihova kvadratna priroda uvodi neželjene među-članove,
posebno kada signal posjeduje više od jedne komponente ili barem jednu nelinearnu
frekvencijski moduliranu komponentu. Iako dvodimenzionalni niskopropusni filtar u
domeni neodređenosti (DN) može filtrirati među-članove, time se neželjeno smanjuje
koncentracija korisnih informacija (auto-članova). Spomenuti kompromis, koji još uvijek
predstavlja izazov u ovom području, potaknuo je razvoj raznih naprednih metoda.

Od posebnog interesa u ovom doktorskom radu je napredna metoda koja koristi svojstva
komprimiranog uzorkovanja (KU) i prorijeđenosti signala, čija su svojstva omogućila
rekonstrukciju VFD signala iz komprimiranih uzoraka domene neodređenosti. Kako bi
se nadoknadio nezaobilazni gubitak razlučivosti auto-članova, u ovoj metodi koriste se
rekonstrukcijski algoritmi koji su pokazali poboljšanu učinkovitost u odnosu na razmatrane
klasične i napredne VF metode. No, VFD rekonstrucijska metoda zahtijeva veću računalnu
složenost i složeniju uporabu za korisnika. Naime, ulazni parametri ove metode moraju
biti pažljivo određeni s obzirom na dani signal, što se u dosadašnjim istraživanjima obično
odradilo eksperimentalnim putem, pritom smanjujući pouzdanost metode. Odabir njenog
regulacijskog parametra posebno je ključan, jer neispravan odabir dovodi do neželjenog
gubitka auto-članova, što nije bio problem kod klasičnih VF metoda. Najčešće korištene
globalne mjere koncentracije i entropijske mjere učinkovite su za procjenu klasičnih VF
metoda koji balansiraju isključivo kompromis između rezolucije auto-članova i kvalitete
suzbijanja među-članova. Međutim, spomenute mjere pokazale su se neprikladnim za
otkrivanje potencijalno izgubljenih auto-članova VFD rekonstrukcijske metode. Razlog
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PROŠIRENI SAŽETAK

tome je u nedostatku lokalne pozicijske informacije o auto-članovima signala čiji gubitak
postojeće mjere ocjenjuju poželjnim, jednako kao i gubitak među-članova. Također,
trenutno ne postoji dostupan optimizaciji pristup za automatski odabir parametara VFD
rekonstrukcijske metode bez prethodnog znanja o signalu, s obzirom da minimizacijom ili
maksimizacijom postojećih mjera optimizacija konvergira ka praznoj rekonstruiranoj VFD.

U svrhu prevladavanja navedenog problema, u ovom doktorskom radu predloženi su
odgovarajući kriteriji učinkovitosti VFD bazirani na lokaliziranoj Rényijevoj entropiji
(LRE) te procijenjenim trenutnim frekvencijama i spektralnim pomacima. Predloženi
kriteriji implementirani su u objektne funkcije višeciljnih meta-heurističkih optimizacijskih
algoritama za automatsku optimizaciju parametara VFD rekonstrukcijske metode bez
potrebe za bilo kakvim predznanjem od korisnika. U tu svrhu, istraženi su nedostaci
postojećeg lokalizacijskog pristupa isključivo kroz vremenske isječke, na temelju čega je
predložena kombinirana lokalizacija koja ciljano koristi vremenske i frekvencijske isječke. S
ciljem daljnjeg poboljšanja performansi VFD rekonstrukcijske metode, u ovom doktorskom
radu predložene su dodatne dvije metode. Prva metoda je rekonstrukcijski algoritam čiji je
operator sažimanja informacija baziran na LRE, dok druga metoda unapređuje odabir KU
područja adaptivnim prilagođavanjem na korisne uzorke u DN. Opisane metode testirane su
na sintetičkim i stvarnim signalima iz prakse, pri čemu je naglasak na primjeni u području
analize elektroencefalogram (EEG) signala. U ovom doktorskom radu, od značajnog
interesa su EEG signali napadaja epilepsije. Njihova nestacionarnost i više-komponentnost
sa sinusnim i impulsnim karakteristikama predstavlja značajan izazov za VF metode, čiji bi
doprinos pomogao u daljnjem razvoju alata za analizu signala napadaja. Dobiveni rezultati
pokazuju poboljšanja u usporedbi s najsuvremenijim postojećim mjerama koncentracije i
optimizacijskim procedurama, te algoritmima VFD rekonstrukcije.

Ključne riječi: Vremensko-frekvencijska analiza signala, lokalizirana Rényijeva entro-
pija, višeciljna meta-heuristička optimizacija, komprimirano uzorkovanje, domena neodre-
đenosti, trenutna frekvencija, grupiranje podataka, elektroencefalogram.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In numerous real-life situations, mere observation of a signal’s behavior over time
proves insufficient to comprehend the underlying phenomenon. Understanding its fre-
quency content becomes imperative in such cases. While the Fourier transform has been
conventionally employed for this purpose, it falls short for non-stationary signals featuring
time-dependent frequency content as the time properties of the signal are disregarded.
In this circumstances, the joint time-frequency (TF) domain emerges as the preferred
observation domain for non-stationary signals, as it allows for a comprehensive depiction
of signal energy conjointly in relation to both time and frequency. Nonetheless, it is prac-
tically infeasible to attain a exceptional localization of energy in the ideal time-frequency
distribution (TFD) in real-world applications, given inherent practical constraints [14, 113].

The short-time Fourier transform, which falls under the linear class of TFDs, exhibits
a restricted resolution and necessitates the compromise between its quality in time or
frequency [14, 29]. In contrast, the quadratic class of TFDs (QTFD) is widely utilized,
but its quadratic attribute initiates unwanted cross-terms, particularly in scenarios charac-
terized by the existence of multiple signal components or a minimum of one non-linear
frequency modulated component [14, 29]. While the two-dimensional low-pass filter in the
ambiguity function (AF) can filter out cross-terms, it also diminishes the concentration of
auto-terms. This trade-off, which still presents a challenge in this field, has inspired the
growth of a number of advanced methods [14, 29, 44, 91, 113].

Of particular interest in this dissertation is an advanced method based on compressive
sensing (CS), a rapidly expanding research area in signal analysis using time-frequency
methods with numerous applications [37, 89, 96, 107, 108, 114, 115, 127, 134, 136, 140].
Specifically, the CS-based approach is utilized for TF signal analysis to reconstruct a
signal’s TFD from a small subset of auto-term-related samples selected from the AF, thus
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forming the CS-AF area. To overcome the inherent loss of auto-term concentration, sparse
reconstruction algorithms are employed, which have demonstrated superior performance
compared to classical and advanced TF methods [107, 108, 127, 131].

Despite the superior performance of the CS-based method for TF signal analysis, it
incurs increased computational complexity and a more complex user experience. The
method’s input parameters must be defined carefully, usually through experimental selec-
tion, which may compromise the sparse TFD reconstruction’s reliability. The selection
of the regularization parameter is particularly crucial, as an incorrect choice may lead
to the loss of auto-terms, which is not a concern in classical TF methods [37, 127]. The
state-of-the-art global concentration measures are effective for evaluating classical TF
methods, which control auto-term resolution and cross-term suppression. However, these
measures are inadequate for detecting missing auto-terms in CS-based methods and may
even artificially enhance their values as the number of samples decreases. Currently, there
is no optimization approach available to select the CS-based method’s parameters lacking
in any former comprehension regarding the signal.

The above-mentioned limitations indicate a need for further improvement of the
underlying algorithms of the CS-based method. First, the thresholding procedure with the
regularization parameter, which relies only on the amplitude difference in favor of auto-
terms compared to cross-terms, may not always be reliable. Second, the selection of the
CS-AF area using geometrically strict rectangles [37, 127, 131] around the AF origin may
include unnecessary samples for auto-term reconstruction, noise, and cross-term-related
samples that have not been properly avoided.

The primary real-life signal example investigated in this dissertation is the non-
stationary electroencephalogram (EEG) seizure signal comprising multiple components
[17, 59, 60, 62, 86]. This signal has remained a challenging task for proper representation
in the TF domain due to its sinusoidal and spike characteristics. The ability to detect
and comprehend the underlying mechanisms of seizures is of paramount importance to
neuroscience, as it has significant implications for the development of more efficacious
treatments for neurological conditions [31, 36, 62, 63, 66, 85, 86, 124].

1.2 Objectives and Scientific Contributions

Based on the scientific motivation outlined above, the primary objective of the research
presented in this dissertation is to establish proper criteria for assessing the performance
of reconstructed TFDs. Specifically, the here-presented criteria should effectively address
the loss of auto-terms and be suitable for implementation as objective functions within an
automatic, multi-objective optimization approach that avoids convergence to an empty
TFD, as occurs with existing methods. Therefore, our first hypothesis is that incorporating
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information about the number and local behavior of signal’s components in a TFD, which
can be derived using the localized Rényi entropy (LRE) [120, 121], can overcome these
limitations. To overcome the one-dimensional (1-D) nature of LRE information, the
development of a 2-D performance criteria established on the concepts of instantaneous
frequency (IF) and group delay (GD) will be explored.

As the LRE is an important part of this research, its potential shortcomings will
be thoroughly addressed. In particular, its estimation reliability of the local number of
components using time slices diminishes as signal’s components diverge from the method’s
reference signal, which aligns with the time axis. Consequently, our second hypothesis is
that more precise estimations may be achieved for certain signals by considering frequency
slices and calculating the local number of components in frequency bins. In this dissertation,
the shortcomings of using localization explicitly in time slices in several applications will
be addressed, and the need for both localization approaches will be carefully analyzed.

The secondary aim of the research outlined in this dissertation is to enhance the CS-
based method. Our third hypothesis posits that auto-terms exhibit higher local surfaces
than cross-terms in each time or frequency slice of a filtered TFD. As such, the simple
thresholding operator with the regularization parameter should be replaced with a more
sophisticated operator that considers not only amplitude but also the number and position
of auto-terms. This may result in increased detection and maintenance of auto-terms in
the reconstructed TFD. Furthermore, the parametrization of the existing CS-AF area
will be analyzed, which may be optimized with a clustering method to abandon its strict
rectangular shape and allow the selection of samples that follow the trajectory of auto-terms
in the AF. Excluding noise or cross-term-related samples using this approach will prevent
their reappearance in the reconstructed TFD, while the inclusion of more auto-term-related
samples will enhance the concentration of the reconstructed TFD.

Taken together, achieving these objectives in this dissertation will enhance the overall
efficacy of the CS-based method across various signals. The proposed multi-objective
optimization approach will reduce the need for signal specialists to intervene and ensure
automatic convergence to a resulting TFD with preserved auto-terms, high resolution, and
suppressed cross-terms. Importantly, beyond the scope of this dissertation, the presented
multi-objective optimization approach holds tremendous potential for a wide range of
applications across various methods.

Therefore, the novel scientific contributions introduced in this dissertation are concisely
outlined into four points as follows:

1. Optimization of TFDs using multi-objective meta-heuristic algorithms (Sections 4.2
and 6.3).

2. A shrinkage algorithm for sparse TFD reconstruction based on the one-dimensional
localized Rényi entropies (Section 5.1).
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3. An algorithm for adaptive selection of the parametrized CS area in the ambiguity
domain using the data clustering method to improve the concentration of useful
components and suppress interference and noise in the reconstructed TFD (Section
5.2).

4. A method for automatic estimation of the instantaneous frequency and group delay
for EEG seizure signals analysis (Sections 6.1, 6.2, and 7.2).

1.3 Organization of the Doctoral Dissertation

This dissertation comprises a total of eight chapters and six appendices in its organiza-
tional structure, offering a methodical and comprehensive presentation of the conducted
research. A succinct overview of the dissertation chapters is presented below for the
reader’s perusal.

• Chapter 1 provides a scientific motivation for the presented research and delineates
the primary objectives and contributions of the dissertation. Additionally, this
chapter furnishes a succinct outline of the dissertation structure.

• Chapter 2 presents an overview of time-frequency signal processing, emphasizing
the benefits of utilizing a two-dimensional approach compared to traditional one-
dimensional methods in the time and frequency domains. The chapter reviews
classical and advanced numerical techniques for computing TFDs and assesses the
trade-off between auto-term resolution and cross-term removal for the quadratic class
of TFDs and TFDs with adaptive directional kernels utilizing state-of-the-art global
concentration measures. The efficacy of these TFDs is evaluated using a synthetic
signal.

• Chapter 3 gives an exposition of compressive sensing methodology utilizing the
ambiguity function to enhance TFD concentration. Advanced sparse reconstruction
algorithms based on the ℓ1 norm are presented. Additionally, the chapter addresses
the challenges related to the selection and assessment of the regularization parameter
and demonstrates its effect on the reconstruction algorithms’ performance applied to
synthetic signals in the presence of noise.

• Chapter 4 presents the original scientific contribution of this dissertation. The
chapter begins with an outline of the localized Rényi entropy, highlighting its
limitations. Subsequently, an alternative method for computing the localized Rényi
entropy is introduced and discussed, leading to the definition of TFD performance
criteria. A multi-objective optimization approach is examined, succeeded by the
formalization of the objective functions. The efficacy of the proposed criteria in terms
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of reconstructed TFD evaluation and optimization is evaluated through experiments
conducted on synthetic signals in the presence of noise.

• Chapter 5 unveils two original scientific contributions of this dissertation, focusing
on the enhancement of the compressive sensing approach. It introduces a sparse
reconstruction algorithm founded on the localized Rényi entropy, as well as an
algorithm for adaptively determining the compressive sensing region, taking into
account explicitly auto-terms of the signal within the parameterized ambiguity
function. The efficacy of the here-proposed methods is evaluated through experiments
conducted on both synthetic and real-life signals in the presence of noise.

• Chapter 6 presents the original scientific contribution of this dissertation. The
chapter outlines a novel method for automatic detection of time-frequency regions
requiring different localization approaches. The proposed method is employed in a
strategy for combined IF and GD estimation, as well as in the enhancement of sparse
reconstruction described in Chapter 5 and in the definition of performance criteria
based on the estimated IFs and GDs. The effectiveness of each implementation is
comprehensively evaluated through experiments conducted on both synthetic and
real-life signals in the presence of noise.

• Chapter 7 involves the time-frequency analysis of EEG seizure signals using the
contributions of this dissertation. The chapter commences with a brief introduction
to EEG signals, after which a detailed exposition of the database and the illustrative
EEG signal employed in this dissertation is provided. The performances of combined
IF and GD estimation, as presented in Chapter 6, and sparse reconstruction, utilizing
the methods proposed in Chapter 5, are thoroughly examined.

• Chapter 8 summarizes the fundamental conclusions derived from this dissertation.
It also delves into potential avenues for future research, building upon the insights
and outcomes presented in the dissertation.

The experimental simulations of this dissertation have been performed in MathWorks
MATLAB1 programming language and numerical computing software. The base toolbox
used in the research is the Time-Frequency Toolbox2. The simulations were executed on a
PC with the AMD RyzenTM 9 5900X @ 3.70 GHz processor and 32GB of RAM.

1Available at: https://www.mathworks.com/products/matlab.html
2Available at: https://tftb.nongnu.org/
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CHAPTER 2

TIME-FREQUENCY SIGNAL
ANALYSIS

In this chapter, an in-depth exploration is undertaken to examine the benefits of
time-frequency representations over time- or frequency-only representations. It reviews
fundamental time-frequency notions, including analytic signals, instantaneous frequency
and group delay, and the ambiguity function. The properties of an ideal TFD and
conventional TFD calculation approaches, including the short-time Fourier transform and
the Wigner-Ville distribution, are discussed, as is an advanced TFD approach based on
adaptive kernel design.

The performance evaluation of TFDs is also addressed, and state-of-the-art performance
measures are introduced. Synthetic signals are used as examples to demonstrate the
effectiveness of these methods.

2.1 Fundamental Time-Frequency Concepts

2.1.1 Time-Domain and Frequency-Domain Representations of

Stationary and Non-Stationary Signals

A signal refers to a time-varying quantity that carries valuable information regarding
a physical process or phenomenon. In many applications, signals are measured and
represented as functions of time, t, denoted as z(t). This time-domain signal representation
allows us to observe the amplitude variation of the signal over time or the dispersion of
signal energy over time, which can be represented as |z(t)|2 [14, 29].

Apart from the time domain, signals may be effectively characterized in the frequency
domain, which provides valuable details about the signal’s spectral properties. The
frequency-domain representation of a signal, denoted as Z(f), is obtained through Fourier
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transform (FT), which states that any limited signal satisfying Dirichlet conditions is
expressed as a summation of sinusoids and cosinusoids (or complex exponentials) in distinct
frequencies, f :

Z(f) =
t→f
F{z(t)} =

∫ ∞
−∞

z(t)e−j2πftdt, (2.1)

where j is the imaginary unit. The FT provides a unique representation of a signal in terms
of its frequency components, allowing us to identify important features such as frequency
content, bandwidth, and phase information. The squared magnitude spectrum, denoted
as |Z(f)|2, represents the energy spectrum of a signal, which expresses the dispersion of
signal energy over the frequency domain [14, 29].

On the other hand, the inverse Fourier transform (IFT) allows us to recover a signal
from its frequency-domain representation. The IFT is given as:

z(t) =
t←f
F−1{Z(f)} =

∫ ∞
−∞

Z(f)ej2πftdf. (2.2)

The tools discussed here are particularly useful in the analysis of stationary signals,
which are portrayed by a constant frequency spectrum [14, 29]. A synthetic stationary
signal example and its corresponding time and frequency domain representations are
depicted in Figure 2.1. The time-domain representation of the instantaneous power |z(t)|2,
illustrated in Figure 2.1a, clearly indicates that the signal’s energy remains constant
over time. Furthermore, the frequency-domain representation in the form of the energy
spectrum |Z(f)|2, depicted in Figure 2.1b, confirms that the FT is an appropriate tool for
stationary signals, as it accurately captures their constant frequency content.

(a) (b)

Figure 2.1 Example of a stationary signal z(t) with a constant frequency spectrum: (a)
the signal’s instantaneous power, |z(t)|2; (b) the signal’s energy spectrum, |Z(f)|2.

In practical applications, most signals are non-stationary and exhibit a time-varying
frequency spectrum [14, 113]. In such cases, traditional representations in the time and
frequency domain alone are insufficient, as they fail to provide information on the number
of signal components, their frequency modulations, and time supports. Specifically, while
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the frequency-domain representation conveys the frequency components that exist within
a signal, it fails to offer any details on their time localization.

Furthermore, non-stationary signals are often multi-component, with their individual
components exhibiting different linear or non-linear frequency modulations and having
distinct time supports. Additionally, signals may be corrupted by noise in practice, which
further limits the usefulness of the FT. A multi-component signal is expressed as the sum
of two or more mono-component signals, mathematically written in the form of an analytic
associate, z(t), as:

z(t) =
NC∑
i=1

ai(t)e
jϕi(t), (2.3)

where ϕi(t) and ai(t) denote the instantaneous phase and amplitude of the i-th component
of the signal, respectively, while NC represents the overall number of signal components
[14, 29].

The limitations of one-dimensional signal representations are evidenced through the
analysis of a synthetic multi-component non-stationary signal, denoted as zSINLFM(t). This
signal contains one linear frequency modulated (LFM) component and one sinusoidal FM
component, and its corresponding time and frequency domain representations are depicted
in Figure 2.2. The inadequacy of the one-dimensional representations becomes apparent
as neither representation alone can distinguish between the two components or accurately
depict their frequency content.

(a) (b)

Figure 2.2 Example of a two-component non-stationary signal zSINLFM(t) with a linear
and sinusoidal frequency modulated component: (a) the signal’s instantaneous power,
|zSINLFM(t)|2; (b) the signal’s energy spectrum, |ZSINLFM(f)|2.

In light of the aforementioned shortcomings of analyzing non-stationary signals in
disjoint time and frequency domains, it becomes necessary to employ more sophisticated
methods that can simultaneously represent signals in both domains. Time-frequency
distributions (TFDs) have been developed to address this need by representing the signal
energy dispersion in relation to both time and frequency. In that manner, joint signal
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representations can be obtained in the two-dimensional time-frequency plane [14, 29, 44,
91, 113].

2.1.2 Analytic Signals

To understand time-frequency analysis, we should review the theory of the analytic
signal, denoted by z(t), or the analytic associate. A real signal is characterized by
its Hermitian symmetry, which mathematically describes the relationship between its
components at positive and negative frequencies [14, 29]:

S(−f) = S∗(f), (2.4)

where S(f) represents FT of the real signal s(t).

Equation (2.4) implies that no information is lost if the negative-frequency components
are discarded, i.e., Z(f) = 0, f < 0. This approach offers several advantages, such as
enabling sampling with half of the usual Nyquist rate, or the interference removal between
the signal’s positive and negative components in the time-frequency representation [14, 29].

By incorporating a Hilbert transform, denoted as H{s(t)}, into the imaginary compo-
nent, the analytic signal can be acquired from a real signal s(t) as [14, 29]:

z(t) = s(t) + jH{s(t)}. (2.5)

The Hilbert transform can be mathematically expressed as [14, 29]:

H{s(t)} = F−1
t←f

{
(−j sgn(f)) F

t→f
{s(t)}

}
= s(t) ∗ 1

πt
, (2.6)

where ∗ signifies convolution, while the signum function, sgn(ζ), is given as:

sgn(ζ) =


−1, ζ < 0

0, ζ = 0,

1, ζ > 0.

(2.7)

The analytic signal is a valuable resource for conducting time-frequency analysis given
its ability to involve both the original signal and its Hilbert transform. This feature enables
the simultaneous extraction of amplitude and phase information, thereby enhancing the
analytical capabilities of the signal. Henceforth, the analytical associate of all signals in
the continuation of this dissertation will be used.
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2.1.3 Ideal Joint Time-Frequency Representation

At any specific time, the ideal TFD, represented as ρ̂(t, f), is characterized by a Dirac
delta function positioned at the instantaneous frequency (IF), f0i(t), of the i-th component
[14, 29]:

ρ̂(t, f) =
NC∑
i=1

a2i (t)δ(f − f0i(t)), (2.8)

f0i(t) =
1

2π

d

dt
[arg(z(t))] =

1

2π

dϕi(t)

dt
, (2.9)

signifying the prominent frequency of the signal’s i-th component at a particular time
point.

The dual of the IF is the spectral delay (SD), τdi(f), of the i-th component, revealing
the prominent time when an assigned frequency appears [14, 29]:

τdi(f) = −
1

2π

d

df
[arg(Z(f))] = − 1

2π

dφi(f)

df
, (2.10)

where φi(t) is the signal’s i-th component phase of the FT of z(t). The SD and group
delay (GD) are related to each other with the same equation as (2.10), although they have
different physical interpretations. The SD is associated with an impulse, in contrast to the
GD, which pertains to the envelope of a narrow-band signal [14, 29].

Figure 2.3 displays the ideal TFDs of the stationary and non-stationary signals under
consideration. As illustrated in Figure 2.3a, the joint TF representation of the stationary
signal did not reveal any new information beyond that conveyed by the classical FT, which
is shown in Figure 2.1. In contrast, the ideal TFD of the non-stationary signal zSINLFM(t)

provides valuable insights into the signal’s components, their IF laws, and the time and
frequency supports.

(a) (b)

Figure 2.3 Ideal TFDs of the considered examples of: (a) a stationary signal; (b) a non-
stationary signal with a linear and sinusoidal frequency modulated component, zSINLFM(t).
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Numerical methods are commonly used for calculating TFDs in practical applications
due to the difficulty of obtaining analytical forms of signals [14, 29, 44, 91, 113]. However,
the accuracy and usefulness of TFDs depend on their properties, which must be carefully
considered when selecting a method for signal analysis. Desirable properties of TFDs that
are widely used in signal processing include [14]:

1. Realness and non-negativity – TFD is real and non-negative ∀t, f :

ρ̂(t, f) ∈ R, (2.11)

ρ̂(t, f) ≥ 0. (2.12)

2. Time- and frequency-shift invariances – any time or frequency shift in the signal
leads to a corresponding time or frequency shift in the TFD:

z(t− t0)⇐⇒ Z(f)e−j2πt0f ⇒ ρ̂(t− t0, f), (2.13)

z(t)ej2πf0t ⇐⇒ Z(f − f0)⇒ ρ̂(t, f − f0). (2.14)

3. Time and frequency marginals – instantaneous power, |z(t)|2, and energy spectrum,
|Z(f)|2, are derived by integrating the TFD over frequency and time, respectively:∫ ∞

−∞
ρ̂(t, f)df = |z(t)|2, (2.15)

∫ ∞
−∞

ρ̂(t, f)dt = |Z(f)|2. (2.16)

4. Total energy – total energy, Ez, is calculated by integrating the TFD over the whole
(t, f) domain and is equal to the energy calculated with Parseval’s theorem:

Ez =

∫ ∞
−∞
|z(t)|2dt =

∫ ∞
−∞
|Z(f)|2df =

∫ ∞
−∞

∫ ∞
−∞

ρ̂(t, f)dtdt. (2.17)

5. Instantaneous frequency – instantaneous frequency is determined as the first moment
of the TFD with respect to frequency:∫∞

−∞ fρ̂(t, f)df∫∞
−∞ ρ̂(t, f)df

=
1

2π

d

dt
[arg(z(t))]. (2.18)

6. Spectral delay – spectral delay is determined as the first moment of the TFD with
respect to time: ∫∞

−∞ tρ̂(t, f)dt∫∞
−∞ ρ̂(t, f)dt

= − 1

2π

d

df
[arg(Z(f))]. (2.19)
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7. Time and frequency supports – the TFD ρ̂(t, f) = 0 for t ∈ [t1, t2] or f ∈ [f1, f2] if
s(t) = 0 or S(f) = 0 over equal time or frequency interval, respectively.

8. Reduced interference – the TFD is free of interference terms.

2.2 Short-Time Fourier Transform and Spectrogram

The short-time Fourier transform (STFT) is a widely used linear time-frequency
distribution that gives a combined time-frequency depiction of a signal [2, 14, 29]. The
STFT is obtained by multiplying a signal z(τ) by a window function, denoted with w(τ),
centered at time τ = t, followed by the computation of the FT of each resulting windowed
signal. The STFT, Fz(t, f), is given analytically as [2]:

Fz(t, f) =

∫ ∞
−∞

z(τ)w(τ − t)e−j2πfτdτ. (2.20)

The compromise between the time and frequency resolution of the STFT depends on
the window length and shape. Employing shorter windows leads to an amelioration in
time resolution but a decline in frequency resolution, whereas employing longer windows
offers heightened frequency resolution at the cost of sacrificing time resolution. Commonly
used window functions include the Rectangular, Triangular, Hanning, Hamming, among
others [14, 29, 113].

With the intention of obtaining the energy dispersion of the signal in time and frequency
jointly, the squared magnitude of the STFT is used. This representation is commonly
referred to as the spectrogram (SPEC), Sz(t, f), and is defined as [14, 29, 113]:

Sz(t, f) = |Fz(t, f)|2 =
∣∣∣∣∫ ∞
−∞

z(τ)w(τ − t)e−j2πfτdτ

∣∣∣∣2 . (2.21)

The spectrogram is a powerful tool used to analyze signals with varying spectral content
and is widely applied in signal processing, speech and audio analysis, and image processing
[14, 44, 91, 113]. However, it is important to note that the spectrogram is influenced by
the Heisenberg uncertainty principle, which signifies that there is a fundamental trade-off
between time and frequency resolution. In other words, any attempt to enhance one
resolution at the expense of the other will be subject to this limit [14, 38].

The choice of window function and length, denoted as Nw, plays a crucial role in
balancing time and frequency resolutions in spectrogram analysis. For instance, short
windows are often used to analyze transient signals with abrupt changes in time, while
longer windows are more appropriate for signals with slowly varying frequency content.
The selection of window function and length relies on the specific application and the
desired balance between time and frequency resolution [14, 44, 91, 113].
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2.3 Quadratic Time-Frequency Distributions

Linear TFDs have limitations and drawbacks that make them unsuitable for certain
types of signals and applications. For example, they may not be able to accurately
represent signals with non-stationary or time-varying spectral content, or may suffer from
poor resolution given the inherent compromise between time and frequency resolution. To
overcome these issues, a class of time-frequency distributions called quadratic time-frequency
distributions (QTFD) has been developed [14, 29, 113].

2.3.1 Wigner-Ville Distribution

The Wigner-Ville distribution (WVD) is a primary member of the QTFD class [126, 137].
QTFDs acquire the time dependency of the signal by multiplying the signal z

(
t+ τ

2

)
shifted in time with the lag variable, denoted with τ , with its time-shifted complex
conjugated copy z∗

(
t− τ

2

)
, known as the instantaneous auto-correlation function (IACF),

Kz(t, τ) [14, 29]:
Kz(t, τ) = z

(
t+

τ

2

)
z∗
(
t− τ

2

)
. (2.22)

The WVD, Wz(t, f), is defined as the FT of the IACF as [14, 29]:

Wz(t, f) =

∫ ∞
−∞

z
(
t+

τ

2

)
z∗
(
t− τ

2

)
e−j2πfτdτ. (2.23)

The WVD delivers an almost perfect representation for mono-component LFM signals
[14, 29]. However, for multi-component signals, the WVD is accompanied by cross-terms
that emerge as a mathematical artifact given the quadratic nature of the IACF between
each pair of components at their midpoints. They manifest as oscillations in the time-
frequency domain that are directly commensurate with the spatial separation between the
interfering components and exhibit a perpendicular orientation to the linear trajectory
connecting the components. In contrast, auto-terms provide valuable information about
the energy of the components [14, 29].

2.3.2 Ambiguity Function and Cross-Term Filtration

The cross-terms usually create a visual understanding of the TFD challenging. Hence,
in order to obtain interpretable time-frequency representations, the unwanted cross-terms
need to be attenuated. The attenuation of the cross-terms is possible by smoothing the
WVD in the Doppler-lag (ν, τ) domain, known as the ambiguity function (AF) [14, 29]:

Az(ν, τ) =

∫ ∞
−∞

∫ ∞
−∞

Wz(t, f)e
j2π(fτ−νt)dtdf, (2.24)
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by a simple multiplication with the two-dimensional low-pass filters, also known as kernels,
g(ν, τ) [14, 29]:

Az(ν, τ) = g(ν, τ)Az(ν, τ). (2.25)

Low-pass filtration is a viable technique due to the slow variation of auto-terms, which
are situated near the origin of the Doppler-lag domain. Conversely, the rapid variation of
cross-terms places them farther from the origin [14, 29]. Nevertheless, this filtration leads
to the partial loss of the auto-terms, resulting in a decrease in their concentration in the
TF domain. Balancing cross-term suppression and auto-term concentration is a crucial
challenge in TF signal processing, which leads to the establishment of the QTFD class,
ρ(t, f), mathematically defined as the forward and inverse two-dimensional FT of the AF
[14, 29]:

ρ(t, f) =
τ→f
F{

t←ν
F−1{Az(ν, τ)}} =

∫ ∞
−∞

∫ ∞
−∞
Az(ν, τ)e

j2π(νt−fτ)dνdτ. (2.26)

Equation (2.26) indicates duality among ρ(t, f) and Az(ν, τ), which gives the possibility
for a kernel design in either domain [14, 29]:

Az(ν, τ) = g(ν, τ)Az(ν, τ)⇐⇒ ρ(t, f) = γ(t, f) ∗
t
∗
f
Wz(t, f), (2.27)

where γ(t, f) denotes the smoothing kernel in the TF domain.

For example, examine a multi-component signal consisting of two tones with frequencies
f1 and f2:

z(t) = ej2πf1t + ej2πf2t. (2.28)

Signal kernel, Kz(t, τ), is calculated as:

Kz(t, τ) = z
(
t+

τ

2

)
z∗
(
t− τ

2

)
= ej2πf1τ + 2 cos[2π(f1 − f2)t]e

j2π
f1+f2

2
τ + ej2πf2τ ,

(2.29)

while the WVD follows as F
τ→f
{Kz(t, τ)}:

Wz(t, f) = δ(f − f1)︸ ︷︷ ︸
auto-term

+2 cos[2π(f1 − f2)t]δ

(
f − f1 + f2

2

)
︸ ︷︷ ︸

cross-term

+ δ(f − f2)︸ ︷︷ ︸
auto-term

. (2.30)

Finally, the signal’s AF is calculated as:

Az(ν, τ) = ej2πf1τδ(ν)︸ ︷︷ ︸
auto-term

+ ejπ(f1+f2)τδ(ν − (f1 − f2))︸ ︷︷ ︸
cross-term

+

+ ejπ(f1+f2)τδ(ν + (f1 − f2))︸ ︷︷ ︸
cross-term

+ ej2πf2τδ(ν)︸ ︷︷ ︸
auto-term

.
(2.31)
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(a) (b)

Figure 2.4 Ambiguity function of the considered examples of: (a) a stationary signal
with two constant frequency modulated components; (b) a non-stationary signal with a
linear and sinusoidal frequency modulated component, zSINLFM(t).

The magnitude plot of the AF is commonly used to represent the auto-terms and cross-
terms, as demonstrated in Figure 2.4. For the signal’s AF calculated in (2.31), the
auto-term trajectories of both tones pass through the AF origin and do not intersect with
the cross-terms, as illustrated in Figure 2.4a. However, for the signal zSINLFM(t) depicted
in Figure 2.4b, the cross-terms intersect with the sinusoidal component, presenting a more
challenging task for kernel design.

Numerous QTFDs have been designed with varying levels of compromise between the
concentration of auto-terms and the suppression of cross-terms [14, 44, 91, 113]. Table
2.1 lists the most frequently utilized QTFDs alongside their kernels in the time-lag and
Doppler-lag domains. Figure 2.5 demonstrates the chosen QTFDs and the SPEC achieved
for the signal zSINLFM(t).

Notably, the WVD and SPEC exhibit entirely different performance characteristics.
Specifically, the WVD (shown in Figure 2.5a) provides superior auto-term resolution while
being heavily influenced by cross-terms, whereas the SPEC (shown in Figure 2.5b) does
not experience any cross-terms but exhibits the poorest auto-term resolution. Other
QTFDs fall somewhere between these two extremes, with the EMBD emerging as the TFD
that achieves the optimal balance between auto-term resolution quality and cross-term
suppression, as shown in Figure 2.5f. Additionally, we can identify two categories of
cross-terms: the inner-terms resulting from non-linear frequency modulation of the signal
component and the outer-terms arising from the interaction between the signal components.
Both cross-term categories, particularly when superimposed with noise, may diminish the
interpretation of the TFD in practice.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5 Considered QTFDs of the signal zSINLFM(t): (a) WVD; (b) SPEC (Hamming,
Nw = 32); (c) CWD (σCW = 1), (d) BJD (αBJ = 0.4), (e) MBD (βMB = 0.2); (f) EMBD
(αEMB = 0.3, βEMB = 0.12.)
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Table 2.1 Time-lag and Doppler-lag selected QTFD kernels.

Kernel

Distribution G(t, τ) g(ν, τ)

Wigner-Ville [126, 137] δ(t) 1

Choi-Williams (CWD) [27]
√
πσCW
|τ | e−π

2σCWt2/τ2 e−ν
2τ2/σCW

Born-Jordan (BJD) [22] 1
|2αBJτ | rect

t
2αBJτ

sinc(2αBJντ)

Modified B (MBD) [48] cosh−2βMB t∫∞
−∞ cosh−2βMB ξdξ

|Γ(βMB+jπν)|2
Γ2(βMB)

Extended Modified B
(EMBD) [18]

|Γ(αEMB+jπτ)|2 cosh−2βEMB t

Γ2(αEMB)
∫∞
−∞ cosh−2βEMB ξdξ

|Γ(βEMB+jπν)|2
Γ2(βEMB)

|Γ(αEMB+jπτ)|2
Γ2(αEMB)

2.4 Adaptive Time-Frequency Distribution

However, despite the advantages of QTFDs, they suffer from an inability to perfectly
concentrate the energy of signal auto-terms while suppressing cross-terms. To address this
issue, adaptive directional filtering has been used to achieve a better compromise between
the resolution of auto-terms and the suppression of cross-terms [59, 64, 68]. Conventional
filtering methods employ a uniform directional kernel across all points within a TFD
without making local adaptations. However, these techniques prove inadequate for signals
exhibiting energy distribution in multiple directions. To address these limitations, an
adaptive directional TFD (ADTFD) approach was introduced [64], which dynamically
fine-tunes the orientation of the smoothing kernel at every point within the TFD, as [64]:

ρ(ad)(t, f) = ρ(t, f) ∗
t
∗
f
γθ(t, f), (2.32)

where γθ(t, f) is the adaptive directional kernel, whose orientation is regulated by the
parameter θ. The adaptive directional kernel may be applied to various TFDs with the
goal of further improving its performance. However, it has been shown that the WVD is
not suitable when analyzing noisy signals or signals with non-LFM components [59, 64, 68].
Instead, the EMBD has been selected as an underlying QTFD for the study in this
dissertation, as in [59, 64, 65, 67, 68].

The double-derivative directional Gaussian filter (DGF), which satisfies the required
properties of the adaptive directional kernel, has been selected as γθ(t, f) [64, 78]:

γθ(t, f) =
ab

2π

d2

df 2
θ

e−a
2t2θ−b

2f2
θ , (2.33)

where fθ = −t sin(θ) + f cos(θ) and tθ = t cos(θ) + f sin(θ), while the smoothing degree
along the time and frequency axes is governed by parameters a and b, respectively.
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The local orientation angle of γθ(t, f) is dynamically adjusted for every TF point by
optimizing the correlation between TF ridges and the γθ(t, f), as [64]:

θ(t, f) = argmax
θ

∣∣∣∣|ρ(t, f)| ∗t ∗f γθ(t, f)

∣∣∣∣, −π/2 ≤ θ ≤ π/2. (2.34)

Previous investigations [64, 68] have proposed that designating a small value to pa-
rameter a facilitates pronounced smoothing along the major axis, while an increase in the
parameter b value impedes the consolidation of closely proximate components. To provide
accurate guidelines, it is recommended to set a within the range of [2,3], and b within
the range of [5,30]. Furthermore, besides the smoothing parameters a and b, the window
length, denoted with WL, of γθ(t, f) plays a crucial role. A smaller WL inadequately
resolves closely located components and eliminates cross-terms, while preserving the energy
of short-duration components. Contrarily, an augmented WL brings about the inverse
outcome [64, 68].

The exhaustive search with all (a, b,WL) combinations is computationally demanding;
thus, an automatically optimized version of the ADTFD, specifically the locally adaptive
ADTFD (LO-ADTFD)1, denoted as ρ(lo)(t, f), was used in this dissertation [87]. The LO-
ADTFD is derived by selecting TF points with the minimum value from a predetermined
set of ADTFDs. In this dissertation, the parameter values (a, b) were chosen from the set
{(2, 20), (2, 30), (3, 6), (3, 8)}, while the WL was optimized for every (a, b) combination
using the evaluation metric given in [116]. The optimization was performed within the
range of [Nt/4 : 4 : 3Nt/8] for the combination {(3, 8), (2, 30)} and [Nt/8 : 4 : Nt/4] for
the combination {(3, 6), (2, 20)}, as recommended in [87]. Here, Nt denotes the number of
time samples. An example of LO-ADTFD for the signal zSINLFM(t) is depicted in Figure
2.6, showing high auto-term resolution and cross-term suppression.

Figure 2.6 LO-ADTFD of the signal zSINLFM(t).

1Available at: https://github.com/mokhtarmohammadi/Locally-Optimized-ADTFD

19



TIME-FREQUENCY SIGNAL ANALYSIS

2.5 Global Concentration Measures for

Time-Frequency Distributions

Due to the absence of a universally optimal kernel suitable for all applications, there
has been a demand for an unbiased method to evaluate the performance of TFDs [14].
One such approach is to quantify the concentration of the auto-terms and the quality
of cross-term suppression by computing the TFD complexity. In this section, the state-
of-the-art global concentration measures are reviewed that consider the TFD as a whole
and produce a single numerical value. First, Jones and Park introduced a concentration
measure [50], known as the ratio-of-norms, MRN, which is computed as follows [50]:

MRN =

∫∞
−∞

∫∞
−∞ ρ4(t, f)dtdf(∫∞

−∞

∫∞
−∞ ρ2(t, f)dtdf

)2 . (2.35)

A high value of MRN indicates a high TFD concentration, and vice versa. However, this
measure can produce misleading results when signal components have varying amplitudes.
Given that the sparsity complexity requirement is met by TFD, the Hoyer measure can
be employed, which is expressed as [47]:

MH =

√H − ∫∞
−∞

∫∞
−∞ |ρ(t, f)|dtdf√∫∞

−∞

∫∞
−∞ |ρ(t, f)|2dtdf

 (
√
H − 1)−1, (2.36)

where H = Nt × Nf is the total size of the TFD (Nf being the number of frequency
bins). A larger MH value signifies a more condensed and preferable TFD, and vice versa.
An alternative method for assessing the TFD effectiveness is by quantifying its region of
support, defined as [116]:

MS =
1

NtNf

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣∣ ρ(t, f)∫∞
−∞

∫∞
−∞ ρ(t, f)dtdf

∣∣∣∣∣
1
ps

dtdf

ps

, ps > 1 ∈ N, (2.37)

where ps = 2 has been recommended [116]. A lower MS value indicates a higher TFD
concentration, and vice versa. Finally, given that TFD signifies a pseudo-energy density in
the TF domain, the Rényi entropy, denoted as R, may be used to quantify TFD complexity,
given as [3, 8, 138]:

R =
1

1− αR
log2

∫ ∞
−∞

∫ ∞
−∞

(
ρ(t, f)∫∞

−∞

∫∞
−∞ ρ(t, f)dtdf

)αR

dtdf, αR > 2 ∈ N. (2.38)
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Table 2.2 Concentration measures of the considered QTFDs, SPEC and LO-ADTFD for
the signal zSINLFM(t). Values in bold indicate the best-performing TFD according to the
respective measure.

zSINLFM(t)

TFD MRN × 104 MH MS R

WVD 6.8591 0.4414 2.9010 9.3291
SPEC 3.4575 0.4804 0.4199 12.0026
CWD 4.4747 0.4143 1.1001 11.2507
BJD 4.2860 0.4435 0.9202 11.2052
MBD 16.0 0.5501 0.9722 9.9678

EMBD 6.8768 0.5606 0.3807 11.4196
LO-ADTFD 19.0 0.7597 0.0840 9.7773

In practical applications, αR = 3 is usually used [3, 8, 138], as in this dissertation. When
αR takes on an odd number value, the cross-terms are eliminated, and the Rényi entropy
solely captures information from the auto-terms. As MS, a lower R value represents a
more desirable TFD, and vice versa.

Using ps = 2 and αR = 3, concentration measures were computed for the chosen QTFDs
of the signal zSINLFM(t). The results are provided in Table 2.2, utilizing the measures given
by (2.35), (2.36), (2.37), and (2.38). Since the Rényi entropy only considers the auto-terms
and disregards cross-terms, the TFD with the most concentrated auto-terms, in this case
the WVD, is deemed the best-performing one. However, the other three concentration
measures select LO-ADTFD as the optimal choice. Among the concentration measures
considered, MS and R have been widely utilized in numerous studies, to name a few
[14, 44, 91, 113, 127, 131].

2.6 Summary

This chapter has demonstrated the benefits of the combined time-frequency signal
representation compared to the disjoint time and frequency signal representations. It has
examined the desirable properties of an ideal TFD and compared conventional numerical
methods for TFD computation with the adaptive directional TFD. The superior perfor-
mance of the advanced, adaptive directional TFD has been evaluated with state-of-the-art
global TFD performance measures, evidencing feasibility in dealing with the compromise
between auto-term resolution and cross-term suppression.
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CHAPTER 3

TIME-FREQUENCY SIGNAL
ANALYSIS USING COMPRESSIVE
SENSING

This chapter presents the compressive sensing-based method as an advanced approach
to enhance TFD concentration. It investigates the application of sparse reconstruction
techniques employing ℓ0, ℓ1, and ℓ2 norm-based regularization functions and evaluates
the efficacy of state-of-the-art algorithms in achieving improved TFD concentration.
Additionally, the chapter critically examines the influence of selecting suitable regularization
parameters on the reconstructed TFD’s quality, raising concerns about the appropriateness
of employing global concentration measures introduced in the preceding chapter.

3.1 Sparse Time-Frequency Distribution

Reconstruction

The notion of computing sparse TFDs bears resemblance to the cross-term filtering
technique employed in QTFD. The QTFD methodology entails assigning weights to every
auto-term sample in accordance with its proximity to the AF origin. Conversely, the sparse
TFD method entails the selection of a limited number of auto-terms samples through a
technique named as compressive sensing (CS). The remaining points are then calculated
in order to produce the TFD with the fewest non-zero values, thereby achieving sparsity
[37, 108, 114, 127, 131].
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3.1.1 Problem Formulation

In matrix form, the AF filtering described by (2.25), results in the observation matrix,
or the CS-AF [108, 127, 131]:

AM
z (ν, τ) =

Az (ν, τ) , (ν, τ) ∈ CΩ,

0, otherwise,
(3.1)

where Az (ν, τ) is the matrix representation of the discrete AF in (2.24), while CΩ is
the index set of the (ν, τ) area around the AF origin. It is essential to clarify that the
approach presented in (3.1) diverges from the conventional CS technique that seeks the
reconstruction of the original signal. Instead, the objective is to reconstruct a TFD that is
devoid of cross-terms. Consequently, the selection of the CS-AF area cannot be a random
process. The AF samples must be selected purposefully to guarantee that they solely
correspond to the auto-terms.

To achieve a cross-terms-free TFD through sparse reconstruction, an adaptive rectangu-
lar CS-AF area of size N ′τ ×N ′ν has been proposed [127, 131], where N ′ν and N ′τ represent
the numbers of Doppler and lag bins, respectively. The CS-AF area, fixed adjacent to
the initial pair of cross-terms, is usually centered around the origin. The selection of the
parameters N ′τ and N ′ν is determined by matching the Doppler and lag distance between
the first pair of cross-terms and the AF domain origin. To accomplish this, the method
examines zero-lag (Az(ν, 0)) and the zero-Doppler (Az(0, τ)) slices, searching for the initial
spike of energy located away from the origin [127, 131]. By enlarging the size of this
area compared to the static

√
Nt ×

√
Nt area used in [21, 37, 114, 123], with cardinality

card
(
AM

z (ν, τ)
)
≊ Nt, the CS-AF area contains more samples related to auto-terms, while

simultaneously reducing the demands of the reconstruction algorithm [127, 131].

The difference between the static
√
Nt ×

√
Nt and adaptive N ′τ ×N ′ν CS-AF areas is

illustrated in Figure 3.1 for the signal zSINLFM(t) and signal zLFM(t) consisting of four
LFM components with varying amplitudes embedded in additive white Gaussian noise
(AWGN) with the signal-to-noise ratio SNR = 5 dB. From the visual observation of both
CS-AF areas, the N ′τ ×N ′ν area selected more auto-term-related samples while avoiding
cross-terms, compared to the

√
Nt ×

√
Nt. The importance of selecting the appropriate

CS-AF area will be further discussed in this dissertation.

The relation between the sparse TFD, denoted as Υz(t, f), and AM
z (ν, τ) is given as

follows [108, 127, 131, 147]:

Υz(t, f) = ΨH ·AM
z (ν, τ), (3.2)

where ΨH denotes the Hermitian transpose of a domain transformation matrix portraying
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(a) (b)

Figure 3.1 Ambiguity functions with the static CS-AF area,
√
Nt ×

√
Nt, (red rectangle)

versus the automatically obtained adaptive CS-AF area, N ′τ and N ′ν , (black rectangle):
(a) zSINLFM(t),

√
Nt ≊ 11 (static), N ′τ = 25, N ′ν = 11 (adaptive); (b) zLFM(t),

√
Nt ≊ 15

(static), N ′τ = 17, N ′ν = 31 (adaptive).

the 2D FT analogue to (2.24). In contrast to the conventional CS formulation, the
objective in (3.2) is to determine the optimal solution for Υz(t, f) using the information
provided by AM

z (ν, τ). Due to the significantly smaller number of samples present in
AM

z (ν, τ ) (N ′τ×N ′ν) compared to the desired high-resolution TFD Υz(t, f) (Nt×Nf ), that is,
card

(
AM

z (ν, τ)
)
<< card (Υz(t, f)) there exists no unique solution for (3.2) [108, 127, 131].

As a result, a regularization function is given to highlight the desired attributes of the
solution, serving as the objective function to be minimized. Essentially, it leads to an
unconstrained optimization problem expressed as follows [1, 13, 108, 127, 139, 147]:

Υ̂z(t, f) = arg min
Υz(t,f)

1

2
||Υz(t, f)−ΨHAM

z (ν, τ)||22 + λc(Υz(t, f)), (3.3)

where c (Υz (t, f)) : R2 → R is the regularization function, and λ > 0 is the regularization
parameter. To attain a sparse solution, the regularization function must promote sparsity,
Υ̂z(t, f). In pursuit of that, the ℓq-norm with 0 ≤ q ≤ 2 has been investigated in previous
studies [21, 37, 39, 42, 113, 114, 127, 128, 130, 131, 147]. However, the ℓ2 norm, which
measures signal energy, is not a sparsity-inducing function. As demonstrated in [127],
reconstruction based on the ℓ2 norm yields poor auto-term resolution and filters out a
significant number of auto-terms.

3.1.2 Problem Solution

When solving the sparse TFD reconstruction problem using regularization functions
based on either ℓ0 or ℓ1 norms, the optimization problem described in (3.3) can be restated
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as follows [94, 127, 147]:

Υℓ0,1
z (t, f) = arg min

Υz(t,f)
||Υz(t, f)||0,1, s.t. ||Υz(t, f)−ΨHAM

z (ν, τ)||22 ≤ ϵ, (3.4)

where ϵ is a predefined solution tolerance. The resulting sparse TFD is obtained when the
ϵ is met or until the user-defined maximum number of iterations, Nit, is achieved. In this
dissertation, ϵ = 10−3 and Nit = 100 are used as in [127, 128, 129, 130, 131]. Closed-form
solutions exist for the minimization problem (3.4) when using ℓ0 and ℓ1 norms. Specifically,
for the ℓ0 norm, the solution is expressed as [127]:

Υℓ0
z (t, f) = hard√2λ{Υz(t, f)}, (3.5)

where hard√2λ{Υz(t, f)} denotes a hard-thresholding function, which is mathematically
expressed as [127]:

hard√2λ{Υz(t, f)} =

Υz(t, f), Υz(t, f) ≥
√
2λ,

0, otherwise.
(3.6)

Similarly, for the ℓ1 norm, the closed-form solution is expressed as [127]:

Υℓ1
z (t, f) = softλ{Υz(t, f)}, (3.7)

where softλ{Υz(t, f)} represents a soft-thresholding function, which is given as follows
[127]:

softλ{Υz(t, f)} = sgn (Υz(t, f))max (|Υz(t, f)| − λ, 0) . (3.8)

While the ℓ0 norm is known to be the most effective in inducing sparsity, minimizing it
necessitates exploring all potential aggregations of non-zero elements in a given matrix.
This process is computationally expensive and NP-hard. Therefore, the ℓ0 minimization
is often approximated iteratively using greedy or hard-thresholding-based algorithms
[7, 37, 94, 127, 143]. Additionally, the ℓ0 norm is sensitive to noise due to its reliance on
counting the number of non-zero elements, which can readily increase in the presence of
noise.

The ℓ1 norm is a widely used regularization function due to its convexity and ease of
global minimum identification [7, 108, 127]. Although reconstruction algorithms based on
the ℓ1 norm generally require more computation time than those based on the ℓ0 norm, a
study [127] has demonstrated that ℓ1 norm-based reconstructed TFDs outperform TFDs
reconstructed using classical filtering, as well as those based on the ℓ2 and ℓ0 norms.

Therefore, the reconstruction algorithms used in this dissertation and listed below are
based on the ℓ1 norm, which were carefully selected based on their performance in past
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studies [108, 127, 128, 130, 131].

The two-step iterative shrinkage/thresholding (TwIST) algorithm is a high-performing
algorithm where the solution of the (n + 1)-th iteration depends on solutions from the
previous two iterations, given as [13, 127]:

[
Υℓ1

z (t, f)
][n+1]

= (1− αTwIST)
[
Υℓ1

z (t, f)
][n−1]

+ (αTwIST − βTwIST)
[
Υℓ1

z (t, f)
][n]

+

+ βTwIST softλ

{[
Υℓ1

z (t, f)
][n]

+ΨH
(
AM

z (ν, τ)−Ψ
[
Υℓ1

z (t, f)
][n])}

,
(3.9)

where αTwIST ∈ ⟨0, 1] and βTwIST ∈ ⟨0, 2αTwIST], αTwIST, βTwIST ∈ R, are the relaxation
parameters.

The sparse reconstruction by separable approximation (SpaRSA) framework system-
atically reduces a thresholding parameter throughout algorithm iterations at two levels,
namely the outer and inner iterations, as [127, 139]:

[αSpaRSA]
[n+1] =

([
Υ

ℓ1
z (t,f)

][n]
−
[
Υ

ℓ1
z (t,f)

][n−1]
)T(

∇f
([

Υ
ℓ1
z (t,f)

][n]
)
−∇f

([
Υ

ℓ1
z (t,f)

][n−1]
))

([
Υ

ℓ1
z (t,f)

][n]
−
[
Υ

ℓ1
z (t,f)

][n−1]
)T([

Υ
ℓ1
z (t,f)

][n]
)
−
([

Υ
ℓ1
z (t,f)

][n−1]
) , (3.10a)

[
Υℓ1

z (t, f)
][n+1]

= soft λ

[αSpaRSA]
[n+1]

{[
Υℓ1

z (t, f)
][n] − 1

[αSpaRSA]
[n+1]∇f

([
Υℓ1

z (t, f)
][n])}

, (3.10b)

where∇f
([

Υℓ1
z (t, f)

][n+1]
)

is the gradient of error estimation function, while [αSpaRSA]
[n+1]

in each iteration is decreased with the parameter βSpaRSA < 1.

The split augmented Lagrangian shrinkage algorithm (SALSA) converts the uncon-
strained optimization problem (3.4) into a constrained optimization problem with equiva-
lence through variable splitting:

[
Υℓ1

z (t, f)
][n]

= [a(t, f)][n] + [b(t, f)][n], based on which
the SALSA algorithm is defined as [1, 127]:

[
Υℓ1

z (t, f)
][n+1]

= ΨH
(
AM

z (ν, τ)−Ψ
(
[υ(t, f)][n] + [b(t, f)][n]

))
, (3.11a)

[a(t, f)][n+1] = softλ

{[
Υℓ1

z (t, f)
][n+1] − [b(t, f)][n]

}
, (3.11b)

[b(t, f)][n+1] = [b(t, f)][n] −
([

Υℓ1
z (t, f)

][n+1] − [a(t, f)][n+1]
)
. (3.11c)

The your augmented Lagrangian algorithm for ℓ1 (YALL1), similarly to the SALSA
algorithm, is given as [127, 143]:

[y(ν, τ)][n+1] = αYALLΨ [z(t, f)][n] − βYALL

(
Ψ
[
Υℓ1

z (t, f)
][n] −AM

z (ν, τ)
)
, (3.12a)

[z(t, f)][n+1] = soft λ
µYALL

{
ΨH [y(ν, τ)][n+1] +

1

µYALL

[
Υℓ1

z (t, f)
][n]}

, (3.12b)
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[
Υℓ1

z (t, f)
][n+1]

=
[
Υℓ1

z (t, f)
][n]

+ γYALLµYALL

(
ΨH [y(ν, τ)][n+1] − [z(t, f)][n+1]

)
, (3.12c)

where µYALL > 0 is the penalty parameter, while the parameters αYALL, βYALL and
γYALL are calculated as: γYALL ∈ [0, (1 +

√
5)/2], αYALL = µYALL/(µYALL + (1/2λ)), and

βYALL = 1/(µYALL + (1/2λ)).

3.2 Limitations of the Existing Measurement Criteria

When Selecting the Optimal Regularization

Parameter λ

Many previous studies, including [7, 37, 46, 108, 123, 127], emphasized the significance
of the parameter λ, which must be carefully chosen to achieve good reconstruction
performance. Setting λ too low may fail to remove cross-terms, while setting it too high
may remove auto-term samples as well. However, the optimal value of λ is dependent on
the signal, the reconstruction algorithm, and the specific use case, because of which in many
studies λ has been chosen experimentally [37, 46, 108, 123, 127, 130, 131]. Experimental
selection of λ can be time-consuming and requires expertise from the user.

Sorting TFD samples based on their amplitude has also been proposed [123], but this
approach may not work well for signals with components of varying amplitudes, and it
was shown to be dependent on the number of total components and level of noise, which
are not often available in practice.

Several studies [46, 123] have proposed feasible ranges for λ based on their extensive
research. For example, λ ∈ [0.001, 10] and λ ∈ [0.001, 40] have been proposed in [46] for
CS-based methods that do not use the WVD and AF as in this dissertation. However,
these ranges proved to be method-specific and cannot be used for different CS-based
methods.

To illustrate the effect of parameter λ on reconstruction performance, two low values,
λ = 0.01 and λ = 1, and one high value λ = 15, were arbitrarily selected and tested on
the considered reconstruction algorithms and the signals zSINFM(t) and zLFM(t). Figure
3.2 depicts the obtained reconstructed TFDs. On the one hand, it is to be observed
that by setting λ parameter too high, a partial or complete lack of auto-terms appears
in a reconstructed TFD, as shown with λ = 15 in Figures 3.2a, 3.2e and 3.2g. On the
other hand, too low λ parameter causes the reconstruction of cross-terms with blurred
auto-terms, as shown in Figures 3.2b, 3.2d, 3.2f and 3.2h.

Moreover, the λ performance dependency on the reconstruction algorithm is evident
from the reconstructed TFDs shown in Figures 3.2a and 3.2c, where for the same λ = 15,
the SALSA algorithm achieves significantly better preservation of auto-terms than the
TwIST algorithm.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2 Reconstructed TFDs for the following signal, reconstruction algorithm and
parameter λ: (a) zSINFM(t), TwIST, λ = 15; (b) zSINFM(t), TwIST, λ = 0.01; (c) zSINFM(t),
SALSA, λ = 15; (d) zSINFM(t), SALSA, λ = 1; (e) zLFM(t), SpaRSA, λ = 15; (b) zLFM(t),
SpaRSA, λ = 0.01; (c) zLFM(t), YALL1, λ = 15; (d) zLFM(t), YALL1, λ = 1.
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Table 3.1 Performance measures of the considered ℓ1 norm-based reconstruction algo-
rithms with an arbitrarily chosen regulation parameter λ. According to the respective
measure, values in bold indicate the best-performing reconstruction algorithm for the
signals zSINLFM(t) and zLFM(t).

zSINLFM(t)

TwIST TwIST SALSA SALSA

λ = 15 λ = 0.01 λ = 15 λ = 1

R 8.3191 11.5049 8.4739 10.9909
MS 0.0253 0.5069 0.0416 0.2846

MRN(×104) 42.0741 6.9837 39.0077 8.2131
MH 0.8617 0.5389 0.8529 0.6259

zLFM(t)

SpaRSA SpaRSA YALL1 YALL1

λ = 15 λ = 0.01 λ = 15 λ = 1

R 8.0075 13.9955 5.6745 9.2696
MS 0.0054 0.6635 0.0011 0.0182

MRN(×104) 55.1245 NaN 277.1471 31.0014
MH 0.9382 0.4336 0.9746 0.8981

Additionally, it is important to address the numerical evaluation of reconstructed TFDs.
A number of previous studies, involving [127, 130, 131], have relied on global concentration
measures, such as MS and R, which produce a single numerical value for a TFD and do not
consider the local positional information of individual samples. This simplicity can result
in the misclassification of oversparse or completely empty TFDs. Indeed, reconstructed
TFDs may be compared with an ideal version of the signal’s TFD, but finding a suitable
metric that does not necessitate any a priori information about the signal remains an open
research direction.

To demonstrate the limitations of global measures, the reconstructed TFDs were
evaluated using metrics from the previous chapter, and the results are given in Table 3.1.
All considered metrics highlight the TwIST algorithm with λ = 15 for zSINLFM(t) and the
YALL1 algorithm with λ = 15 for zLFM(t) as the best-performing TFDs, despite their
relatively low number of TF samples. Therefore, it should be mentioned that the absence
of crucial auto-terms in these TFDs contributes to artificially improved performance.

Overall, it may be concluded that for advanced methods in TF signal analysis, a
suitable measure should include information about the number of components, their time
and frequency supports, and the quality of auto-term preservation. The use of such a
measure should accompany or replace state-of-the-art performance measures to obtain
more reliable and accurate results.
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3.2.1 Single Objective Meta-Heuristic Approach

Commonly employed optimization techniques for optimizing QTFDs include conven-
tional gradient-based methods such as the gradient descent method (GDM) [4, 14, 113].
However, these methods possess inherent limitations that diminish their suitability for this
particular task. GDM, for instance, exhibits strong dependence on the initial parameter
values, necessitating prior knowledge regarding the TFD and the signal being analyzed.
Furthermore, GDM generates only a single point at each iteration, potentially leading to
an extensive number of iterations, without guaranteeing convergence to a global minimum
or maximum for non-convex functions. An alternative optimization algorithm, often
utilized in derivative-free optimization, is the classical Nelder-Mead algorithm [88], yet its
performance is contingent upon the precise selection of initial parameters.

The limitations described above have been effectively mitigated in a prior research
effort [4] through the introduction of a hybrid genetic algorithm (HGA) for the QTFD
optimization [122]. The HGA combined the strengths of both genetic algorithms (GAs)
and classical gradient-based optimization techniques. The GA was used to perform global
search, while gradient-based optimization was used for local search. The hybrid approach
presents an automated framework for optimizing QTFDs while simultaneously minimizing
the concentration measure MS [4].

However, the aforementioned optimization techniques, which employ a single objective,
face the challenge of converging towards oversparse or completely empty reconstructed
TFDs. Because of the limitations of the global concentration measures discussed before,
every attempt to optimize reconstruction algorithm parameters converges to an empty
TFD with a too high λ parameter and MS = 0.

3.3 Summary

This chapter introduced a compressive sensing-based method for enhancing TFD
concentration, along with a review of state-of-the-art sparse reconstruction algorithms
based on the ℓ1 norm, which will be utilized throughout the dissertation. One concern raised
was the regularization parameter in sparse reconstruction, whereby it was demonstrated
that setting the parameter too high leads to the loss of auto-terms. Another concern
was the suitability of performance measures for evaluating reconstructed TFDs, which
were found to be inadequate due to their lack of local positional information about signal
components, leading to the incorrect identification of TFDs without auto-terms as the best-
performing ones. These issues serve as motivation for further investigation in subsequent
chapters of this dissertation.
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CHAPTER 4

PERFORMANCE CRITERIA FOR
TIME-FREQUENCY
DISTRIBUTIONS BASED ON THE
LOCALIZED RÉNYI ENTROPY

This chapter examines the benefits and drawbacks of the short-term Rényi entropy,
followed by an introduction to the narrow-band Rényi entropy. To evaluate TFDs based
on the localized Rényi entropies, a set of performance criteria is proposed and applied as a
metric in the TFD reconstruction method.

Additionally, this chapter delves into a discussion on multi-objective optimization and
provides a succinct outline of the state-of-the-art meta-heuristic algorithms. A multi-
objective optimization problem is formulated for sparse reconstruction algorithms, along
with the objective functions used as previously defined performance criteria. The proposed
optimization approach and performance criteria are tested on synthetic signals with and
without noise, and the results are compared with global concentration measures and
the single-objective optimization approach provided in Chapter 3. The research of this
chapter is published by the author in international peer-reviewed journals and conference
proceedings [53, 55, 56].

4.1 The Localized Rényi Entropy

The enumerating characteristics of the Rényi entropy were effectively leveraged to
modify the global Rényi entropy measure presented in (2.38) and obtain the instantaneous
number of signal components [120, 121]. To achieve this, a localized approach is employed,
namely the localized Rényi entropy (LRE), where the Rényi entropy is calculated for each
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time slice of the TFD, t = t0, in its proximity. Subsequently, the obtained entropy value
is compared with the entropy of a reference TFD that possesses an established number
of components, which yields the instantaneous number of signal components, NCt(t0),
namely the short-term Rényi entropy (STRE), as [120, 121]:

NC
ρ(t,f)
t (t0) = 2R(∆t0{ρ(t,f)})−R(∆t0{ρref(t,f)}), (4.1)

where t0 refers to the extracted time slice, while ρref (t, f) and ρ (t, f) represent the reduced-
interference distributions (RIDs) of the reference signal and the signal under consideration,
respectively. For a valid comparison, an equal RID kernel has to be employed in order to
compute ρref (t, f) and ρ (t, f) [120, 121].

In the time-localization operator, ∆t0 , the subscript t0 denotes that all TFD samples,
except those in the proximity of the extracted time slice, are set to zero. This is given as
follows [120, 121]:

∆t0{ρ(t, f)} =

ρ(t, f), t ∈
[
t0 −

Θt

2
, t0 +

Θt

2

]
,

0, otherwise,
(4.2)

where Θt the localization parameter that specifies the length of the extracted time interval.
Note that Θt has been set for each signal according to the recommendation in [103, 105].
In (4.1), the reference signal serves the purpose of supplying a reference energy level for a
component in every time slice. To achieve the most convenient outcome, a cosine signal
exhibiting a normalized frequency of 0.1 and an amplitude of unity is commonly used as
the reference signal [120, 121]. The STRE has demonstrated utility across diverse fields.
To name a few, it has been utilized for analyzing jamming signals in global navigation
satellite systems [135], characterizing EEG signals [10, 71, 72, 73], extracting information
content from noisy signals [102, 103, 105], and optimizing QTFDs [104].

In [101], an iterative approach for estimating the number of components that exhibit
significantly diverse spectral amplitudes was presented. The method utilizes an iterative
procedure to filter out the most prominent spectral components and highlight weaker ones.
At each iteration, the local number of components, NCt(t), is computed. For time slices
where NCt(t) ≥ 1, the highest amplitude component is excluded and the local number
of components counter is incremented by 1. The iterative process continues until no
components are identified based on the entropy criterion in the TF plane [101].

4.1.1 Limitations of the Existing Methods

This iterative method has been used in the automatic extraction of the dominant signal
component [71, 73], where it was observed that the estimated local number of components
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can exhibit significant variability when a different threshold is applied to the signal. This
indicates that the iterative method may misclassify a cross-term or noise sample as an
auto-term when the TFD is not completely cross-term-free or when it is corrupted by noise.
In addition, the presence of imperfections in the component removal process can lead
to inconsistent estimations. In [104], it was shown that this method can be repurposed
to estimate the complete count of energy regions by equalizing the significance of signal
auto-terms and cross-terms.

Due to the aforementioned inconsistencies with the iterative method and the specific
use case in this dissertation, which requires robust estimation of only auto-terms, the
original non-iterative method given in (4.1) will be used throughout this dissertation.

Recently, an approach for the extraction of useful components has been in development,
which involves computing entropy over 2-D TF regions instead of 1-D time slices [32, 70,
132, 133]. Given that the entropy is calculated multiple times for each TF point, the
algorithm’s computational complexity is significant, scaling as O(N5

t ). Consequently, its
applicability is limited in some practical applications where the original STRE method is
still preferred, as highlighted in [103]. In the context of this dissertation, where multiple
calculations of LRE in an optimization environment will be required, the original STRE
remains a more practical choice.

The STRE method has been demonstrated to achieve highly accurate results when
processing signals with components that are aligned to the reference signal. Nevertheless,
its performance declines when processing signals with non-parallel components. For
instance, when analyzing a signal δ(t − t0), the expected local number of components
at time slice t0 is 1. Nevertheless, since the energy of the impulse is larger than that
of the reference signal in the proximity of t0, the local number of components becomes
significantly greater than 1, i.e., NCt(t0)≫ 1.

To demonstrate this limitation, the STRE method has been applied to the signal zLFM(t),
which all four components exhibit significant deviation from the reference signal. Figure
4.1 shows an arbitrarily selected time slice at t0 = 71 and reveals that the components
extracted from zLFM(t) exhibit much higher entropy than those extracted from the reference
signal. As a result, an inaccurate estimation of the local number of components is produced,
as evidenced with NCt(71) = 6.1777 >> 2.

4.1.2 The Narrow-Band Rényi Entropy

To address the limitation of the STRE approach for signals with components signifi-
cantly deviating from the reference signal, it is necessary to introduce additional localized
information. This entails computing the LRE in narrower frequency intervals, which leads
us to the explanation of the narrow-band Rényi entropy (NBRE). The determination of
the quantity of data points within a particular frequency slice, NCf(f0), is calculated
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(a) (b)

Figure 4.1 Extracted components (in red) taken at time slice t0 = 71: (a) the STRE
method’s reference signal; (b) the signal zLFM(t), NCt(71) = 6.1777 >> 2.

using the frequency-localization operator, ∆f0 , analogous to (4.1) [55]:

∆f0{ρ(t, f)} =

ρ(t, f), f ∈
[
f0 −

Θf

2
, f0 +

Θf

2

]
,

0, otherwise,
(4.3)

where f0 represents the targeted frequency slice, while Θf corresponds to the localization
parameter that governs the size of the extracted frequency interval. Compared to the
STRE, which uses a constant frequency reference signal, the NBRE approach employs a
reference signal that is aligned to the frequency axis, consisting of a time-localized impulse
located at t = 15. This reference signal provides a more appropriate energy reference for
certain signals, allowing for improved accuracy in estimating the number of components.

Figure 4.2 demonstrates an application of the NBRE method using an arbitrarily-chosen
frequency slice at f0 = 200 on the signal zLFM(t). The extracted reference signal using the
NBRE method shows a significantly improved suitability for the signal zLFM(t), leading to
an almost ideal estimation of NCf (200) = 1.9058 ≊ 2 for this frequency slice.

The results of the STRE and NBRE methods for estimating the local number of
components for signals zSINLFM(t) and zLFM(t) are presented in Figure 4.3. It is noteworthy
that for the sake of practical interpretation or application purposes, the estimated local
numbers of components are typically rounded to the nearest integer [118, 120, 121].

For zSINLFM(t), the STRE estimation provided results that were consistent with the ideal,
as depicted in Figure 4.3a, indicating the presence of two distinct components. Conversely,
the NBRE estimation illustrated in Figure 4.3b exhibited significant inaccuracies due to
the alignment of the components with the time axis.

For the signal zLFM(t), the STRE estimation demonstrated significant inaccuracies,
as shown in Figure 4.3c. In contrast, the NBRE approach resulted in a more accurate
estimation, with the estimated NCf(f) values being much closer to the ideal, as shown
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(a) (b)

Figure 4.2 Extracted components (in red) taken at frequency slice f0 = 200 of: (a) the
NBRE method’s reference signal; (b) the signal zLFM(t), NCf (200) = 1.9058 ≊ 2.

(a) (b)

(c) (d)

Figure 4.3 The ideal (red dashed line) and obtained (blue solid line) local numbers of
components for the considered signals: (a, b) zSINLFM(t) with αR = 3 and Θt = Θf = 5;
(c, d) zLFM(t) with αR = 3 and Θt = Θf = 11.
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in Figure 4.3d. These observations highlight the need for the NBRE approach in certain
applications. Furthermore, its usefulness in conjunction with the STRE will be thoroughly
emphasized in this dissertation.

4.2 Performance Criteria Based on the Localized Rényi

Entropy: Definition and Evaluation Performance

The study presented in [104] proposed an optimization approach to construct an
optimized TFD. This procedure involved the meticulous selection of the optimal TFD
for each time slice, chosen from a collection of randomly generated TFDs. The selection
process relied on evaluating the local number of components and entropy values using the
STRE criterion. Specifically, the time slice inserted into the final TFD is extracted from
a TFD from the input set that exhibits the minimal entropy value and the lowest local
number of components. This ensures that each time slice is composed of auto-terms with
high resolution.

However, when applied in the circumstances of sparse reconstruction, this approach has
several limitations. Primarily, it necessitates the inclusion of at least one TFD within the
chosen set that is devoid of any cross-terms for every time slice. For the use case in this
dissertation, this requirement translates to the preservation of auto-terms in every time
slice of the reconstructed TFDs within the designated set. Nevertheless, this dissertation
revealed that the arbitrary selection of parameters for the reconstruction may result in the
exclusion of crucial components in the resulting TFDs. Consequently, the optimization
procedure delineated in [104] could erroneously designate a time slice of a reconstructed
TFD comprising incongruous components as the optimal choice.

Second, the large number of parameters involved in CS-based methods renders generat-
ing a significant number of reconstructed TFDs impractical and requires substantial time
and memory resources. Therefore, the optimization scheme in [104] may not be feasible in
practice, and alternative approaches are necessary to address the difficulties involved with
the sparse reconstruction of TFDs.

To address limitations mentioned above, the criteria presented here evaluate a TFD
based on the information about auto-terms derived from the starting signal before per-
forming sparse reconstruction. Two mean squared errors (MSEs) are formulated to assess
the dissimilarity between the local number of components in the starting, ρ(t, f), and
reconstructed TFD, Υℓ1

z (t, f), acquired from the STRE (subscript t) and NBRE (subscript
f), as [55]:

MSEt =
1

Nt

Nt∑
t=1

 NC
ρ(t,f)
t (t)−NC

Υ
ℓ1
z (t,f)

t (t)

max
(
NC

ρ(t,f)
t (t), NC

Υ
ℓ1
z (t,f)

t (t)
)


2

, (4.4a)
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MSEf =
1

Nf

Nf∑
f=1

 NC
ρ(t,f)
f (f)−NC

Υ
ℓ1
z (t,f)

f (f)

max
(
NC

ρ(t,f)
f (f), NC

Υ
ℓ1
z (t,f)

f (f)
)


2

, (4.4b)

MSEt,f =
MSEt + MSEf

2
. (4.4c)

By normalizing the local number of signal components, a standardized and unbiased
comparison of the MSE values is achieved, ensuring fairness across different signal samples.
A high MSE value indicates either an oversparse TFD with inconsistent auto-terms or
a TFD with low-resolution auto-terms and cross-terms. Note that the local numbers of
components in the reconstructed TFDs were calculated based on the ideal reference signals
in both, the STRE and NBRE.

To comprehensively evaluate the performance of the reconstructed TFD and validate
the MSE values, supplementary performance metrics have been employed. Namely, the
mean absolute error (MAE) and the maximum absolute error (MAX) are utilized as [55]:

MAEt =
1

Nt

Nt∑
t=1

∣∣∣∣∣ NC
ρ(t,f)
t (t)−NC

Υ
ℓ1
z (t,f)

t (t)

max
(
NC

ρ(t,f)
t (t), NC

Υ
ℓ1
z (t,f)

t (t)
)∣∣∣∣∣, (4.5a)

MAEf =
1

Nf

Nf∑
f=1

∣∣∣∣∣ NC
ρ(t,f)
f (f)−NC

Υ
ℓ1
z (t,f)

f (f)

max
(
NC

ρ(t,f)
f (f), NC

Υ
ℓ1
z (t,f)

f (f)
)∣∣∣∣∣, (4.5b)

MAEt,f =
MAEt + MAEf

2
, (4.5c)

MAXt = max
t=1,...,Nt

∣∣∣∣∣ NC
ρ(t,f)
t (t)−NC

Υ
ℓ1
z (t,f)

t (t)

max
(
NC

ρ(t,f)
t (t), NC

Υ
ℓ1
z (t,f)

t (t)
)∣∣∣∣∣
 , (4.6a)

MAXf = max
f=1,...,Nf

∣∣∣∣∣ NC
ρ(t,f)
f (f)−NC

Υ
ℓ1
z (t,f)

f (f)

max
(
NC

ρ(t,f)
f (f), NC

Υ
ℓ1
z (t,f)

f (f)
)∣∣∣∣∣
 , (4.6b)

MAXt,f =
MAXt + MAXf

2
. (4.6c)

The effectiveness of the performance criteria is demonstrated through an assessment
of a blurred and an oversparse reconstructed TFD obtained using the TwIST algorithm
exhibiting different values of λ (specifically, λ = 15 and λ = 0.01) for the signal zSINLFM(t).
The discrepancies shown in Figure 4.4 between the local number of components in the
starting and reconstructed TFD provide insights into the nature of the reconstructed TFD,
indicating whether it is oversparse or blurred. Specifically, an augmentation in the local
number of components in the reconstructed TFD suggests that artifacts or low-resolution
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(a) (b)

(c) (d)

Figure 4.4 The local numbers of components in starting (depicted with a solid blue line)
and reconstructed TFD obtained by the TwIST algorithm (depicted with a dashed red
line) for the signal zSINLFM(t) with: (a, b) λ = 15; (c, d) λ = 0.01.

auto-terms are present, as depicted in Figures 4.4a and 4.4b. Conversely, a decrease in the
local number of components indicates an oversparse TFD with missing components, as
demonstrated in Figures 4.4c and 4.4d. Furthermore, a rapid decrease to zero in the local
number of components signifies the specific time or frequency slices in which a complete
absence of components has occurred, as evidenced in Figure 4.4d.

However, the LRE-metrics do not account for the connectivity of signal components
across diverse slices. Therefore, a global performance metric, denoted as Nr, is introduced
that assesses the number of TFD regions that exhibit continuous connectivity among
neighboring samples. Each sample at location (z, q) is required to maintain connectivity
with at least one of its eight nearest neighbors: {(z − 1, q − 1), (z − 1, q), (z − 1, q +

1), (z, q− 1), (z, q + 1), (z + 1, q− 1), (z + 1, q), (z + 1, q + 1)}. The objective is to obtain a
reconstructed TFD with components that form smooth, uninterrupted IF trajectories. A
lower Nr value indicates higher component consistency, which is desirable. Additionally,
fewer interference samples in the reconstructed TFD also result in a lower Nr value.

While it would be ideal for Nr to match the total number of components in the TFD,
it is typically not the case in practice. Therefore, the Nr metric should be interpreted as a
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Table 4.1 LRE-based metrics, MSEt, MSEf , and Nr of the considered ℓ1 norm-based
reconstruction algorithms with arbitrarily chosen regulation parameter λ. According to the
respective measure, values in bold indicate the best-performing reconstruction algorithm
for the signals zSINLFM(t) and zLFM(t).

zSINLFM(t) zLFM(t)

TwIST SALSA SpaRSA YALL1

λ 15 0.01 15 1 15 0.01 15 1

MSEt 0.1629 0.4469 0.1130 0.4063 0.1606 0.2481 0.2387 0.1392
MSEf 0.1807 0.1759 0.1703 0.1911 0.2577 0.3840 0.3236 0.2320
MSEt,f 0.1718 0.3114 0.1417 0.2987 0.2092 0.3161 0.2812 0.1856
Nr 6 43 2 36 8 54 10 48

MAEt 0.3638 0.6674 0.3241 0.6365 0.2596 0.3897 0.3051 0.2564
MAEf 0.3597 0.3581 0.3448 0.3633 0.4625 0.5961 0.5443 0.4609
MAXt 0.7058 0.7520 0.5018 0.6993 0.9989 0.8914 1.0 0.8676
MAXf 0.8722 0.7839 0.7585 0.8072 1.0 0.8873 1.0 0.8676

supplementary measure to the MSEt and MSEf values rather than a direct measure of
the global number of components.

Table 4.1 presents the numerical outcomes for the reconstructed TFDs depicted in
Figure 3.2, using LRE-based and Nr metrics for the signals zSINLFM(t) and zLFM(t). The
LRE parameters have been set as αR = 3, while Θt = Θf = 5 and Θt = Θf = 11 have been
used for the signals zSINLFM(t) and zLFM(t), respectively. The LRE has been calculated
using the EMBD, which parameters have been optimized using the MS measure and chosen
as αEMB = 0.06, βEMB = 0.15 and αEMB = 0.09, βEMB = 0.12 for the signals zSINLFM(t) and
zLFM(t), respectively.

As illustrated in Table 3.1, the deficiency of predefined upper or lower limits for global
measures MS, R, MRN, and MH, leads to the erroneous classification of oversparse TFDs
as high-performing. This limitation is solved by a raise in the values of MSEt, MSEf ,
and Nr, thereby effectively penalizing the unwanted oversparsity. These measures also
appropriately account for the presence of artifacts in low-resolution TFDs, which are
typically correctly identified by MS, R, MRN, and MH.

Note that the LRE-based metrics correctly identify the reconstructed TFD obtained
using the SALSA with λ = 15 and YALL1 algorithms with λ = 1 as the best-performing
among the given TFDs for the signals zSINLFM(t) and zLFM(t), respectively. Also note that
the high Nr value obtained for the YALL1 algorithm with λ = 1 indicates reconstructed
TFD with low auto-term consistency and/or reconstruction of cross-terms and noise,
whereas the low Nr value for the SALSA algorithm with λ = 15 confirms its good
performance. The robustness of these findings is supported by additional performance
indicators: MAEt, MAEf , MAXt, and MAXf .
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4.3 A Multi-Objective Meta-Heuristic Optimization

Approach

4.3.1 Problem Definition

In the circumstances of the multi-objective meta-heuristic optimization approach, the
primary objective is to identify a compilation of optimal solutions that effectively balance
and optimize multiple conflicting objective functions. These functions push the process
towards a reconstructed TFD that exhibits superior performance characteristics. This
entails enhancing the resolution and preservation of auto-terms, while mitigating the
presence of cross-terms and noise-related TF samples.

In this chapter, two objective function formulations based on the LRE metrics are
considered. The first formulation combines the LRE-based metric with the MS global
measure used in a previous study [4] as a standalone measure. This formulation is
expressed as

(
MS,MSEt,MSEf

)
, where MS ensures high auto-term resolution and cross-

term suppression, and MSEt and MSEf ensure auto-term preservation in the reconstructed
TFD.

The second formulation considers the Nr measure in conjunction with MSEt and MSEf ,
expressed as (Nr,MSEt,MSEf ). In this formulation, the MSEt and MSEf metrics are used
to detect missing or low-resolution auto-terms and unwanted reconstruction of cross-terms
without the need for the MS measure. The Nr measure ensures auto-term consistency
across the entire TFD.

Therefore, a multi-objective optimization problem may be established in the context
of sparse TFD reconstruction for the TwIST algorithm as follows:

minimize: MS/Nr,MSEt,MSEf (αTwIST, βTwIST, λ),

subject to: αTwIST ∈ ⟨0, 1], βTwIST ∈ ⟨0, 2α], λ ∈ ⟨0, 100].
(4.7)

Note that in order to ensure an unbiased comparison, all parameters involved in the
state-of-the-art algorithms, which are used for comparison throughout this dissertation,
undergo optimization in a consistent manner.

4.3.2 Pareto Optimal Solutions

In a multi-objective optimization environment, contradictory objectives are often
encountered. Enhancing one objective can result in the deterioration of another objective,
and this holds true for the introduced objective functions in this study as well. Specifically,
improving MS → 0 or Nr → 0 will degrade the MSEt and MSEf metrics. Therefore, the
aim is to identify a collection of solutions that achieve a balance between the conflicting
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objectives, indicated as the Pareto optimal set. The Pareto front is obtained by mapping
the Pareto optimal set using the objective functions. [28].

The Pareto optimal set comprises solutions that that are non-improvable on one
objective without degrading another objective. These remedies, known as Pareto optimal
or non-dominated solutions, are determined based on the dominance relationship. In
particular, if two reconstructed TFDs are denoted as solutions x and y, a solution x is
stated to dominate another solution y, x ⪯ y, if and only if the stated conditions are
satisfied:

∀ objectives: MSEt(x) ≤ MSEt(y),MSEf (x) ≤ MSEf (y),M
S/Nr(x) ≤MS/Nr(y),

∃ objectives: MSEt(x) < MSEt(y),MSEf (x) < MSEf (y), or MS/Nr(x) < MS/Nr(y).
(4.8)

The Pareto optimal set can take on a variety of shapes, such as convex, concave,
or non-convex, depending on the optimization problem and the nature of the objective
functions [25, 45, 76, 99, 110, 144]. In this study, due to the presence of a large number of
reconstruction parameters and multiple local optima in the objective function landscape,
the Pareto optimal set is not obligatory convex.

To assess the quality of the Pareto front, an efficient Monte Carlo approximation of
the hypervolume, referred to as HV , has been employed. This method involves randomly
inserting a total of Ntot = 105 solutions into a hypercuboid and computing the percentage
of dominated solutions, denoted as Ndom. The calculation of HV is performed according
to the following formula [5]:

HV =
Ndom

Ntot
· 100%. (4.9)

For a minimization problem with three objective functions, such as the one addressed
in this dissertation, the hypercuboid used for calculating the hypervolume is a cube. The
cube’s vertices are defined as [0, 0, 0], representing the origin, and the coordinates of the
maximum values of the Pareto front are given by [MS, (max) or N

(max)
r , MSE(max)

t , and
MSE(max)

f ]. A larger hypervolume indicates that the Pareto front dominates over more
solutions and is therefore preferred [5]. It should be noted that in the following simulations,
the random behavior of this measure has been minimized over 1000 runs.

Decision-Making: The Fuzzy Satisfying Method

Decision-making approaches refer to a set of methods that help choose the most suitable
solution from a given set of options. In multi-objective optimization, decision-making
approaches are used to identify a preferred solution from the Pareto optimal set, which
represents the trade-off between multiple conflicting objectives. In this dissertation, the
fuzzy satisfying method (FSM) has been used due to its ability to handle vagueness and
uncertainty in the decision-making approach, its low computational complexity, and its
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ease of implementation [112].

The FSM evaluates each solution with respect to each criterion using a fuzzy membership
function that appoints a degree of membership to every solution based on how well it
satisfies the criterion. To calculate the linear membership function for the k-th solution of
the j-th objective function, the following equation is used [112]:

ξkj =


1, vkj ≤ vmin

j ,

vmax
j − vkj

vmax
j − vmin

j

, vmin
j < vkj < vmax

j

0, vkj ≥ vmax
j ,

(4.10)

where vmin
j and vmax

j denote the minimum and maximum values of the j-th objective
function, respectively, with k = 1, 2, . . . , Npar and j = 1, 2, . . . , Nobj (where Npar and Nobj

represent the numbers of Pareto optimal solutions and objective functions, respectively).

Next, the membership function for each Pareto optimal solution k is determined using
the following expression [112]:

ξk = min(ξk1 , ξ
k
2 , . . . , ξ

k
Nobj

). (4.11)

Ultimately, the most convenient solution is identified by selecting the solution with the
weakest maximum membership function as follows [112]:

ξbest = max(ξ1, ξ2, . . . , ξNpar). (4.12)

In this dissertation, the objective function formulation considers Nobj = 3.

4.3.3 Multi-Objective Meta-Heuristic Optimization Algorithms

The utilization of meta-heuristic optimization algorithms in this dissertation serves the
purpose of efficiently exploring the non-convex Pareto optimal set and obtaining a varied
range of solutions that capture the trade-offs between conflicting objectives. Meta-heuristic
algorithms are a popular choice for addressing non-linear optimization problems due to their
ability to handle non-continuous, non-differentiable, and non-convex objective functions. In
this study, various meta-heuristic algorithms have been incorporated, which have proven to
be effective in tackling a wide range of multi-objective optimization problems encountered
in real-world scenarios, as evidenced by recent research [25, 45, 76, 99, 110, 144], while
also exhibiting computational efficiency.

One of the algorithms considered in this dissertation is the multi-objective particle
swarm optimization (MOPSO), which is an continuation of the particle swarm optimization
(PSO) algorithm [34]. MOPSO has been developed to handle multiple objectives by using
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Table 4.2 Fixed parameters for the MOPSO, NSGA-III and MOWCA meta-heuristic
optimization algorithms.

Number of iterations, denoted with Tmax: 100
Population size, denoted with Npop: 100
Npar: 50

MOPSO NSGA-III MOWCA
w = 0.9,mr = 0.1 mr = 0.1 dmax = 10−4

c1 = c2 = 2 pc = 0.5, pm = 0.5 Nsr = 5

a Pareto dominance approach to compare and evaluate solutions. The algorithm iteratively
updates the velocity and position of a swarm of particles in a search space, aiming to
converge towards a set of Pareto optimal solutions.

Another algorithm employed is the non-dominated sorting genetic algorithm III (NSGA-
III), a variant of the well-known GA [30]. NSGA-III converges towards a set of well-
dispersed Pareto optimal solutions with good coverage of the Pareto front, and it can
handle a large number of objectives. The non-domination sorting and reference point
selection strategies employed by NSGA-III promote diversity in the population, which is
particularly useful for identifying a diverse set of high-quality solutions that capture the
balances between conflicting objectives.

The multi-objective water cycle algorithm (MOWCA) is the last algorithm considered
in this dissertation [97, 98]. It is based on the water cycle algorithm, which mimics the
natural process of the water cycle in nature. MOWCA generates a diverse set of Pareto
optimal solutions that span the entire trade-off surface by using a Pareto dominance
approach to evaluate and compare solutions.

Table 4.2 reports the meta-heuristic algorithms’ parameters that have been used in
this dissertation based on the recommended values in literature [12, 26, 43, 77, 97, 98],
which pseudocodes are given in Appendix A. The NSGA-III showed the best performance
based on the hypervalue analysis given in Appendix B, and it will be used throughout the
whole dissertation.

Note that providing a detailed review of the numerous available optimization algorithms
falls beyond the scope of this dissertation. The focus of this study has been to properly
define the objective function, which may be used in a variety of existing and future
meta-heuristic optimization algorithms.

4.4 Evaluating Optimization Performance: Results

This section presents reconstructed TFDs obtained using TwIST, SpaRSA, SALSA and
YALL1 algorithms, optimized with given objective functions, namely

(
MS,MSEt,MSEf

)
and (Nr,MSEt,MSEf ), for the signals zSINLFM(t) and zLFM(t). The LRE parameters and
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Table 4.3 Performance comparison of the reconstructed TFDs obtained using the
TwIST, SpaRSA, SALSA and YALL1 algorithms optimized with

(
MS,MSEt,MSEf

)
versus (Nr,MSEt,MSEf ) objective functions for the signal zSINLFM(t). Values in bold
indicate the best-performing and the fastest algorithm.

zSINLFM(t)

TwIST SpaRSA SALSA YALL1

Objectives MS Nr MS Nr MS Nr MS Nr

MSEt

MSEf

MSEt

MSEf

MSEt

MSEf

MSEt

MSEf

MSEt

MSEf

MSEt

MSEf

MSEt

MSEf

MSEt

MSEf

λ+ 7.947 6.711 9.262 6.541 13.217 11.706 5.561 1.480

MSEt 0.0269 0.0221 0.1234 0.0153 0.1024 0.0299 0.4954 0.3770
MSEf 0.0658 0.0620 0.1765 0.0687 0.1301 0.0654 0.2978 0.2351

MS 0.0485 0.0535 0.0297 0.0472 0.0392 0.0458 0.0119 0.0167

Nr 3 3 6 2 3 2 21 12

MAEt 0.1492 0.1445 0.3361 0.1122 0.2830 0.1645 0.6991 0.6122
MAEf 0.2055 0.2012 0.3538 0.2057 0.3010 0.2068 0.5097 0.4465
MAXt 0.2466 0.2214 0.5430 0.1988 0.5184 0.2787 0.9877 0.9055
MAXf 0.4961 0.4853 0.8446 0.5382 0.7133 0.4987 0.8873 0.8871

t[s] 0.142 0.139 0.031 0.022 0.188 0.152 0.887 0.742

reconstruction parameters have been kept consistent with Table 4.1, while the NSGA-III
parameters have been set as in Table 4.2.

For the signal zSINLFM(t), the reconstructed TFDs in Figure 4.5 show that both
optimizations solve the limitations of existing approaches and present TFDs with both
components preserved. However, the optimization using the Nr objective function has
a slight advantage in better preserving the sinusoidal FM component, as is particularly
evident in the SpaRSA algorithm result shown in Figure 4.5c.

This observation is supported by the numerical results shown in Table 4.3. The
quality of auto-term preservation is higher when optimizing with the Nr objective function,
resulting in lower MSEt and MSEf values for all reconstruction algorithms compared to
optimizing with the MS objective. As evident by the visual observation, the SpaRSA
algorithm attains the most notable enhancement in MSEt and MSEf values, by 87.60%
and 61.08%, respectively. Using the MS objective function resulted in a higher optimal λ+

parameter for all reconstruction algorithms ({·}+ denotes the optimal value), indicating
more thresholding, which has led to the partial absence of auto-terms. Overall, the TwIST
algorithm achieves the best MSEt and MSEf values, while the lowest execution time is
achieved by the SpaRSA algorithm. The YALL1 algorithm achieves the highest auto-term
resolution, but its poor consistency significantly increases MSEt and MSEf values.

In the case of the signal zLFM(t), both optimizations yield almost identical results,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5 Reconstructed TFDs for the signal zSINLFM(t) optimized with two objective
function formalizations: (a) TwIST, MS; (b) TwIST, Nr; (c) SpaRSA, MS; (d) SpaRSA,
Nr; (e) SALSA, MS; (f) SALSA, Nr; (g) YALL1, MS; (h) YALL1, Nr.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6 Reconstructed TFDs for the signal zLFM(t) optimized with two objective
function formalizations: (a) TwIST, MS; (b) TwIST, Nr; (c) SpaRSA, MS; (d) SpaRSA,
Nr; (e) SALSA, MS; (f) SALSA, Nr; (g) YALL1, MS; (h) YALL1, Nr.
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Table 4.4 Performance comparison of the reconstructed TFDs obtained using the
TwIST, SpaRSA, SALSA and YALL1 algorithms optimized with

(
MS,MSEt,MSEf

)
versus (Nr,MSEt,MSEf ) objective functions for the signal zLFM(t). Values in bold indi-
cate the best-performing and the fastest algorithm.

zLFM(t)

TwIST SpaRSA SALSA YALL1

Objectives MS Nr MS Nr MS Nr MS Nr

MSEt

MSEf

MSEt

MSEf

MSEt

MSEf

MSEt

MSEf

MSEt

MSEf

MSEt

MSEf

MSEt

MSEf

MSEt

MSEf

λ+ 2.701 2.081 6.145 5.390 13.941 12.180 4.001 3.931

MSEt 0.0197 0.0142 0.0229 0.0317 0.0181 0.0198 0.1379 0.1380
MSEf 0.0342 0.0386 0.0630 0.0639 0.0484 0.0378 0.2222 0.2201

MS 0.0258 0.0267 0.0221 0.0276 0.0396 0.0448 0.0063 0.0064

Nr 22 14 12 9 12 11 25 19

MAEt 0.0817 0.0645 0.0841 0.1086 0.0691 0.0817 0.236 0.2362
MAEf 0.1408 0.1590 0.2251 0.2282 0.1756 0.1623 0.4492 0.4487
MAXt 0.4557 0.4229 0.4942 0.3943 0.4786 0.4269 1.0 1.0
MAXf 0.5385 0.5020 0.5038 0.4132 0.5451 0.4908 0.8497 0.8487

t[s] 0.214 0.184 0.119 0.116 0.596 0.537 5.010 4.380

resulting in visually indistinguishable reconstructed TFDs, as depicted in Figure 4.6. The
numerical analysis presented in Table 4.4 confirms this observation, with competitive MSEt

and MSEf values achieved by both MS and Nr objectives, depending on the reconstruction
algorithm employed. As with the signal zSINLFM(t), the optimal value of λ+ is lower when
using the MS objective for all reconstruction algorithms. Similar to the previous signal
example, the TwIST and SALSA algorithms achieve the best MSEt and MSEf values,
while the SpaRSA is the fastest. Moreover, the YALL1 algorithm provides the highest
auto-term resolution with the worst consistency, as evidenced by high MSEt and MSEf

values. Supporting graphical representations of several arbitrarily selected Pareto fronts
are visualized in Appendix C.

In conclusion, it can be inferred that both formulations of the objective function have
surpassed the constraints of optimization using global concentration measures, and have
demonstrated highly competitive performance. Notably, the use of the MS objective
function tends to result in slightly higher component resolution in the reconstructed TFDs,
albeit at the cost of losing a small proportion of auto-term samples. Conversely, the use of
the Nr objective function may be preferred due to its higher ability to preserve component
connectivity while maintaining high resolution in the reconstructed TFDs.
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4.5 Summary

In this chapter, it has been demonstrated that the localization in frequency slices using
the narrow-band Rényi entropy has achieved higher accuracy than the STRE in providing
the local number of components for signals whose components diverge significantly from
the time axis. The combination of both approaches has been used to define performance
criteria based on the LRE, which serves as the mean squared error between the local
numbers of components in the starting and reconstructed TFDs. The presented LRE-based
metric has been shown to surpass the drawbacks of global concentration measures and
properly penalize the loss of auto-terms, as demonstrated by the reconstructed TFDs
obtained in the previous chapter.

Furthermore, the LRE-based metrics have been formalized with two different measures
as objective functions for multi-objective optimization. The first measure has been the
global concentration measure MS, and the second measure has been presented here, Nr,
which measures the number of continuously-connected samples in a TFD. The results
have evidenced that both objective function combinations have overcome the limitations
of existing optimization approaches and provided high-performing reconstructed TFDs
with preserved auto-terms. A slight advantage has been given to the optimization with
the Nr measure, which has achieved better preservation of auto-terms with competitive
auto-term resolution and cross-term suppression when using the MS measure.
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CHAPTER 5

ADVANCEMENTS IN COMPRESSIVE
SENSING-BASED SIGNAL ANALYSIS

This chapter introduces two approaches aimed at enhancing the performance of sparse
TFD reconstruction. The first method is the reconstruction algorithm, in which the
original thresholding operator is substituted with the shrinkage operator based on the
localized Rényi entropy information. The goal of the presented shrinkage operator in this
context is to detect and concentrate a TFD filtered by the CS-AF only on auto-terms, as
well as reduce the incidence of oversparsity in the final reconstructed TFD.

The second method parameterizes the original CS-AF area from the literature and
extracts the magnitude-significant auto-term-related samples. The aim of the presented
method is to include additional auto-term-related samples in the CS-AF area while discard-
ing the cross-term- and noise-related ones that may be present in the non-parameterized
CS-AF area. The methods introduced in this study are assessed using synthetic and real-life
gravitational signals, both with and without noise. The obtained results are compared to
those achieved by state-of-the-art reconstruction algorithms and the existing CS-AF area
selection approach. The methods presented in this chapter are published by the author in
international peer-reviewed journals and conference proceedings [52, 53, 54, 55].

5.1 The Rényi Entropy-Based Shrinkage Sparse

Reconstruction Algorithm

In this section, an alternative method for TFD shrinkage is presented that utilizes
the numbers of local components derived from the STRE and NBRE, NCt and NCf ,
respectively. The commonly used hard√2λ{·} and softλ{·} operators are not suitable
as classifiers since the maxima of cross-terms may exceed those of auto-terms. This
necessitates an increase in the λ parameter, resulting in the loss of some auto-terms. To
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address this issue, a new classifier is presented that identifies TF points as auto-terms
based on the assumption that auto-terms possess a more prominent non-negative TFD
energy surface. This assumption is justified by the prior application of the CS-AF filter,
which emphasizes energy surfaces corresponding to auto-terms, given that the majority of
samples within the CS-AF area are related to auto-terms.

The algorithm initiates by applying a thresholding operation to set all negative values
in the TFD to zero:

Υz(t, f) = hard0{Υz(t, f)}, (5.1)

as negative samples are predominantly associated with the cross-terms. The subsequent
step involves analyzing 1-D time or frequency slices, which are composed of multiple local
maxima corresponding to auto-terms or cross-terms. To differentiate between these two
types of maxima, a surface area is assigned to each local maximum by calculating the sum
of all samples enclosed between the adjacent minima to the right and left of the maximum
value. Subsequently, the largest surface areas are associated with the local number of
components derived from either the STRE or NBRE, NCt or NCf , respectively. This is
done in a new time or frequency slice that contains only auto-term-related samples.

The quantity of transferred samples is regulated by the supplementary parameters
δt and δf , in time and frequency slices, respectively, where δt, δf ∈ [0, 1], δt, δf ∈ R. The
aforementioned procedure is iteratively applied to all remaining time and frequency slices
within the TFD. The pseudocode of the algorithm is provided in Algorithm 1 [55]. It
should be emphasized that the complexity of the presented algorithm, O(n2), is equivalent
to that of the original thresholding operator.

Algorithm 1 Pseudocode of the shrinkage operator
1: Function shrink(ς ′z(tf, ft), δt,f , NCt,f ):
2: hard0{ς ′z(tf, ft)};
3: for i← 1 to length (ς ′z(:, ft)) do
4: slice(:)← ς ′z(i, :);
5: maxind(:)← indexes of slice local maxima;
6: for j ← 1 to length (maxind) do
7: surf(j, 3) = maxind(j);
8: surf(j, 2)← local minima to the left;
9: surf(j, 1)← local minima to the right;

10: surf(j, 0)← sum of samples from surf(j, 2) to surf(j, 1);
11: end for
12: surf ← ascendantly sort w.r.t. the surf(:, 0);
13: for j ← 1 to NCt,f (i) do
14: for k ← surf(j, 2) to surf(j, 1) do
15: if slice(k) ≥ δt,f · surf(j, 3) then
16: ςz(i, k) = slice(k);
17: end if
18: end for
19: end for
20: end for
21: return ςz(tf, ft)
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The presented shrinkage operator has been implemented in the TwIST algorithm
because of its high performance, low execution time, and simplicity over other considered
reconstruction algorithms. To formally establish the presented algorithm inside the TwIST
framework, the argument of the soft-thresholding operator in (3.9) is denoted as ς ′z(t, f),
while the outcome of the soft-thresholding operation is represented as ςz(t, f). Thus, we
have the following relationship [55]:

[ς ′z(t, f)]
[n+1] =

[
Υℓ1

z (t, f)
][n]

+ΨH
(
A
′
z(ν, τ)−Ψ

[
Υℓ1

z (t, f)
][n])

, (5.2a)

[ςz(t, f)]
[n+1] = softλ

{
[ς ′z(t, f)]

[n+1]
}
. (5.2b)

In the presented algorithm, (5.2b) was substituted with the following expression [55]:

[ς t,fz (t, f)][n+1] = shrinkt,f
{
[ς ′z(t, f)]

[n+1]
}
, (5.3)

where shrinkt,f{·} represents the algorithm outlined in Algorithm 1. The notation t, f

represents the application of shrinkage on time or frequency slices using the STRE or
NBRE method, respectively. In the subsequent step, ςfz (t, f) and ς tz(t, f) are merged by
using their weighted average to be utilized as an input for (3.9) [55]:

[ςz(t, f)]
[n+1] = p · [ς tz(t, f)]

[n+1] + (1− p) · [ςfz (t, f)]
[n+1], (5.4)

where p ∈ [0, 1], p ∈ R is the weighting parameter supplied by the user. The complete
algorithm for sparse TFD reconstruction with shrinkage is presented in Algorithm 2 [55].

Algorithm 2 Pseudocode of the sparse TFD reconstruction algorithm
Require: AM

z (ν, τ),Ψ,ΨH , NCt, NCf , αTwIST, βTwIST, ϵ,Nit, p, δt, δf .
Ensure: Reconstructed sparse TFD, Υz(t, f).

1: [Υz(t, f)]
[−1]

, [Υz(t, f)]
[0] ← ΨHAM

z (ν, τ);
2: while ((c ≥ ϵ) and (n ≤ Nit)) do
3: Solve (5.2a);
4: ςtz(t, f)← shrink(ς ′z(t, f), δt, NCt);
5: ςfz (t, f)← shrink(ς ′z(t, f)

T , δf , NCf );
6: Solve (5.4);
7: Solve (3.9);
8: ϵ← stopping criterion;
9: n← n+ 1;

10: end while

Figures 5.1 and 5.2 illustrate a single iteration of the presented algorithm. Figure 5.1
shows the TFDs obtained after the CS-AF filtration step, which precedes the application
of the shrinkage operator. The obtained TFDs exhibit prominent auto-terms compared to
cross-terms. However, the resolution of the auto-terms is limited because the CS-AF area
covers only a fraction of their samples from the AF. The presented algorithm addresses
this issue by identifying and selecting the largest surface areas in each time or frequency
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(a) (b)

Figure 5.1 The obtained TFDs from the filtered AFs with the CS-AF area for the
considered signals: (a) zSINLFM(t); (b) zLFM(t). Red dashed lines represent an arbitrarily
chosen time slice at sample t = 100 for the signal zSINLFM(t) in (a), and a frequency slice
at frequency bin f = 120 for the signal zLFM(t) in (b).

(a) (b)

Figure 5.2 (a) A time slice at sample t0 = 100 for the signal zSINLFM(t) with p = 0.9 and
NCt(t0) = 2; (b) a frequency slice at frequency bin f0 = 120 for the signal zSINLFM(t) with
p = 0.1 and NCf (f0) = 4. The RTwIST parameters δt = δf have been randomly set to 0.5
(black dashed line) and 0.95 (red dashed line).

slice based on the number of components, NCt(t) or NCf (f), as shown in Figure 5.2. The
spread of each surface, measured in the number of samples along the time or frequency
axis, is adjusted by modifying the signal-dependent parameters δt and δf . Increasing these
parameters reduces the number of samples in each surface, as depicted in Figure 5.2 for
δt = δf = 0.95 compared to δt = δf = 0.5. The impact of the signal-dependent parameters
p, δt, and δf on the performance of the presented algorithm is discussed separately.

Influence of the parameter p

It is of importance to comprehend the significance of the parameter p and its impact
on the overall performance of the algorithm. Equation (5.4) indicates that the algorithm
uses the STRE exclusively when p = 1, the NBRE exclusively when p = 0, or a weighted
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(a) (b)

(c) (d)

Figure 5.3 Reconstructed TFDs obtained using the RTwIST algorithm with parameters
αTwIST = 0.91, βTwIST = 0.8 and δt = δf = 0.85: (a) signal zSINLFM(t) with p = 0.1;
(b) signal zSINLFM(t) with p = 0.9; (c) signal zLFM(t) with p = 0.1; (d) signal zLFM(t) with
p = 0.9.

combination of both when 0 < p < 1. Both the STRE and NBRE are essential, as the
previous chapters have demonstrated, to cover a significantly wider range of signals. An
incorrect number of local components can misclassify cross-terms or noise-related surfaces
as auto-terms, making the inclusion of both approaches necessary. Figure 5.3 provides
a clear representation of the RTwIST algorithm’s reconstruction performance for signals
zSINLFM(t) and zLFM(t) using mostly the STRE (p = 0.9) and NBRE (p = 0.1). It is worth
noting that the other RTwIST parameters, including δt and δf , were randomly selected
and kept constant to highlight the effect of parameter p.

For the signal zSINLFM(t), the incorrect numbers of local components obtained from the
NBRE misclassify cross-terms as auto-terms in the shrinkage operator, leading to their
inevitable reconstruction, as shown in Figure 5.3a. Similar consequences are observed
for the signal zLFM(t), but for a different value of p. Since the NBRE provides a more
precise estimate of the number of local components for this signal, utilizing the STRE in
the reconstruction adds unwanted cross-terms to the reconstructed TFD, as demonstrated
in Figure 5.3d.
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Table 5.1 Performance comparison of the RTwIST algorithm with different parameters
p selection for the signals zSINLFM(t) and zLFM(t). Bold values indicate the superior
performing algorithm.

RTwIST with parameters αTwIST = 0.91, βTwIST = 0.8 and δt = δf = 0.85

zSINLFM(t) zLFM(t)

p = 0.1 p = 0.9 p = 0.1 p = 0.9

MSEt 0.0342 0.0041 0.0266 0.0398
MSEf 0.0359 0.0312 0.0435 0.0474
Nr 13 8 19 54

Table 5.1 displays the numerical confirmation of the reconstruction performance for
various p parameters using the Rényi entropy-based metric presented in the previous
chapter. Reconstructing cross-terms increased the inaccuracy within the MSEt and MSEf

metrics by 88.01% for the signal zSINLFM(t) and 33.17% for the signal zLFM(t), as well as
the number of regions with continuously-connected TFD samples by 38.46% for the signal
zSINLFM(t) and 64.81% for the signal zLFM(t). This validated the visual assessment that
p→ 1 should be employed to the signal zSINLFM(t) and p→ 0 to the signal zLFM(t).

Incorrect parameter selection for p can result in both the loss of auto-terms in the
reconstructed TFD, as well as the undesired reconstruction of cross-terms. This issue
can arise due to several reasons. Firstly, when analyzing signals with components whose
amplitudes differ significantly, incomplete NCt(t) or NCf (f) values may become apparent.
In such cases, it is advised for the user to emphasize proper selection of the underlying RID
in the original STRE and NBRE methods, or to use an iterative LRE approach. Secondly,
if an unsuitable axis is used for slice localization on signal components that deviate from
it, shrinkage operations may miss the true component, as illustrated in Figure 5.3a for
the sinusoidal component. Therefore, careful parameter selection is essential to ensure
accurate and complete reconstruction of the TFD.

Influence of the parameters δt and δf

After selecting the appropriate parameter p for a given signal, it is important to
properly consider the values of δt and δf . For the signals zSINLFM(t) and zLFM(t), p values
of 0.9 and 0.1 respectively were found to be more suitable in the previous simulation. In
this simulation, the influence of varying the parameters δt and δf was investigated by
examining lower values (δt = δf = 0.5) and higher values (δt = δf = 0.95). The results are
given in Table 5.2 and depicted in Figure 5.4.

The results of the simulations signifies that the choice of suitable values for δt and
δf carries a crucial role in determining the resolution quality of the reconstructed TFD.
The analysis of signals zSINLFM(t) and zLFM(t), demonstrated in Figure 5.4, shows that
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(a) (b)

(c) (d)

Figure 5.4 Reconstructed TFDs obtained using the RTwIST algorithm with parameters
αEMB = 0.91, βEMB = 0.8: (a) signal zSINLFM(t), p = 0.9 and δt = δf = 0.5; (b) signal
zSINLFM(t), p = 0.9 and δt = δf = 0.95; (c) signal zLFM(t), p = 0.1 and δt = δf = 0.5;
(d) signal zLFM(t), p = 0.1 and δt = δf = 0.95.

the resolution of the reconstructed TFD is in direct correlation to the values of δt and
δf . Higher values of δt and δf (i.e., stronger shrinkage) lead to an improvement in the
resolution of the reconstructed TFD, whereas lower values (i.e., less shrinkage) result in a
reduction in resolution.

It should be emphasized that excessively large values of δt and δf may result in the
absence of samples related to auto-terms, particularly for signals with weaker components,
such as the two LFM components in the signal zLFM(t). Furthermore, reconstructing
non-LFM components, as in the case of the signal zSINLFM(t) shown in Figure 5.4b, may
result in a loss of auto-terms in the non-linear portion of the components, which usually
have lower amplitude as well. The underlying cause for this is that auto-term-related
surfaces with low amplitude are more likely to be misclassified as cross-terms, making it
more difficult for the shrinkage operator to maintain the successful identification of such
auto-terms over its iterations.

Upon examining the numerical values presented in Table 5.2, the earlier visual observa-
tions are corroborated. In both signal examples, a lower reconstructed TFD resolution
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Table 5.2 Performance of the RTwIST algorithm with different parameters δt and δf selec-
tion for the signals zSINLFM(t) and zLFM(t). Bold values indicate the superior performing
algorithm.

RTwIST with parameters αTwIST = 0.91, βTwIST = 0.8

zSINLFM(t) with p = 0.9 zLFM(t) with p = 0.1

δt = δf = 0.5 δt = δf = 0.95 δt = δf = 0.5 δt = δf = 0.95

MSEt 0.2783 0.2011 0.1187 0.0455
MSEf 0.1036 0.1302 0.1685 0.0811
Nr 3 7 16 18

increased the MSEt and MSEf values because each time or frequency slice generated
higher entropy than the reference one. However, the difference in MSEt and MSEf values
between reconstructed TFDs with lower and higher resolution is not as significant as it
was in the previous simulation of different parameters p.

Interestingly, in the case of the signal zSINLFM(t), the MSEf is even lower for the
low-resolution TFD with δt = δf = 0.5 than with a higher δt = δf = 0.95. This is because,
as previously indicated, an increase in δt and δf values may result in the partial loss of
auto-terms, which in turn increases the MSEt and MSEf values. Furthermore, this increase
is reflected in a higher Nr value, indicating greater discontinuity in the reconstructed TFD
components.

Although δt = δf = 1 theoretically provides the highest possible TFD resolution
reconstruction, practical imperfections in the methods or the complexity of the signal itself
may prevent the ideal outcome. Extensive usage and research findings indicate that it is not
advisable to select this value for every signal in practice. Instead, a range of δt, δf ∈ [0.6, 1]

achieves an optimal compromise between auto-term resolution and retention.

5.1.1 Simulation Results

The optimal values for the presented RTwIST parameters for the signals zSINLFM(t)

and zLFM(t) are found by formalizing a multi-objective optimization problem as:

minimize: MS/Nr,MSEt,MSEf (αTwIST, βTwIST, p, δt, δf ),

subject to: αTwIST ∈ ⟨0, 1], p ∈ [0, 1], βTwIST ∈ ⟨0, 2α], δt, δf ∈ [0.6, 1].
(5.5)

The results of the performance of the RTwIST algorithm optimized with two different
objective function combinations, (MS,MSEt, MSEf) and (Nr,MSEt, MSEf), are shown
in Figure 5.5 and given in Table 5.3. The LRE, reconstruction algorithm, and NSGA-
III parameters have been kept equal as in the previous simulations, considering signals
zSINLFM(t) and zLFM(t).
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(a) (b)

(c) (d)

Figure 5.5 Reconstructed TFDs obtained by the RTwIST algorithm with objective
functions formalized as MSEt,MSEf and: (a) signal zSINLFM(t), MS; (b) signal zSINLFM(t),
Nr; (c) signal zLFM(t), MS; (d) signal zLFM(t), Nr.

Visually, both optimization approaches result in reconstructed TFDs with successfully
suppressed cross-terms and retained auto-terms. While the difference in performance
of the obtained reconstructed TFDs for the signal zLFM(t) is difficult to discuss from
visual observation, we can observe in Figures 5.5a and 5.5b for the signal zSINLFM(t) that
the reconstructed TFD optimized with measure Nr achieves better preservation of the
auto-terms, while the reconstructed TFD optimized with measure MS achieves slightly
better concentration.

Using the numerical results from Table 5.3, we can expand on the visual observations.
Despite the 15.32% increase in MSEt for the signal zSINLFM(t) when optimizing with the Nr

measure, an overall reduction is present in both, MSEt and MSEf , by 30.87% to 34.89%,
respectively, for both signals zSINLFM(t) and zLFM(t). This confirms the observations that
an optimization procedure using the MS measure can exclude some auto-terms in favor
of higher concentration. Note that for both signal examples, higher optimal δ+t and δ+f
parameters result in higher concentration. Furthermore, the obtained reconstructed TFDs
achieve better MS and Nr values when these measures are included as objective functions
compared to when they are not. This is expected and consistent with the conclusions
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Table 5.3 Performance of the RTwIST algorithm optimized with the NSGA-III and
objective functions formalized as (MSEt, MSEf ,M

S) versus (MSEt, MSEf , Nr) for the
signals zSINLFM(t) and zLFM(t). Bold values indicate the superior performing algorithm.

zSINLFM(t) zLFM(t)

(α+, β+) (0.92, 0.86) (0.99, 0.80) (0.89, 0.87) (0.90, 0.92)
(p+, δ+t , δ

+
f ) (1, 0.93, 0.91) (1, 0.84, 0.88) (0, 0.97, 0.96) (0, 0.84, 0.95)

Objectives MS Nr MS Nr

MSEt, MSEf MSEt, MSEf MSEt, MSEf MSEt, MSEf

MSEt 0.0124 0.0143 0.0171 0.0118
MSEf 0.0617 0.0405 0.0149 0.0103

MS 0.0328 0.0408 0.0154 0.0171

Nr 5 2 11 8

MAEt 0.0937 0.1437 0.0647 0.0531
MAEf 0.1812 0.1565 0.1067 0.0849
MAXt 0.2015 0.2460 0.5358 0.5024
MAXf 0.6468 0.4855 0.2389 0.2055

t[s] 0.312 0.289 0.931 0.888

given in the previous chapter. The remaining performance indices support the MSEt and
MSEf results.

Furthermore, the RTwIST algorithm’s performance has been compared to other recon-
struction algorithms considered in the dissertation, whose results are provided in Tables
4.3 and 4.4 for the signals zSINLFM(t) and zLFM(t), respectively. The findings illustrate
that the RTwIST algorithm surpasses all considered algorithms in terms of both MSEt

and MSEf . Specifically, for the signal zSINLFM(t), the RTwIST algorithm achieves a 6.54%
improvement in MSEt over SpaRSA, up to a 97.50% improvement over YALL1, and a
0.48% improvement in MSEf over TwIST, up to an 82.77% improvement over YALL1,
when both objective function formulations are considered. Similarly, for the signal zLFM(t),
the RTwIST algorithm achieves a 13.20% improvement in MSEt over TwIST, up to a
91.45% improvement over YALL1, and a 72.75% improvement in MSEf over TwIST, up
to a 95.32% improvement over YALL1, considering both objective function formulations.

When optimizing with the Nr measure, the RTwIST algorithm is competitive with
the best algorithms in terms of component connectivity (SpaRSA and SALSA), achieving
Nr = 2 for the signal zSINLFM(t) and reducing Nr by one more than SpaRSA exhibits for the
signal zLFM(t). However, when optimizing with the MS measure, the practical imperfection
of the RTwIST’s shrinkage operator with particularly high δt,f may induce a small bias
to the auto-term samples of non-LFM components, which slightly decreases component
connectivity. The results also show that the MS value is the lowest for the YALL1 algorithm
in all simulations, indicating that the YALL1 achieves the best component concentration.
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Table 5.4 Hypervolume values (best, average, worst) of five reconstruction algorithms,
including RTwIST, TwIST, SALSA, SpaRSA, and YALL1, for the signals zSINLFM(t) and
zLFM(t) with objective functions using the MS or Nr measures. Values in bold indicate
the best-performing algorithm with the highest hypervolume values.

zSINLFM(t) zLFM(t)

Objectives MS Nr MS Nr

MSEt, MSEf MSEt, MSEf MSEt, MSEf MSEt, MSEf

Rank Rank Rank Rank

63.4587 75.4444 94.6665 93.8877
RTwIST 61.5476 1. 73.4121 1. 92.9561 1. 91.5503 1.

59.8788 71.8871 90.1145 88.9634

55.3698 74.1287 89.5478 84.1124
TwIST 53.1436 2. 73.0080 2. 87.0559 2. 82.7896 2.

51.1245 70.0014 84.7896 81.1478

44.5687 73.7778 77.4568 79.3698
SpaRSA 42.6156 4. 71.9287 3. 75.7616 4. 78.9316 4.

39.6547 69.8878 71.6987 75.7899

49.8887 70.5554 86.5111 83.8987
SALSA 47.1472 3. 68.7837 4. 84.0811 3. 82.7047 3.

45.8111 66.8788 82.2247 80.4444

38.1478 42.0014 72.2258 73.3214
YALL1 35.4417 5. 39.4470 5. 69.6930 5. 70.9316 5.

32.1487 37.1879 65.1789 67.9878

Finally, the RTwIST algorithm is slower than the SpaRSA, TwIST, and SALSA
algorithms, but significantly faster than the YALL1 algorithm.

To further demonstrate the superiority of the presented RTwIST algorithm, a hypervol-
ume analysis has been conducted for all considered reconstruction algorithms, including
RTwIST, TwIST, SALSA, SpaRSA, and YALL1. The results are summarized in Table
5.4. To ensure a fair comparison, all reconstruction algorithms were optimized using the
NSGA-III algorithm with the same parameters provided in Table 4.2. The optimization
was performed independently 1000 times to minimize its stochastic nature. The resulting
Pareto fronts from all algorithms were stored in a single repository, and the maximum
values of the objective functions represented the vertices of the cube for the measure.

The results present that the RTwIST algorithm generates the best-performing Pareto
front. More precisely, its best hypervolume value ranges from 63.4587 to 94.6665, with an
average range from 61.5476 to 92.9561, and the worst range from 59.8788 to 90.1145 when
considering all objective function formulations and both signals, zSINLFM(t) and zLFM(t).
This represents an improvement of up to 44.33%, 46.27% and 46.31% for the best, average,
and worst hypervolume values compared to the worst-performing algorithm (YALL1). It
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is noteworthy that the second-best-performing algorithm in this analysis is TwIST, which
further validates its selection as the underlying algorithm in RTwIST.

5.1.2 Sensitivity to Noise

To assess the performance of the presented RTwIST algorithm in the presence of
noise, a numerical analysis has been conducted by adding synthetic signals to AWGN
with SNRs ranging from 1 to 9. Then, the reconstructed TFDs of the noisy signals were
compared with those of the noise-free signals using machine learning evaluation metrics
[41]. To facilitate the use of these metrics in this dissertation, the noise-free and noisy
reconstructed TFDs were transformed into a binary classification problem. The positive
class (P) represents signal samples in the reconstructed TFD, while the negative class (N)
represents reconstructed TFD samples where no signal is present.

The noise-free TFD comprises actual or true samples that should be retained at their
exact positions (and positive or negative class) in the noisy TFD. Therefore, the following
indices were used to measure the number of samples in a noisy reconstructed TFD that
are equivalent to or distinct from the actual, noise-free TFD [41]:

• true positives (TP) – samples erroneously categorized in the positive class,

• true negatives (TN) – samples erroneously categorized in the negative class,

• false positives (FP) – samples erroneously categorized in the positive class,

• false negatives (FN) – samples erroneously categorized in the negative class.

Noise is anticipated to increase the FP and FN indices. A high FP value indicates
the reconstruction of noise and/or cross-term-related samples, whereas a high FN value
indicates the absence of true signal samples in a noisy TFD reconstruction.

The provided indices are visually represented in the confusion matrix [9, 41]. In this
dissertation, each row of the confusion matrix represents the samples belonging to a
noise-free (or true) TFD, whereas each column represents the samples belonging to a noisy
TFD. Consequently, the cells on the major diagonal of the confusion matrix, where the
positive and negative classes from the noise-free and noisy TFD align, show the correct
reconstruction classifications, TN and TP. Other matrix cells, however, show inaccurate
classifications, namely the FN and FP. It is worth noting that the confusion matrix for our
classification problem has a 2× 2 dimension. Using the aforementioned confusion matrix
and its indices, several statistical measures are defined. First, the classification accuracy is
expressed as the portion of correct samples in a noisy TFD (both TP and TN) among the
whole TFD (Nt ·Nf ) [41]:

Accuracy =
TP + TN

TP + TN + FP + FN
=

TP + TN
Nt ·Nf

. (5.6)
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Next, the specificity, also called the true negative rate, measures the reconstruction
algorithm’s ability to retain TN as [41]:

Specificity =
TN

TN + FP
. (5.7)

In order to measure the amount of correct samples belonging to a signal in a noisy
TFD among all samples reconstructed in the positive class, the precision, also called the
positive predictive value, is used, defined as [41]:

Precision =
TP

TP + FP
. (5.8)

The precision is commonly combined with the recall measure, also known as the true
positive rate or sensitivity, which represents the number of correct signal samples in a
noisy TFD in comparison to the true number of signal samples in a noise-free TFD [41]:

Recall =
TP

TP + FN
. (5.9)

The balance of both measures, precision and recall, is combined in the F1 score measure
as a single metric value, representing the harmonic mean of their values [41]:

F1 = 2 · Precision · Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN
. (5.10)

Note that all the aforementioned statistical metrics are inside the range [0, 1], where a
higher value is preferred.

As previously stated, the evaluation metrics treat given reconstructed TFDs as binary
images; that is, signal samples (regarding the amplitude value) are set to ones. To account
for TFD amplitudes, the 2-D MSE with a scaled and squared Frobenius norm between the
noisy and noise-free reconstructed TFDs has been used:

F-norm =
1

NtNf

||ρ(t, f)− ρ(noise)(t, f)||2F =
1

NtNf

Nt∑
t=1

Nf∑
f=1

|ρ(t, f)− ρ(noise)(t, f)|2. (5.11)

The confusion matrices and the corresponding statistical measures obtained by the
RTwIST algorithm when comparing its performance in the presence of AWGN in different
SNRs are given in Tables 5.5 and 5.6. Note that in this test and throughout the dissertation,
when noise is considered, the obtained results have been averaged over 1000 independent
noise realizations in order to minimize its random behavior. As seen in Table 5.5, the
presence of noise increased the FN and FP values. A significant increase in the FN and
FP, with a drop in the TN and TP values, is evident when both signals zSINLFM(t) and
zLFM(t) are embedded in AWGN in SNR = 1 dB.
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Table 5.5 Confusion matrices for evaluating the RTwIST algorithm’s sensitivity to noise
for SNR = (1, 3, 5, 7, 9) dB for the signals zSINLFM(t) and zLFM(t). Values in bold indicate
the true negative and true positive indices.

SNR 1 dB 5 dB 9 dB

Noisy TFD Noisy TFD Noisy TFD
N P N P N P

zSINLFM(t)True TFD N 14908 678 15328 258 15421 165
P 529 141 170 500 141 529

zLFM(t) True TFD N 63323 1065 64112 258 64161 198
P 617 275 209 701 186 735

This behavior is also shown with the statistical measures in Table 5.6. The F1 score
may be highlighted, which is decreased by 23.77% and 14.88% in the signals zSINLFM(t)

and zLFM(t), respectively, going from SNR = 9 dB to SNR = 3 dB, compared with a
further decrease by 67.97% and 63.49% in the signals zSINLFM(t) and zLFM(t), respectively,
when SNR = 1 dB. The precision, recall, and F-norm measures also confirm this behavior.

Note that the accuracy and specificity measures have not shown themselves to be
reliable, since they remained high for all SNRs. The reason behind this is the large
difference between a number of auto-term samples and the size of the whole TFD, where
a portion of incorrect signal samples does not greatly affect the accuracy and specificity
measures. Therefore, it can be concluded that the RTwIST algorithm is suitable for use in
noisy environments with SNR > 1 dB, which corresponds with the noise sensitivity of the
STRE [118, 120, 121] and NBRE methods.

Examples of reconstructed TFDs for both signals zSINLFM(t) and zLFM(t) embedded
in AWGN with SNR = (1, 3) dB are depicted in Figure 5.6. For SNR = 3 dB, the
reconstructed TFDs, shown in Figures 5.6b and 5.6d, are competitive with the ones
in Figure 5.5. However, a more significant drop in performance, also detected by the
statistical measures, is visible for SNR = 1 dB in Figures 5.6a and 5.6c. The drop in
performance is mainly attributed to two factors. The decline in performance may be
primarily attributed to two factors. Firstly, the high noise levels cause an increase in the
values of NCt(t) and NCf(f), which in turn causes the shrinkage operator to include a
greater number of surfaces than there are auto-terms. Secondly, it is possible for noise to
surpass certain auto-terms with low amplitude, leading to their erroneous identification as
auto-terms across the entire time-frequency distribution. This involves another difficulty in
the reconstruction since the desired auto-term may be replaced with noise or a cross-term.
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Table 5.6 Statistical measures for evaluating the RTwIST algorithm’s sensitivity to noise
for SNR = (1, 3, 5, 7, 9) dB for the signals zSINLFM(t) and zLFM(t).

zSINLFM(t)

Accuracy Specificity Precision Recall F1 F-norm

1 dB 0.9258 0.9565 0.1722 0.2104 0.1894 235.1081
3 dB 0.9635 0.9774 0.5493 0.6403 0.5913 73.4112
5 dB 0.9737 0.9834 0.6596 0.7463 0.7003 58.1807
7 dB 0.9785 0.9874 0.7245 0.7731 0.7480 42.2222
9 dB 0.9812 0.9894 0.7622 0.7896 0.7757 38.7343

zLFM(t)

Accuracy Specificity Precision Recall F1 F-norm

1 dB 0.9742 0.9835 0.2052 0.3083 0.2464 147.3097
3 dB 0.9899 0.9944 0.6539 0.6973 0.6749 36.3391
5 dB 0.9928 0.9960 0.7310 0.7703 0.7501 16.9878
7 dB 0.9937 0.9967 0.7742 0.7835 0.7788 13.2328
9 dB 0.9941 0.9969 0.7878 0.7980 0.7929 11.1238

(a) (b)

(c) (d)

Figure 5.6 Reconstructed TFDs obtained by the RTwIST algorithm for the considered
signals embedded in AWGN: (a) zSINLFM(t), SNR = 1 dB; (b) zSINLFM(t), SNR = 3 dB;
(c) zLFM(t), SNR = 1 dB; (d) zLFM(t), SNR = 3 dB.

65



ADVANCEMENTS IN COMPRESSIVE SENSING-BASED SIGNAL ANALYSIS

5.2 Parametrized Compressive Sensing Area Selection

5.2.1 Ambiguity Function Thresholding

The choice of the CS-AF area significantly impacts the outcome of sparse TFD recon-
struction. Insufficient sampling in the CS-AF area hampers TF resolution and prevents
the reconstruction of low-amplitude, higher-polynomial FM signal components. Using an
excessive number of samples, on the other hand, leads to an undesirable reconstruction
of the cross-terms [37, 127, 131]. In addition, this issue is exacerbated by the RTwIST
algorithm, as the improper CS-AF area can reduce the classification reliability of the
shrinkage operator. In other words, the shrinkage operator may incorrectly include cross-
term-related samples as part of the auto-term-related components, while rejecting samples
related to the auto-terms. The whole N ′τ ×N ′ν area is limited by two constraints. First,
its adaptive size captures only the linear phenomenon of auto-terms, potentially degrading
the accuracy of higher polynomial FM component trajectories in the filtered TFD. Second,
it is constrained by its rigid rectangular form, which may contain AF samples associated
with noise or inner-terms (produced by non-LFM components) as N ′τ and N ′ν increase. All
of the aforementioned cases diminish the overall performance of reconstruction.

To address the limitations described above, a method for selecting the CS-AF is now
presented. The underlying premise is that the performance of the reconstruction may
be significantly enhanced by selectively choosing the most salient samples within the
CS-AF area, N ′τ ×N ′ν , further denoted with AzΓ (ν, τ). Furthermore, the method allows
for the incorporation of additional external samples from the wider AF region, referred
to as AzΛ (ν, τ), if deemed beneficial. Therefore, the matrix form of the (ν, τ) area, Ω, is
constructed with AF samples as follows [53]:

Ω =

Az (ν, τ) , |AzΓ (ν, τ) | ≥ Γ ∪ |AzΛ (ν, τ) | ≥ Λ,

0, otherwise,
(5.12)

where Γ,Λ ∈ [0, 1], Γ,Λ ∈ R parameters define the minimal normalized magnitude of
the AF sample chosen from AzΓ (ν, τ) and AzΛ (ν, τ), respectively. Notably, it has been
ensured that auto-terms and cross-terms satisfy the essential AF properties [15, 20]:

1. Auto-terms demonstrate a densely concentrated distribution along trajectories that
traverse the origin of the AF, adhering to the IF law of the components.

2. The auto-term magnitude peaks at the AF origin and then gradually diminishes.

3. Auto-terms and cross-terms may cross each other within the AF.

The rationale behind the incorporation of the parameter Γ in AzΓ (ν, τ) is discussed
first. In this area, the majority of samples are essential to the TFD reconstruction since
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that area is centered around the AF origin, where the majority of auto-terms are expected
to reside. However, due to the rigorous rectangular structure of the AzΓ (ν, τ), it often
includes low-magnitude samples that are unrelated to the auto-terms. These samples
may be unnecessary for reconstruction, or worse, they may be associated with noise or
inner-terms due to the non-linear auto-term behavior. Therefore, the purpose of parameter
Γ in this area is to effectively decrease the CS-AF and exclude undesirable AF samples.
Note that for Γ = 0, AzΓ (ν, τ) equals the original N ′τ ×N ′ν area, while for Γ = 1 only the
sample at the AF origin is considered. Moreover, it is recommended to employ a relatively
small Γ value to mitigate the potential inclusion of low-magnitude auto-terms.

Conversely, the objective of incorporating AzΛ (ν, τ) is to enlarge the CS-AF area
by including auto-term-related samples, thereby providing additional insights into the
missing auto-term characteristics, particularly those exhibiting non-linear behavior. By
virtue of the second property outlined earlier, the cross-terms within AzΛ (ν, τ) can possess
magnitudes that surpass those of the auto-terms. Consequently, the utilization of a low Γ

value in AzΓ (ν, τ) is insufficient to remove the cross-term-related samples, which validates
the need for a second parameter and presented AF segmentation. To ensure the sole
incorporation of auto-term-related samples, it is advisable to employ a larger Λ value.

Note that the parameters Γ,Λ ∈ [0, 1],Γ,Λ ∈ R will be included in the optimization
process because they are also signal-dependent and that for (Γ = 0,Λ = 1), the CS-AF
region fully corresponds to the original N ′τ ×N ′ν area.

Excluding AF samples with the presented parameters Γ and Λ is to selectively exclude
AF samples, aiming to reduce the sample density between the auto-term and cross-term
regions. This selective exclusion assists in minimizing the overall cardinality of Ω while
retaining a significant portion of the auto-terms. Note that in cases where the cross-terms
have pronounced magnitudes, it may not be possible to completely remove them before
constructing Ω. Therefore, one more step has been included in the proposed algorithm to
further improve Ω by utilizing the clustering algorithm to make the final classification
decision and extract only auto-term-related samples from Ω.

5.2.2 Extraction of Signal Samples From the Ambiguity Function

Using Density-Based Spatial Clustering

In the ultimate stage, the objective is to identify a single cluster, denoted as CΩ, within
Ω that aligns with the specified properties of auto-terms. To achieve this, the acquired Ω is
utilized as input for a data clustering endeavor. Considering the requirement of retrieving
a single cluster located exactly at the AF origin based on the known auto-term properties,
the density-based spatial clustering in applications with noise (DBSCAN) algorithm has
been utilized. Unlike other clustering methods, DBSCAN does not rely on a predefined
number of clusters, which is advantageous in this context [35, 100, 106]. Additionally,
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DBSCAN offers flexibility in terms of cluster shape and size, which is crucial for identifying
signals with diverse auto-term directions. The above mentioned benefits, coupled with the
reduced computational complexity and the capability to eliminate anomalous data points,
highlight the superiority of DBSCAN over partitioning and hierarchical approaches in our
specific scenario [40, 141, 142, 148].

The DBSCAN algorithm strives to identify clusters within Ω based on the minimum
density criterion, where clusters are distinguished by regions with lower sample density
[49, 92, 106, 111, 145]. The DBSCAN is influenced by two distinct parameters. The first
parameter is the ε radius, which defines the ε-neighborhood of the AF sample Az (νp, τp):

Nε(Az (νp, τp)) = {Az (νq, τq) ∈ Ω | d(Az (νp, τp) ,Az (νq, τq)) ≤ ε}, (5.13)

where Az (νq, τq) represents an AF sample within the ε-neighborhood of the Az (νp, τp),
and the Euclidean distance is given by:

d(Az (νp, τp) ,Az (νq, τq)) =
√
(νp − νq)2 + (τp − τq)2. (5.14)

The second parameter, denoted as minPts, specifies the minimum cardinality of samples
required within the ε-neighborhood of an observed AF sample.

The DBSCAN parameter values have been fixed for our clustering task at minPts = 4

and ε = 3 in accordance with the recommended guidelines provided in [100, 106]. To ensure
a more cohesive cluster, border samples were combined with core samples, aligning with
the principles of a density level set [24, 106]. For specific data structures, the computing
efficiency of DBSCAN is O(n2) or O(n · log n). In order to increase computing performance,
DBSCAN avoids computing density between individual points and instead clusters all
data points located within the ε-neighborhood of a core data point [106].

CS-AF Area Selection

The efficacy of the presented CS-AF area is shown on a synthetic signal, zPFM(t),
with Nt = 256 samples consisted of two parabolic FM (PFM) components embedded in
AWGN with SNR = 6 dB, and the real-life gravitational signal1, zgrav(t) [79, 80, 81, 82].
This gravitational signal includes 3441 data samples. Prior to the analysis, the signal
zgrav(t) was downsampled by a factor of 16, resulting in Nt = 216 samples. Note that the
acquired 216 samples correspond to a signal duration between 0.25 and 0.45 seconds with
a frequency in the range of [0, 500] Hz. The WVDs of the signals under consideration and
their AFs with the automatically selected N ′τ ×N ′ν areas are depicted in Fig. 5.7.

1This research has made use of data, software and/or web tools obtained from the LIGO Open Science
Center (https://losc.ligo.org), a service of LIGO Laboratory and the LIGO Scientific Collaboration. LIGO
is funded by the U.S. National Science Foundation.
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(a) (b)

(c) (d)

Figure 5.7 (a) the WVD of zPFM(t); (b) the AF of zPFM(t), N ′τ ×N ′ν = 49× 53; (c) the
WVD of zgrav(t); (d) the AF of zgrav(t), N ′τ ×N ′ν = 35× 15. The automatically selected
N ′τ ×N ′ν area is marked by the rectangle.

Figure 5.8 depicts the clustered CS-AF areas derived utilizing the presented CS-AF
area selection technique. Figure 5.8a reveals, for the signal zPFM, that the CΩ may be

(a) (b)

Figure 5.8 Clustered CS-AF area, denoted as CΩ, for: (a) signal zPFM(t), with (Γ,Λ) =
(0.06, 0.5); (b) signal zgrav(t) with (Γ,Λ) = (0.15, 0.18). The green circles represent the
samples within the cluster, while the red circles indicate the outlier samples. The blue
rectangle corresponds to the automatically selected N ′τ ×N ′ν area.
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(a) (b)

(c) (d)

Figure 5.9 TFDs obtained from filtered AFs for: (a) signal zPFM(t) with a full N ′τ ×N ′ν
area; (b) signal zPFM(t) with the presented CS-AF area, (Γ,Λ) = (0.06, 0.5); (c) signal
zgrav(t) with a full N ′τ × N ′ν area; (d) signal zgrav(t) with the presented CS-AF area,
(Γ,Λ) = (0.15, 0.18).

decreased from the N ′τ×N ′ν area by concentrating on the AF samples correlated solely with
the auto-terms when using the presented approach. Additionally, Figure 5.8b illustrates
the ability of DBSCAN to accurately generate the CΩ area by incorporating additional AF
samples beyond the boundaries of the N ′τ ×N ′ν area, thereby highlighting the hyperbolic
nature of the signal zgrav(t). Notably, the DBSCAN successfully classifies AF samples that
deviate from the auto-term trajectories as outliers or noise, resulting in their exclusion
from the final CΩ. Also note that the given parameters Γ and Λ are not necessarily the
optimal parameters for the signal examples under consideration. They were chosen to
illustrate the effectiveness of the presented CS-AF area selection method.

Figure 5.9 presents a comparative analysis between the TFDs obtained by applying
AF filtering using a full N ′τ ×N ′ν rectangular region (i.e., Γ = 0,Λ = 1) and the presented
CS-AF area method with the specified Γ and Λ parameters. In the case of the signal
zPFM(t), the utilization of the presented method (shown in Figure 5.9b) decreased the
number of artifacts composed of superimposed cross-terms and noise, particularly in the
vicinity of its auto-terms with non-linear behavior, while maintaining the resolution of
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the auto-terms. A notable improvement in both the resolution of the auto-terms and the
depiction of their hyperbolic behavior for the signal zgrav(t), as observed in Figure 5.9d, is
achieved, compared with the original TFD depicted in Figure 5.9c. These enhancements
will result in higher performance of the shrinkage and thresholding operators of the
reconstruction algorithms. Moreover, considering the strong reliance of the RTwIST
algorithm on accurately distinguishing the bandwidth, duration and amplitude of the
auto-terms from the cross-terms, an improvement in its classification effectiveness and,
ultimately, the overall reconstruction performance is expected.

5.2.3 Simulation Results: Synthetic Signal

In the succeeding simulations, the performances of the CS-AF area selection with static
geometric as in [127, 131] and the presented adaptive CS-AF area with optimal (Γ+,Λ+)

are compared and shown on the TwIST, SALSA, SpaRSA, and RTwIST algorithms. Note
that for the CS-AF area with rigid geometry, parameters have been preset to Γ = 0,Λ = 1,
while for the presented selection method, they have been included in optimization. The
NSGA-III and reconstruction algorithms’ parameters have been set as in the previous
examples. The LRE has been defined with αR = 3 and Θt = Θf = 11, whereas the
underlying EMBD parameters have been optimized using the MS measure and set to
αEMB = 0.09, βEMB = 0.18 and αEMB = 0.12, βEMB = 0.13 for the signals zPFM(t) and
zgrav(t), respectively.

For the signal zPFM(t), the obtained reconstructed TFDs are illustrated in Figure 5.10,
while the numerical results are given in Table 5.7. Upon visual inspection, it becomes
apparent that the reconstructed TFDs generated using the parametrized CS-AF area exhibit
fewer interference terms in the vicinity of auto-terms compared to the TFDs obtained using
the full N ′τ ×N ′ν area. Quantitatively, the presented CS-AF area’s advantage is reflected in
all considered reconstruction algorithms. The RTwIST algorithm, employing the presented
CS-AF area, demonstrates a significant improvement in comparison to the same algorithm
with the full N ′τ ×N ′ν area, particularly for Nr and MSEt, which are lowered by 59.10%
and 49.17%, respectively. Further metrics, including the global concentration measures,
also validate this enhancement.

The SpaRSA algorithm yields the most substantial visual and numerical improvement,
as shown in Figures 5.10f and 5.10e. Specifically, the values of Nr, MSEt, and MSEf

are lowered by 98.38%, 70.44%, and, 59.39%, respectively, which is evident since the
reconstructed TFD when using the original N ′τ ×N ′ν area yields heavily discontinuous and
low-resolution auto-terms. Moreover, the significance of Nr is apparent in the SALSA
algorithm outcome. Despite a modest raise in MSEf of 5.29% due to slightly reduced
auto-term resolution, the presented CS-AF area achieves a considerable decrease in Nr of
93.33%, demonstrating greater component coherence with reduced artifact samples.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10 Reconstructed TFDs obtained using the following reconstruction algorithm
and CS-AF area with (Γ,Λ) for the signal zPFM(t): (a) RTwIST, (0, 1); (b) RTwIST,
(0.046, 0.426); (c) TwIST, (0, 1); (d) TwIST, (0.043, 0.520); (e) SpaRSA, (0, 1); (f) SpaRSA,
(0.029, 0.515); (g) SALSA, (0, 1); (h) SALSA, (0.070, 0.350).
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Table 5.7 Performance comparison of considered reconstruction algorithms using the full
N ′τ ×N ′ν area ((Γ,Λ) = (0, 1)) versus the presented CS-AF area with optimized (Γ+,Λ+)
for the signal zPFM(t). Bold values represent the best-performing or the fastest algorithm.

zPFM(t)

RTwIST TwIST SpaRSA SALSA

Γ = 0 Γ+ =
0.046

Γ = 0 Γ+ =
0.043

Γ = 0 Γ+ =
0.029

Γ = 0 Γ+ =
0.070

Λ = 1 Λ+ =
0.426

Λ = 1 Λ+ =
0.520

Λ = 1 Λ+ =
0.515

Λ = 1 Λ+ =
0.350

card(CΩ) 2597 883 2597 1009 2597 1617 2597 531

MSEt 0.0179 0.0091 0.0597 0.0378 0.1029 0.0253 0.0159 0.0117
MSEf 0.0178 0.0158 0.0207 0.0187 0.0904 0.0248 0.0189 0.0199
Nr 22 9 35 3 186 3 75 5

MAEt 0.1141 0.0780 0.2344 0.1738 0.2866 0.0847 0.1054 0.0928
MAEf 0.0769 0.0735 0.0886 0.0792 0.2240 0.091 0.0742 0.0778
MAXt 0.3192 0.2654 0.5791 0.6475 0.5833 0.7890 0.6804 0.2983
MAXf 0.5334 0.6170 0.4897 0.5411 0.9411 0.6762 0.6820 0.6112

R 10.33 9.97 10.47 10.28 11.44 9.94 10.22 10.14
MS 0.0269 0.0195 0.0278 0.0237 0.3690 0.0185 0.0405 0.0431

MRN(·103) 0.89 1.13 0.92 1.21 0.03 1.30 1.11 1.22
MH 0.8607 0.8781 0.8516 0.8611 0.6578 0.8771 0.8631 0.8672

t[s] 0.747 0.726 0.231 0.233 0.465 0.117 0.467 0.385

Finally, among the considered reconstruction algorithms, the RTwIST algorithm demon-
strates the best MSEt and MSEf values. This further corroborates the conclusions given
in the previous section for different signal examples, considering the RTwIST’s improved
performance over the existing algorithms.

It is important to highlight the significant reduction achieved in the size of the CS-AF
area, ranging from 37.75% (SpaRSA algorithm) to 79.54% (SALSA algorithm). This
indicates that a considerable portion of the AF samples within the entire N ′τ × N ′ν

rectangle are unrelated to the auto-terms, as demonstrated in Appendix D. Furthermore, it
is noteworthy that the utilization of the presented CS-AF area, along with the obtained Γ+

and Λ+ values, does not lead to an increase in the runtime of the reconstruction algorithms.

5.2.4 Simulation Results: Real-Life Gravitational Signal

The presented CS-AF area’s performance is further shown on the signal zgrav(t). Given
the numerical results provided in Table 5.8 and shown in Figure 5.11, significant reductions
are achieved in MSEt and MSEf values by up to 90.41% and 73.95%, respectively, in
the considered reconstruction algorithms with the presented CS-AF area. These findings
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.11 Reconstructed TFDs obtained using the following reconstruction algorithm
and CS-AF area with (Γ,Λ) for the signal zgrav(t): (a) RTwIST, (0, 1); (b) RTwIST,
(0.142, 0.189); (c) TwIST, (0, 1); (d) TwIST, (0.300, 0.179); (e) SpaRSA, (0, 1); (f) SpaRSA,
(0.080, 0.195); (g) SALSA, (0, 1); (h) SALSA, (0.098, 0.195).
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Table 5.8 Performance comparison of considered reconstruction algorithms using the full
N ′τ ×N ′ν area ((Γ,Λ) = (0, 1)) versus the presented CS-AF area with optimized (Γ+,Λ+)
for the signal zgrav(t). Values in bold represent the best-performing or the fastest algorithm.

zgrav(t)

RTwIST TwIST SpaRSA SALSA

Γ = 0 Γ+ =
0.142

Γ = 0 Γ+ =
0.130

Γ = 0 Γ+ =
0.080

Γ = 0 Γ+ =
0.098

Λ = 1 Λ+ =
0.189

Λ = 1 Λ+ =
0.179

Λ = 1 Λ+ =
0.195

Λ = 1 Λ+ =
0.195

card(CΩ) 525 441 525 505 525 505 525 456

MSEt 0.0386 0.0037 0.0404 0.0268 0.0356 0.0286 0.0155 0.0151
MSEf 0.0357 0.0093 0.0280 0.0200 0.0245 0.0197 0.0209 0.0144
Nr 9 10 4 2 4 4 7 7

MAEt 0.1375 0.0332 0.1221 0.1084 0.1192 0.1128 0.0733 0.0773
MAEf 0.1119 0.0510 0.1002 0.0820 0.0952 0.0807 0.0845 0.0627
MAXt 0.5148 0.2061 0.5371 0.5191 0.5212 0.5531 0.4898 0.4511
MAXf 0.5566 0.5092 0.5538 0.6227 0.513 0.5747 0.6683 0.6087

R 8.82 8.01 8.61 8.03 8.38 8.12 8.14 8.13
MS 0.0134 0.0070 0.0131 0.0078 0.0109 0.0085 0.0344 0.0473

MRN(·103) 2.91 5.22 4.12 5.53 4.62 5.23 5.74 5.61
MH 0.9024 0.9272 0.9075 0.9261 0.9152 0.9232 0.9231 0.9221

t[s] 0.203 0.331 0.133 0.250 0.060 0.050 0.162 0.137

are consistent with the observations made in the preceding signal zPFM(t). Specifically,
the RTwIST algorithm exhibits the highest efficacy, whereas the SpaRSA algorithm
demonstrates the fastest runtime.

In addition, by reducing the CS-AF samples by up to 16%, all reconstruction algorithms
produce superior results. Notice that the decrease in the CS-AF area is not as large as
in the preceding signal. This is attributed to the optimized CS-AF areas in this case
encompassing supplemental auto-term-related samples outside the N ′τ ×N ′ν area, as shown
in Appendix D. Note that the deterioration of the hyperbolic IF seen in Figure 5.9d
when employing the original N ′τ × N ′ν rectangle leads to the same degradation in the
reconstructed TFD obtained with all reconstructed algorithms, as shown in Figures 5.11a,
5.11c, 5.11e and 5.11g. The presented CS-AF area substantially enhances the concentration
of components along the hyperbolic IF in all reconstructed TFDs depicted in Figures 5.11b,
5.11d, 5.11f and 5.11h.

The obtained R values for the SALSA algorithm with both CS-AF areas and the
SpaRSA algorithm using the presented CS-AF area demonstrate nearly identical outcomes.
This observation highlights two limitations of the global Rényi entropy [93] for the use case
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in this research. First, its insensitivity to minor deviations in the TFDs may not produce
values that will distinguish two similarly-performed TFDs. Secondly, the permutation of
values within the distribution has no impact on the entropy value, meaning that the same
R value can be obtained for two different TFDs. Once more, the global concentration
metrics inaccurately suggest that SALSA with (Γ,Λ) = (0, 1) outperforms SALSA with
(Γ+,Λ+) = (0.098, 0.195) and more preserved auto-terms. This highlights the significance
of harnessing the characteristics of the auto-terms acquired through the localized approach
(Nr, MSEt, MSEf ) as opposed to the global approach when assessing TFDs.

5.2.5 Sensitivity to Noise

Finally, Table 5.9 gives the results obtained for the signal zPFM(t) embedded in AWGN
with three distinct SNRs. Overall, the results show that the reconstruction performance
with the presented CS-AF area experiences a smaller increase in the MSEt, MSEf , and
Nr values as the SNR decreases than with the full N ′τ × N ′ν area, indicating that the Γ

parameter’s capability to exclude noise-related samples lowers the CS-AF area’s sensitivity
to noise. However, noise still influences the presented CS-AF area selection for low SNRs,
despite the fact that the sensitivity to noise has been reduced. This is also expected given
that, as noise increases, the noise-related samples in the AF may become indistinguishable
from the auto-term-related samples when comparing their magnitudes, particularly when
dealing with nonlinear auto-terms of low magnitude.

Note that the presented CS-AF area selection outperforms the original N ′τ ×N ′ν area
selection by the greatest margin at the lowest SNR of 1 dB. Specifically, the MSEt, MSEf ,
and Nr values are lowered by 41.99%, 37.40%, and 34.88%, respectively. This can be
attributed to the fact that as the noise level increases, a greater number of noise-related
samples are present within the N ′τ ×N ′ν . Furthermore, observe that the Γ+ value increases
as the SNR decreases. This indicates that the magnitude of the noise-related samples
increases, necessitating a larger Γ value for their removal.

Table 5.9 Comparison of the performance between the RTwIST algorithm using the
full N ′τ ×N ′ν area ((Γ,Λ) = (0, 1)) and the presented CS-AF area (Γ+,Λ+) for the signal
zPFM(t) in the presence of noise at various SNR levels.

zPFM(t)

1 dB 5 dB 9 dB

Γ 0 0.082 0 0.047 0 0.038
Λ 1 0.482 1 0.448 1 0.414

MSEt 0.0381 0.0221 0.0168 0.0107 0.0105 0.0088
MSEf 0.0385 0.0241 0.0196 0.0167 0.0138 0.0121
Nr 43 28 26 15 19 11
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Table 5.10 Confusion matrices and statistical measures for evaluating the RTwIST
algorithm’s sensitivity to noise for SNR = (1, 5, 9) dB with the full N ′τ ×N ′ν area versus the
presented CS-AF area selection (Γ+,Λ+) for the signal zPFM(t). Values in bold indicate
the true negative and true positive indices.

zPFM(t)

1 dB 5 dB 9 dB

Noisy TFD Noisy TFD Noisy TFD
N P N P N P

N ′τ ×N ′ν True TFD N 63522 917 64071 302 64098 252
P 620 221 211 691 182 748

(Γ+,Λ+) True TFD N 63632 867 64084 278 65130 221
P 480 301 188 730 158 771

N ′τ×N ′ν (Γ+,Λ+) N ′τ×N ′ν (Γ+,Λ+) N ′τ×N ′ν (Γ+,Λ+)

F-norm 168.1897 81.1123 55.0087 35.7789 24.7896 21.0243
Accuracy 0.9765 0.9794 0.9921 0.9929 0.9934 0.9942
Specificity 0.9858 0.9866 0.9953 0.9957 0.9961 0.9966
Precision 0.1942 0.2577 0.6959 0.7242 0.7480 0.7772
Recall 0.2628 0.3854 0.7661 0.7952 0.8043 0.8299

F1 0.2233 0.3089 0.7293 0.7580 0.7751 0.8027

Additional metrics (TP, TN, FP, FN) and their statistical measures derived from the
confusion matrices given in Table 5.10 for the signal zPFM(t) support the aforementioned
results and their discussion. The F1 score may be highlighted, which is consistently
improved by 38.33%, 3.94%, 3.56% for SNR = (1, 5, 9), respectively.

In order to confirm the conclusions in this study, the confusion matrices and statistical
measures have been calculated for two additional signals, as previously used in this
dissertation: zSINLFM(t) and zLFM(t). The obtained results are given in Tables 5.11 and
5.12, which provide a comprehensive overview of the performance metrics for the signals
under consideration.

We may observe significant improvements in the F1 score for both signals. Specif-
ically, the F1 score is improved by 50.63%, 6.50%, 2.45% for the signal zSINLFM(t) and
by 34.25%, 5.60%, 3.15% for the signal zLFM(t) for SNR = (1, 5, 9), respectively. Upon
comparing the outcomes presented in Table 5.6, one can infer that using the presented
CS-AF area selection, all evaluation metrics and statistical measures are improved for all
considered signals and SNR levels.
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Table 5.11 Confusion matrices for evaluating the RTwIST algorithm’s sensitivity to noise
for SNR = (1, 5, 9) dB with the presented CS-AF area selection (Γ+,Λ+) for the signals
zSINLFM(t) and zLFM(t). Values in bold indicate the true negative and true positive indices.

1 dB 5 dB 9 dB

Noisy TFD Noisy TFD Noisy TFD
N P N P N P

zSINLFM(t)True TFD N 14988 583 15368 218 15443 145
P 474 211 142 528 132 536

zLFM(t) True TFD N 63398 902 64144 220 64183 174
P 607 373 171 745 164 759

Table 5.12 Statistical measures for evaluating the RTwIST algorithm’s sensitivity to noise
for SNR = (1, 5, 9) dB with the presented CS-AF area selection (Γ+,Λ+) for the signals
zSINLFM(t) and zLFM(t).

zSINLFM(t)

Accuracy Specificity Precision Recall F1 F-norm

1 dB 0.9350 0.9693 0.2657 0.3080 0.2853 180.1487
5 dB 0.9779 0.9860 0.7078 0.7881 0.7458 39.6697
9 dB 0.9830 0.9907 0.7871 0.8024 0.7947 21.1121

zLFM(t)

Accuracy Specificity Precision Recall F1 F-norm

1 dB 0.9860 0.9769 0.2925 0.3806 0.3308 98.5656
5 dB 0.9940 0.9966 0.7720 0.8133 0.7921 10.1888
9 dB 0.9948 0.9973 0.8135 0.8223 0.8179 6.2356

5.3 Summary

In this chapter, two methods have been introduced with the objective of augmenting
the performance of sparse TFD reconstruction have been presented. The primary method
involves using the shrinkage operator instead of the thresholding operator in the TwIST
algorithm, which uses information from localized Rényi entropies to preserve auto-terms
while reconstructing high-resolution TFDs. The obtained results have shown that the
here-presented RTwIST algorithm outperforms all considered reconstruction algorithms
with respect to the performance measures proposed in Chapter 4, providing high-resolution
reconstructed TFD with high auto-term preservation for a wide range of signals (ensured
with the inclusion of both, the STRE and NBRE). Furthermore, noise tests have revealed
that the RTwIST method follows the noise sensitivity of the STRE and NBRE methods.
The second method presents the extraction of the magnitude-significant auto-term-related
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samples from the AF by using two independent parameters and the AF segmentation
defined using the original CS-AF area from the literature. The obtained results show that
the presented CS-AF area is able to reject unwanted AF samples within the rectangular
CS-AF segment, and include auto-term-related samples from the rest of the AF with an
arbitrary shape. This has led to an improvement in the performance of the reconstructed
TFDs. Moreover, the presented CS-AF area has been used in conjunction with the
reconstruction algorithms to further increase reconstructed TFDs’ performance in the
existence of noise, as confirmed by the obtained results in this chapter.
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CHAPTER 6

PERFORMANCE CRITERIA FOR
TIME-FREQUENCY
DISTRIBUTIONS BASED ON THE
INSTANTANEOUS FREQUENCY
AND GROUP DELAY ESTIMATION

This chapter focuses on the development of performance measure criteria for evaluating
the quality of auto-term consistency, resolution, and cross-term suppression in the 2-D
TF plane based on estimated IFs and GDs. It also introduces a technique for automatic
component alignment preference towards the time or frequency axis, due to the unsuitability
of localization in time slices with IF estimation for certain signals. The chapter explains
how component alignment information is utilized in component extraction from TFD,
combined IF and GD estimation strategy, and modification of the RTwIST algorithm. The
presented methods are evaluated on synthetic and real-life gravitational signals with and
without noise used throughout the dissertation, and the results of the combined IF and GD
estimation are compared to the IF estimation alone. Additionally, the performance measure
presented is compared to the 1-D measure based on the LRE, presented in Chapter 4. The
research presented in this chapter has been published by the author in the international
peer-reviewed journal [57].
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6.1 Component Alignment Towards Time or Frequency

Axis Detection Using the Local Rényi Entropy

In this section, a method is presented for automatically detecting TFD regions that
require a specific localization approach in either time or frequency slices. The detection
of these TFD regions is accomplished by utilizing the STRE and NBRE methods. This
method leverages the estimation errors obtained when applying these techniques to signal
components that deviate from their reference components. By exploiting the resulting
raise in the local number of components, it becomes possible to identify TFD regions
where a different localization approach is needed.

To determine the most suitable localization approach for a previously detected TFD
region, the quality of IF and GD estimations is evaluated using the Nr measure. It has
been noticed that an inappropriate localization approach results in discontinuous IF or
GD estimations and the addition of irrelevant samples to the auto-terms, which increases
the Nr value. To illustrate the method’s steps, a synthetic signal denoted as zmix(t) is
employed. This signal is generated with Nt = 256 samples and comprises two constant FM
components and four non-LFM components. These components exhibit diverse directions
and have distinct time and frequency supports.

The presented method involves the following steps:

1. First, the algorithm generates two TFDs by applying the shrinkage operator, pre-
sented in the previous chapter, to an input TFD as follows [57]:

ρt(t, f) = shrinkt{ρ(t, f)}
∣∣
δt=1

, ρf (t, f) = shrinkf{ρ(t, f)}
∣∣
δf=1

, (6.1)

where ρt(t, f) and ρf (t, f) denote the shrunken TFDs using time and frequency slices,
respectively. By setting δt = δf = 1, only the local maxima of signal components
(in the amount detected by the STRE and NBRE) are left in ρt(t, f) and ρf(t, f),
which define estimated IFs and GDs (or ridges) of signal components, respectively.

Figure 6.1 depicts the signal’s LO-ADTFD and its shrunken TFDs, ρf(lo)(t, f) and
ρt(lo)(t, f). Observe that the acquired ρf(lo)(t, f) and ρt(lo)(t, f) manifest dissimilarities
in the precision of signal component estimation. Notably, Figure 6.1b vividly
illustrates fragmented non-LFM components within ρt(lo)(t, f), where their alignment
diverges from the t axis. Figure 6.1c for ρf(lo)(t, f) demonstrates the same phenomenon,
but with opposite outcomes. Now, the same non-LFM components whose alignment
diverges from the time axis exhibit better preservation than constant FM components
that are completely coaxial with the t axis.

2. In this step, the quantities Nr{ρt(t, f)} and Nr{ρf (t, f)} are computed. If Nr{ρt(t, f)}
≤ Nr{ρf (t, f)}, it is inferred that the signal components are predominantly aligned
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(a)

(b) (c)

Figure 6.1 Considering the signal zmix(t): (a) ρ(lo)(t, f); (b) the estimated IFs (yellow) in
ρt(lo)(t, f); (c) the estimated GDs (yellow) in ρf(lo)(t, f).

with the time axis globally. Consequently, the component alignment map, denoted as
CM (t, f), is generated with values of one. Moreover, the local behavior of components
is examined using the STRE method. Likewise, if Nr{ρt(t, f)} > Nr{ρf(t, f)}, the
CM (t, f) is generated with zeros, and the initial localization approach is determined
utilizing the NBRE technique with NCf (f).

3. The NCt(t) or NCf(f) is examined to identify any prominent localized maxima
that may reveal an unsatisfactory component alignment for the considered NBRE
or STRE method. The identification of all localized maxima saturated in NCt(t)

(or NCf(f)) is performed, and the distinction in the number of local components,
symbolized as ∆NC, among the inspected maximum and the adjacent minima on
both sides is computed. Intervals with ∆NC ≥ 1.50 are classified as "suspicious"
and necessitate further investigation. In this dissertation, ∆NC value has been set
to 1.50 because it is desired that the algorithm recognizes components that diverge
significantly from the respective time or frequency axis compared to a reference LFM
component, which has a normalized frequency starting at 0 and stopping at 0.5.
This reference LFM component is deemed reasonably suitable for both the STRE
and NBRE approaches with 1

Nt

∑Nt

t=1NCt(t) ≊ 1
Nf

∑Nf

f=1NCf(f) ≊ 1.48. If every
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(a) (b)

Figure 6.2 Considering the signal zmix(t): (a) the local number of components, NCf (f);
(b) LO-ADTFD. The red dashed lines delineate the initial segment [f1, f2] chosen from
NCf (f), where a substantial augmentation in NCf (f) is observed.

∆NC < 1.50, the algorithm terminates, and the CM(t, f) containing only ones or
zeros is output. If not, the algorithm advances to the following step.

4. The algorithm identifies a contiguous segment from NCt(t) (or NCf(f)) based on
the presence of local minima satisfying the condition ∆NC ≥ 1.50. Figure 6.2a
showcases an instance of NCf (f) for the signal zmix(t), in which the initial division
is pointed out by red dashed lines at the frequency bins f1 and f2. Subsequently, a
TFD is partitioned with the same division, in which an inappropriate component
for the present localization procedure can exist. An exemplification of this scenario
is presented in Figure 6.2b, displaying ρ(lo)(t, f) with the segment confined by the
previously identified f1 and f2, where the constant FM component necessitates
further detection in the subsequent steps of the algorithm.

5. In this step, an additional localization process takes place within the extracted
TFD by calculating the opposite LRE used in the previous step, i.e., NCf(f) if
Nr{ρt(t, f)} ≤ Nr{ρf (t, f)}, or NCt(t) if Nr{ρt(t, f)} > Nr{ρf (t, f)}. The protocol
follows a similar approach as the preceding steps. Firstly, all localized minima and
maxima with discrepancies in the number of components exceeding the ∆NC of
1.50 are identified. Subsequently, segments satisfying the condition ∆NC ≥ 1.50 are
detected, delineating 2-D TF regions within ρf (t, f) and ρt(t, f) which are questioned
based on the Nr value. If a TF block within ρt(t, f) exhibits lower Nr value than
in ρf (t, f), it indicates that the localization in time slices is more appropriate, and
the corresponding CM(t, f) positions are set to 1. All estimated signal components
within minima with ∆NC < 1.50 are considered to pertain to the present localization
approach, and the relevant TFD blocks within the output CM(t, f) experience a
change in values 0↔ 1. Lastly, a comparison is made between the Nr values obtained
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(a) (b)

(c) (d)

Figure 6.3 Considering the signal zmix(t): (a) detected components in extracted LO-
ADTFD; (b) the NCt(t) calculated on extracted LO-ADTFD; (c) ρt(lo)(t, f); (d) ρf(lo)(t, f).
Detected segments, evaluated using the Nr measure in ρt(lo)(t, f) and ρf(lo)(t, f), are indicated
by red dashed lines. A segment that contains components suitable for the current time
localization approach is highlighted by green dashed lines.

from ρt(t, f) and ρf (t, f) for samples where no component has been uncovered. Based
on this comparison, the CM(t, f) is assigned a value of 0 or 1, depending on the
lower Nr.

This step is demonstrated in Figure 6.3. First, Figure 6.3a depicts the extracted TFD
segment bounded in range [f1, f2] on which an opposite LRE approach, in this case
the STRE, is applied to obtain the NCt(t), as depicted in Figure 6.3b. Note that
the extracted segment from LO-ADTFD with red dashed lines utilizing the NCt(t)

defines a TFD region (t1 : t2, f1 : f2) of interest in ρt(lo)(t, f) and ρf(lo)(t, f) depicted in
Figures 6.3c and 6.3d, respectively. It is evident that the estimated GDs within the
TFD regions enclosed by the red dashed lines exhibit better connectivity compared to
the estimated IFs, which leads to the fact that the CM (t1 : t2, f1 : f2) does not change
the initial values from zero. Conversely, the constant FM component identified within
the region marked by the green dashed lines does not introduce discrepancies in the
calculation of NCt(t), as evident from Figure 6.3b, thus, CM(t3 : t4, f1 : f2) = 1.
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(a) (b)

Figure 6.4 Considering the signal zmix(t): (a) CM(t, f); (b) LO-ADTFD with CM(t, f).
The yellow and dash-dotted pink rectangles highlight the specific regions within the TFD
that are suitable for analysis using time slices. The remaining portion of the TFD, indicated
by the blue color, should be analyzed using frequency slices.

6. The preceding two steps are repeated for all identified segments in the input NCt(t)

(or NCf(f)), that is, until all ∆NC are analyzed. The output of the presented
algorithm is the binary map CM(t, f). This map consists of ones and zeros, serving
as indicators to identify the regions within the TFD that are suitable for either a
time or frequency localization approach, respectively.

Finally, Figure 6.4 shows that both constant FM components are effectively labeled
in the obtained CM(t, f) for the time localization approach. Furthermore, the presented
method has been utilized on a real-life gravitational signal zgrav(t) with a characteristic
hyperbolic component that is vertical to both time and frequency axes. The results show
that separate IF and GD estimations exhibit significant inaccuracies when the signal’s
component is completely vertical to the applied localization approach, as shown in Figures
6.5a and 6.5b. Despite these challenges, Figures 6.5c and 6.5d demonstrate that the
presented method successfully detects appropriate localization approaches for certain
component parts.

6.1.1 Component Extraction and Estimation of the Local

Number of Components

The resulting CM (t, f) supplies the means to retrieve signal components from the TFD.
This process does not necessitate the extraction of each component separately, but rather
entails the identification of components in two sets: one set determined for localization via
time slices, and another set determined for localization via frequency slices. This can be
easily achieved by element-wise multiplication between the CM(t, f) and the TFD. For
which purpose, η operator is introduced in two distinct forms. Precisely, by employing
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(a) (b)

(c) (d)

Figure 6.5 Considering the real-life gravitational signal zgrav(t): (a) ρt(lo)(t, f);
(b) ρf(lo)(t, f); (c) CM(t, f); (d) LO-ADTFD with CM(t, f). The yellow and dashed
red rectangles highlight the specific regions within the TFD that are suitable for analysis
using time slices. In contrast, the remaining portion of the TFD, indicated by the blue
color, should be analyzed using frequency slices.

the operator ηt, it becomes possible to deduce the signal components that align with the
localization procedure through time slices [57]:

ηt{ρ(t, f)} =

ρ(t, f), CM(t, f) = 1,

0, CM(t, f) = 0,
(6.2)

where the multiplication of the CM(t, f) map and the TFD retains those TF blocks that
are represented by ones in CM (t, f). In a similar way, the TFD blocks defined by zeros in
CM(t, f) may be preserved utilizing the operator ηf [57]:

ηf{ρ(t, f)} =

ρ(t, f), CM(t, f) = 0,

0, CM(t, f) = 1.
(6.3)

As a result, if min{CM (t, f)} = 0 and max{CM (t, f)} = 1, the considered TFD can be
divided into two TFDs: ηf{ρ(t, f)} and ηt{ρ(t, f)}. These TFDs encapsulate the signal
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(a) (b)

(c) (d)

Figure 6.6 Considering the signal zmix(t): (a) ηt{ρ(lo)(t, f)}; (b) ηf{ρ(lo)(t, f)}; (c) the
NCt(t) estimates obtained utilizing the STRE in starting TFD and ηt{ρ(lo)(t, f)}; (d) the
NCf (f) estimates obtained utilizing the NBRE in starting TFD and ηf{ρ(lo)(t, f)}. The
estimates are represented with yellow dashed lines for starting TFD, and blue solid lines
for ηt{ρ(lo)(t, f)} and ηf{ρ(lo)(t, f)}.

components that align with the chosen localization approaches through time slices and
frequency bins, respectively. By employing these TFDs, a more precise assessment of the
local number of components can be achieved utilizing the NBRE and STRE, respectively.
This refined estimation is anticipated to yield superior accuracy compared to the initial
TFD-based estimates. The outcomes obtained by employing the operators ηt and ηf to
the signals’ zmix(t) and zgrav(t) LO-ADTFDs are shown in Figures 6.6 and 6.7.

First, we may observe that ηt{ρ(lo)(t, f)} and ηf{ρ(lo)(t, f)} contain appropriate com-
ponents for the considered localization approach for the signal zmix(t) (shown in Figures
6.6a and 6.6b) or component parts for the signal zgrav(t) (shown in Figures 6.7a and
6.7b). This is also validated by the NCt(t) and NCf(f) calculations in ηt{ρ(lo)(t, f)}
and ηf{ρ(lo)(t, f)}, which exhibit minimal occurrence of erroneous local maxima, and are
overall significantly more accurate than the estimations in the starting TFD, as shown
in Figures 6.6c and 6.6d for the signal zmix(t), and 6.7c and 6.7d for the signal zgrav(t).
It is imperative to acknowledge that the updated assessments of the local number of
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(a) (b)

(c) (d)

Figure 6.7 Considering the signal zgrav(t): (a) ηt{ρ(lo)(t, f)}; (b) ηf{ρ(lo)(t, f)}; (c) the
NCt(t) estimates obtained utilizing the STRE in starting TFD and ηt{ρ(lo)(t, f)}; (d) the
NCf (f) estimates obtained utilizing the NBRE in starting TFD and ηf{ρ(lo)(t, f)}. The
estimates are represented with red dashed lines for starting TFD, and blue solid lines for
ηt{ρ(lo)(t, f)} and ηf{ρ(lo)(t, f)}.

components need to be interpreted in conjunction with the CM (t, f) map, as they pertain
exclusively to specific TFD regions demarcated by CM(t, f) rather than encompassing
the entirety of the TFD. Also, throughout this chapter and subsequent analyses, the
calculations of the LRE have been performed using the LO-ADTFD as the underlying
TFD. This decision aligns with the adoption of LO-ADTFD for the calculation of the
CM(t, f) and its subsequent applications throughout the remainder of this chapter.

6.2 Strategy for Mutual Estimation of Instantaneous

Frequency and Group Delay

The presented CM(t, f) map is used to estimate TFD ridges in this section. As
previously demonstrated, one possible way to estimate the IFs and GDs of a signal is
by employing the operator shrinkt,f{·} and considering only local maxima (by setting
the parameters δt = 1 or δf = 1) in (6.1). The binary TFD, denoted as B(shrink)(t, f),
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(a) (b)

(c)

Figure 6.8 B(shrink)(t, f) with IF and GD estimations (in yellow) utilizing the shrinkage
operator for the signals: (a) zLFM(t); (b) zmix(t); (c) zgrav(t).

which contains estimation of TFD ridges, is therefore accomplished by combining both
estimations, ρt(t, f) and ρf (t, f), together as [57]:

B(shrink)(t, f) = ηt{ρt(t, f)}+ ηf{ρf (t, f)}, (6.4)

where CM(t, f) determines the TFD regions that will select ρt(t, f) or ρf(t, f). The
B(shrink)(t, f) performance is shown in Figure 6.8 for the signals zLFM(t), zmix(t) and
zgrav(t). For all signal examples, the estimated component ridges in the TFD are found to
exhibit high connectivity and to belong to the signal’s true components.

In addition, the CM (t, f) map has been utilized to improve the considered IF estimation
methods. Specifically, IF estimation algorithms that make efficient use of the STRE method
are considered for the purposes of this dissertation. Knowing the number of components
and the time support related with each component provides a significant competitive
advantage over algorithms that do not use this information and, as a result, require
significantly more user input. Given that the objective is to create an environment that
does not require the participation of a user other than a signal, the use of IF estimation
algorithms without STRE information is not considered in this dissertation.
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6.2.1 Image-Based and Blind Source Separation Instantaneous

Frequency Estimation Methods

The initial method employed in this dissertation for estimating the IF is a technique
based on image processing, as proposed in [95]. This method utilizes the first and second
derivatives to create a binary TFD representation denoted as B(IM)(t, f). In this image,
ones represent component crest locations, while zeros the remaining TF points, as follows
[95]:

B(IM)(t, f) =

1, d
df ρ(t, f) = 0 and d2

df2ρ(t, f) < 0,

0, otherwise.
(6.5)

This stage often produces peaks that are not exclusively associated with the TF ridges
of the auto-terms. To extract the IF of signal components, an m-connectivity criterion
is applied, which is derived from image processing techniques. In this study, a value
of m = 10 is employed, as suggested in [14, 95] which specifies a 10-neighborhood for
considered point at location (z, q): {(z−1, q), (z−1, q−1), (z−1, q+1), (z−1, q+2), (z−
1, q− 2), (z + 1, q), (z + 1, q− 1), (z + 1, q + 1), (z + 1, q + 2), (z + 1, q− 2)}. In accordance
with this criterion, data points positioned below and above the IF curves are disregarded,
implying that each signal component is associated with a single frequency value at each
time slice [95].

Lastly, it is necessary to establish an optimal threshold for determining the minimum
duration of an auto-term in order to provide the resulting TFD, which comprises only
components that satisfy the given threshold. In this case, when there is no a priori
knowledge of the input signal, the threshold is related to the component time support
information obtained from the STRE. The Image-based-STRE method showed high
computational efficiency and performance without a need for a priori knowledge about the
components’ IF laws and amplitude, as shown for real-life signals in [17, 33].

The second approach utilized for IF estimation in the dissertation is the blind source
separation (BSS) technique, which is an efficacious procedure for identifying and extracting
of components from signals containing multiple sources in the TFD [74]. The expression
"blind" indicates that the method is applied without any prior information of the origin
or the number of components in the signal mixture, relying solely on the statistical
independence assumption among the sources. The version of the method used in this
dissertation has been enhanced by the STRE method in [119], namely the BSS-STRE,
eliminating the requirement for numerous thresholds needed by the original technique [74].
The BSS method’s steps are briefly described as follows.

Initially, the desired TFD of the signal is calculated. From this TFD, the local number of
components, NCt(t), is derived using the STRE method. Then, the method identifies and
extracts the most prominent TFD peak at ρ(t0, f0), along with its neighboring component
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frequency band, ρ(t0, f0 − Bl : f0 + Br). After the extraction of the component peak
and its frequency range, the algorithm sets ρ(t0, f0 − Bl : f0 + Br) = 0 and NCt(t0) =

NCt(t0)− 1. Following that, two new subregions are defined in both directions around t0

as (t0− 1, f0−Bl : f0 +Br) and (t0 +1, f0−Bl : f0 +Br), followed by the most prominent
peak identification in both of them. The described bidirectional methodology is iteratively
executed until the edges of the component are reached, detected by the |NC ′t(t)| ≠ 0. If
there are any remaining components in the TFD, the previous steps are reiterated.

The application of the BSS method yields multiple TFDs, each encompassing a singular
retrieved component, out of which the IF of the respective component is estimated as an
individual vector. In this dissertation, all estimated IFs are displayed within B(BSS)(t, f)

and B(IM)(t, f) binary TFDs. Note that the LO-ADTFD has been used in the considered IF
estimation methods, as its superior performance has proven it to be a suitable underlying
TFD in numerous IF estimation algorithms [61, 64, 65, 67].

The precision of IF estimation techniques relies heavily on the STRE method. In the
case of the Image-based IF estimation method, an incorrect NCt(t) can result in either a
threshold that is too low, causing interference to be classified as a true signal component,
or a threshold that is too high, resulting in the rejection of true signal components.
Similarly, with the BSS method, an incorrect NCt(t) may lead to the incorrect detection
of component edges, resulting in incomplete extraction of the signal. Moreover, higher
values of NCt(t) will also cause the BSS method to estimate the IF of interference terms.

Furthermore, inappropriate localization leads to estimated IFs that are inconsistent
and displaced from the actual ridge of the signal component. This issue is especially
challenging for the Image-based method, as the m-connectivity criterion would need to be
significantly increased to connect true signal components. However, it is not advisable to
raise the m-connectivity criterion as it may result in the connection of interfering terms,
as cautioned in previous studies [14, 95].

6.2.2 Method for Automatic Estimation of Instantaneous

Frequency and Group Delay

In this dissertation, the above-mentioned limitations are tackled by presenting a method
that blindly estimates component ridges in a TFD by simultaneously estimating IF and
GD with the information obtained from the STRE and NBRE, respectively. The presented
method consists of the following steps [57]:

1. Firstly, the considered TFD is partitioned into two TFDs using the ηt{·} and
ηf{·} operators to obtain a TFD suitable for IF estimation based on the time slice
procedure, denoted as ηt{ρ(t, f)}, and another TFD suitable for GD estimation
based on the frequency slice procedure, denoted as ηf{ρ(t, f)}.
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TFD: ρ(t, f)

ηt{ρ(t, f)}

TFD transpose
of ηf{ρ(t, f)}

Apply IF
estimation algo-
rithm: Bt(t, f)

Apply IF
estimation
algorithm:
Bf(t, f)

B(t, f) = Bt(t, f) +Bf (t, f)

Figure 6.9 A simplified flowchart illustrating the automated estimation of IF and GD for
a given TFD.

2. An IF estimation method is then applied to ηt{ρ(t, f)}, resulting in a binary TFD
that contains TF ridges of selected components, denoted as Bt(t, f).

3. The discrete version of ηf{ρ(t, f)} is transposed to enable the use of IF estimation
methods that localize in frequency slices and estimate the GD of the remaining
components, resulting in a binary TFD, denoted as Bf (t, f).

4. The final binary TFD, denoted as B(t, f), is obtained by summing the IF and GD
estimations.

A simplified diagram illustrating the presented method is depicted in Figure 6.9 [57]. The
method described above has been incorporated into the existing IF estimation methods,
transforming them into IF/GD estimation methods, specifically the BSS-STRE-NBRE
and Image-based-STRE-NBRE methods.

6.2.3 Simulation Results

The comparative evaluation of the mutual IF and GD estimation method against the
standalone IF estimation approach is performed on three distinct signal: zLFM(t), zmix(t),
and zgrav(t). The results are depicted in Figures 6.10 and 6.11.

In the case of zLFM(t), it is observed that the Image-based-STRE method encounters
difficulties in establishing connections between TF peaks that exhibit deviations from the
time axis. Due to this limitation, all four auto-terms associated with LFM are completely
omitted, while interference terms that are almost parallel to the time axis are incorrectly
estimated, as illustrated in Figure 6.10a. In contrast, the Image-based-STRE-NBRE
method estimates auto-terms with high connectivity, but also interference terms due to
imperfect NCf (f) estimation, as shown in Figure 6.10b. The BSS-STRE method does not
have missing components, but produces discontinuous IF estimates that do not belong
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.10 IF and GD estimations (in yellow) for the considered signal and method
combination: (a) zLFM(t), the Image-based-STRE; (b) zLFM(t), the Image-based-STRE-
NBRE; (c) zLFM(t), the BSS-STRE; (d) zLFM(t), the BSS-STRE-NBRE; (e) zmix(t), the
Image-based-STRE; (f) zmix(t), the Image-based-STRE-NBRE; (g) zmix(t), the BSS-STRE;
(h) zmix(t), the BSS-STRE-NBRE.
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(a) (b)

(c) (d)

Figure 6.11 IF and GD estimation (in yellow) for the signal zgrav(t) utilizing method: (a)
the Image-based-STRE; (b) the Image-based-STRE-NBRE; (c) the BSS-STRE; (d) the
BSS-STRE-NBRE.

explicitly to auto-terms, as shown in Figure 6.10c. Figure 6.10d depicts that the mutual
IF and GD estimation method provides better auto-term preservation and connectivity.

The same conclusions can be drawn for the signals zmix(t) and zgrav(t). The Image-
based-STRE method misses linking parts or full components that diverge from the time
axis and fails to avoid interference samples due to inaccurate NCt(t), as shown in Figures
6.10e and 6.11a, while the BSS-STRE method produces discontinuous and dislocated
estimated IFs, as shown in Figures 6.10g and 6.11c. Again, both methods have been
significantly improved by employing combined estimation of IFs and GDs, as shown in
Figures 6.10f, 6.10h, 6.11b and 6.11d.

To validate visual observations, the MSE and MAE metrics have been calculated
between the local numbers of components in the starting LO-ADTFD and the TFDs
with IF and/or GD estimations using (4.4c) and (4.5c). It is assumed that TFDs with
discontinuous or missing estimations, as well as those with noise or cross-term-related
estimations, would produce larger errors compared to TFDs with continuous and properly-
positioned IF and GD estimations. The results given in Table 6.1 show a decrease in
the MSEt,f and MAEt,f when mutually estimating IF and GD using the combined STRE
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Table 6.1 Comparison of the performance between the mutual IF and GD estimation
and the IF estimation for the signals zLFM(t), zmix(t) and zgrav(t). Values in bold indicate
the best-performing method.

Method Image-based Image-based BSS BSS Shrinkage
operator

Support
information

STRE STRE and
NBRE

STRE STRE and
NBRE

STRE and
NBRE

zLFM(t)

MSEt,f 0.2897 0.0425 0.1414 0.0101 0.0107
MAEt,f 0.4345 0.1214 0.3002 0.0502 0.0528

zmix(t)

MSEt,f 0.2123 0.0401 0.1301 0.0219 0.0212
MAEt,f 0.3925 0.1464 0.3046 0.1064 0.1068

zgrav(t)

MSEt,f 0.1260 0.0352 0.0314 0.0129 0.0131
MAEt,f 0.2552 0.1123 0.1037 0.0628 0.0635

and NBRE methods with the presented CM(t, f). Specifically, for the signals zLFM(t),
zmix(t) and zgrav(t), estimation of the Image-based method is enhanced by 85.33%, 81.11%
and 72.06% in terms of MSEt,f , and 72.06%, 62.70% and 55.99% in terms of MAEt,f ,
respectively. Equally significant, estimation of the BSS method is enhanced by 92.86%,
83.17% and 58.92% in terms of MSEt,f , and 83.82%, 65.07% and 39.44% in terms of
MAEt,f for the same signals, respectively.

Furthermore, the findings illustrate that the utilization of the shrinkage operator to de-
rive B(shrink)(t, f) surpasses the BSS-STRE and Image-based-STRE methods’ performance.
The values of MSEt,f and MAEt,f exhibit improvements of up to 96.31% and 87.85%,
respectively, for the signal zLFM(t), 90.02% and 72.78%, respectively, for the signal zmix(t),
and 89.60% and 75.12%, respectively, for the signal zgrav(t). Furthermore, the findings
suggest a close similarity between the derived B(shrink)(t, f) and the B(BSS)(t, f) obtained
through the BSS-STRE-NBRE method, with a marginal reduction of 3.20% in MSEt,f for
zmix(t), while the remaining metrics favor the BSS-STRE-NBRE method (up to 5.61%).

Finally, the IF and GD estimation algorithm performances have been tested when
embedding the signals zLFM(t) and zmix(t) in AWGN with SNR = [0, 10] dB. Figure 6.12
shows the MSE between the NCt(t) and NCf(f) for noisy and noise-free signals when
using the LO-ADTFD as an underlying TFD for the STRE and NBRE calculation, and
it can be observed that the estimations of local numbers of components are stable for
SNR > 1 dB. The trends of the F-norm and F1 metrics are observed in Figures 6.13
and 6.14, evidently showing that the Image-based-STRE-NBRE method exhibits greater
susceptibility to noise compared to the BSS-STRE-NBRE and shrinkage operator methods.
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(a) (b)

Figure 6.12 The MSE computed between the estimated local number of signal components
from noisy and noise-free LO-ADTFDs in AWGN with SNR values ranging from 0 dB to
10 dB for the signals: (a) zLFM(t); (b) zmix(t).

(a) (b)

Figure 6.13 F1 values for determining the sensitivity of the considered IF and GD
estimation methods to AWGN in SNR values ranging from 0 dB to 10 dB for the signals:
(a) zLFM(t); (b) zmix(t).

(a) (b)

Figure 6.14 F-norm values for determining the sensitivity of the considered IF and GD
estimation methods to AWGN in SNR values ranging from 0 dB to 10 dB for the signals:
(a) zLFM(t); (b) zmix(t).
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6.3 Performance Criteria Based on the Instantaneous

Frequency and Group Delay Estimation

In this section, performance criteria for measuring TFDs based on estimated IFs
and GDs are presented. While MSE metrics based on the LRE method utilize two 1-D
information sources (the STRE and NBRE), this approach utilizes 2-D information, which
enables precise identification of signal auto-terms in the 2-D TF plane. The criterion is
based on the following requirements for a high-performing TFD:

• Preservation of signal auto-terms throughout the TFD, such that their peaks accu-
rately reflect the IF law.

• High resolution of signal auto-terms.

• Absence of energy terms related to cross-terms or noise.

To assess each TFD requirement individually, the IF/GD-based measure is presented,
denoted as χ, which is decomposed into three distinct components, denoted as χat, χr, and
χct. The first component, χat, evaluates the quality of auto-term preservation in a TFD.
Each estimated IF and GD is examined in turn, searching for a signal component that is
present within an interval surrounding the estimated IF or GD. The measure penalizes
any instance where a signal component is not detected within this interval. The second
component, χr, evaluates the quality of auto-term resolution. Specifically, it quantifies
the width of the detected auto-term’s main lobe. The third component, χct, evaluates
the quality of cross-term suppression by measuring the number of samples unrelated to
auto-terms. The steps of this measure are as follows:

1. Initialize the measure components χat and χr to zero: χat = χr = 0.

2. For each estimated IF point (tin , fin) of the n-th signal component in the bounded
region B(t, f), where CM (t, f) = 1, the frequency fmn is determined as the first local
maximum in the TFD within the frequency range [fin −∆χ, fin +∆χ] that is closest
to fin :

fmn = argmax
fkn

ρ(tin , fkn), fin −∆χ ≤ fkn ≤ fin +∆χ, (6.6)

where ∆χ represents the maximum allowable range defined by the user, in which a
non-negative value in the TFD is considered as auto-term.

3. If no positive maximum is detected, one is added to the χat measure component to
penalize it, χat = χat + 1, and steps 4 and 5 are skipped. Otherwise, the distance
between (tin , fin) and fmn is calculated using a Gaussian function:

Dχ(tin , fin) = 1− exp

(
−(fin − fmn)

2

2σ2
G

)
, (6.7)
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where σG is the tuning parameter that controls the width of the Gaussian function,
and Dχ(t, f) is the TFD containing distance values at the positions of estimated IFs
and GDs. Add Dχ(tin , fin) to the χat measure component: χat = χat +Dχ(tin , fin).

4. Locate frequency bins denoted with fln and frn to the left and right from the observed
auto-term maximum at which its amplitude is equal to

√
2/2 of the maximum value

and calculate its resolution as Rχ(tin , fin) =
|fln − frn|

Nf

, where Rχ(t, f) denotes

the TFD with resolution values at the positions of estimated IFs and GDs. Add
Rχ(tin , fin) to the χr measure component: χr = χr +Rχ(tin , fin).

5. Remove the considered component from TFD around the detected auto-term maxi-
mum ρ(tin , fmn).

6. Perform the same procedure for each estimated GD point (tjn , fjn) of the n-th
component in B(t, f) determined with CM (t, f) = 0. That is, define tmn as the time
of the first local maximum in TFD within the time range [tjn −∆χ, tjn +∆χ] closest
to the time tin :

tmn = argmax
tkn

ρ(tkn , fjn), tjn −∆χ ≤ tkn ≤ tjn +∆χ. (6.8)

7. If no positive maximum is detected, penalize it by adding one to the χat measure
component, χat = χat + 1, and steps 8 and 9 are skipped. Otherwise, calculate the
distance between (tjn , fjn) and tmn using a Gaussian function:

Dχ(tjn , fjn) = 1− exp

(
−(tjn − tmn)

2

2σ2
G

)
, (6.9)

and add Dχ(tjn , fjn) to the χat measure component: χat = χat +Dχ(tjn , fjn).

8. Locate time samples denoted with tln and trn to the left and right from the observed
auto-term maximum at which its amplitude is equal to

√
2/2 of the maximum value

and calculate its resolution as Rχ(tjn , fjn) =
|tln − trn|

Nt

. Add Rχ(tjn , fjn) to the χr

measure component: χr = χr +Rχ(tjn , fjn).

9. Remove the considered component from TFD around the detected auto-term maxi-
mum ρ(tmn , fjn).

10. Normalize the measure components χat by the total number of estimated IF and
GD points in B(t, f), and χr by the total number of detected auto-term maxima in
Rχ(t, f) as:

χat =
χat

||B(t, f)||0
, χr =

χr

||Rχ(t, f)||0
. (6.10)
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11. Since the signal auto-terms were removed from a TFD, the amount of cross-terms is
determined by calculating the number of non-zero elements in the remaining TFD,
denoted as ρ(cross)(t, f):

χct =
1

NtNf

||ρ(cross)(t, f)||0. (6.11)

12. The overall quality measure, denoted as χ, is calculated as the weighted sum of the
three measure components:

χ =
χat + χr + χct

3
. (6.12)

Figure 6.15 illustrates the application of the χ measure to two reconstructed TFDs
obtained using the TwIST algorithm given in Section 3.2. For the first oversparse recon-
structed TFD with λ = 15, its time slice representative shown in Figure 6.15a reveals
that the sinusoidal component in the vicinity of fi1 is missing, which results in a penalty
value of one for the χ measure. The analysis focuses on the resolution, |fl2 − fr2|, and bias,
fi2 − fm2 , of the detected LFM component with respect to the fi2 . In contrast, the second
reconstructed TFD (with λ = 0.1), contains the sinusoidal component (fm1 > 0), as shown
in Figure 6.15b. However, both auto-terms exhibit low resolution, which is evident from
the larger |fl2 − fr2| compared to the previous TFD. Additionally, the time slice of this
TFD contains a significant number of cross-terms compared to the previous TFD.

In the χat component, the absence of auto-term components is penalized with a value
of one, while for the detected auto-terms, a value close to zero is assigned, which depends
on the auto-term bias with respect to the estimated IF or GD. This bias is expected to
occur when analyzing different TFDs and noise levels [14], hence the inclusion of the
parameter ∆χ. A too large value of ∆χ may lead to the detection of multiple maxima,
which is why the first maximum closest to the estimated IF or GD is considered to belong
to the auto-term. Through extensive simulations focused mainly on sparse reconstructed
TFDs, ∆χ = Nt/8. The degree of penalization of the bias is controlled by the parameter
σG of the Gaussian function. A larger value of σG results in a wider and flatter curve, while
a smaller value results in a narrower and taller curve, indicating a stronger penalization of
the bias. In this dissertation, σG = 10. Note that when the auto-term maximum exhibits
the exact position of the estimated IF or GD of the n-th component, Dχ(tin , fin) = 0,
indicating no penalization is provided. The χat component is bounded in the range [0, 1],
where smaller values indicate better-performing TFDs.

The χr component is intended to evaluate the resolution of the signal’s auto-terms in
both time and frequency slices. In contrast to previous research that used a normalized
instantaneous bandwidth to measure resolution [16], this approach normalizes χr with
respect to Nt or Nf to provide an interpretable measure with respect to both axes equally.
As a result, χr is bounded within the range [1/Nt,f , 1], where smaller values are preferred
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(a)

(b)

Figure 6.15 A time slice t = 64 example analysis of the χ measure for the reconstructed
TFDs of the signal zSINLFM(t) using the TwIST algorithm with: (a) missing auto-term
samples (oversparsity), λ = 15; (b) auto-terms with low-resolution and reconstructed
cross-terms, λ = 0.1. The green line represents the detected auto-terms, while the blue
line represents the cross-terms after removing auto-terms.

to indicate higher resolution. When χr = 1/Nt,f , the auto-term resolution is of one sample
or bin, which is considered ideal.

The χct component is distinct from the previous measures as it assesses the TFD
globally. Since it is normalized by the total number of samples in the TFD, Nt ×Nf , the
value of χct can be interpreted as the percentage of the TFD that is affected by cross-terms.
This component is also bounded in the range [0, 1], with smaller values indicating a lower
level of cross-term contamination. When χct = 0, it means that cross-terms have been
entirely eliminated.

It is important to note that the presented measures do not consider the amplitude
of auto-terms or cross-terms. This decision was made due to the presence of TFDs that
may exhibit amplitudes that are lower than one. Accounting for amplitude would lead
to incorrect penalization in the χat component and insufficient penalization in the χct

component.

By taking the mean value of χ components, the overall measure treats each component
equally. However, in this dissertation, using the measure components independently is
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emphasized, as they provide useful insights into each TFD requirement. This approach
enables us to gain more information than previous measures based on the LRE.

6.3.1 Validation of Criteria for Reconstructed TFD Evaluation

First, oversparse and low-resolution reconstructed TFDs shown in Figure 3.2 were
evaluated, and the results are presented in Table 6.2.

For the signal zSINLFM(t), the χat measure component successfully detects that the auto-
terms are completely preserved in low-resolution reconstructed TFDs obtained using the
TwIST and SALSA algorithms with λ = 0.01 and λ = 1, respectively. On the other hand,
the worst auto-term preservation is detected in the reconstructed TFD using the TwiST
algorithm with λ = 15. The χr component accurately identifies the reconstructed TFDs
by the SALSA and TwIST algorithms with λ = 15 as having superior auto-term resolution
than the rest. Additionally, the χct component correctly identifies the reconstructed TFDs
using the TwIST and SALSA algorithms with low λ values of 0.01 and 1, respectively,
as having a significant quantity of reconstructed cross-terms. Overall, the measure χ

accurately highlights the TFD obtained using the SALSA algorithm with λ = 15 as the
best-performing, as confirmed by visual inspection and the results given in Table 4.1 using
the measure based on the LRE.

The same measure performance is observed for the signal zLFM(t). The χat component
accurately determines that the auto-terms are better preserved in reconstructed TFDs
using lower λ values, specifically the SpaRSA algorithm with λ = 0.01 and the YALL1
algorithm with λ = 1. In contrast, oversparse TFDs reconstructed by the SpaRSA
and YALL1 algorithms with λ = 15 exhibit higher auto-term resolution and a lower
quantity of reconstructed cross-terms, which are successfully detected by the χr and χct

measure components, respectively. Once again, the measure χ successfully identified the
reconstructed TFD using the YALL1 algorithm with δ = 1 as the best-performing TFD.

Table 6.2 Performance results of the IF/GD-based measure for evaluating the oversparse
and low-resolution reconstructed TFDs for the signals zSINLFM(t) and zLFM(t). Bold values
indicate the best-performing algorithm.

zSINLFM(t) zLFM(t)

TwIST SALSA SpaRSA YALL1

λ 15 0.01 15 1 15 0.01 15 1

χat 0.3307 0.0 0.0778 0.0 0.7183 0.0 0.8748 0.2330
χr 0.0118 0.0396 0.0104 0.0366 0.0058 0.0274 0.0038 0.0046
χct 0.0 0.4194 0.0003 0.1339 0.0 0.5010 0.0 0.0087
χ 0.1142 0.1530 0.0295 0.0568 0.2414 0.1761 0.2929 0.0821
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Table 6.3 Performance results of the IF/GD-based measure for evaluating optimized
reconstructed TFDs with two different objective functions for the signal zSINLFM(t). Bold
values indicate the best-performing algorithm.

zSINLFM(t)

Algorithm Objectives Measure Components
MSEt,MSEf χat χr χct χ

TwIST MS 0.0661 0.0159 0.0003 0.0274
Nr 0.0623 0.0164 0.0005 0.0264

SpaRSA MS 0.1440 0.0112 0.0 0.0517
Nr 0.0624 0.0152 0.0005 0.0260

SALSA MS 0.0856 0.0102 0.0003 0.0320
Nr 0.0700 0.0112 0.0003 0.0272

YALL1 MS 0.2257 0.0078 0.0 0.0778
Nr 0.1206 0.0082 0.0012 0.0433

RTwIST MS 0.0355 0.0108 0.0010 0.0154
Nr 0.0191 0.0185 0.0005 0.0127

The reconstructed TFDs obtained using the optimization objective functions based
on MS or Nr measures for the signals zSINLFM(t) and zLFM(t), as shown in Figures 4.5,
4.6 and 5.5, have been evaluated using the IF/GD-based measure. The results of the
evaluation are presented in Tables 6.3 and 6.4.

For the signal zSINLFM(t), the χat component of the measure correctly detects that the
TFDs reconstructed by YALL1 and SpaRSA optimized using the objective MS exhibit
the lowest auto-term preservation. Specifically, using the Nr measure as an optimization
objective reduces all χat values by 5.75% to 56.67% compared to when using the MS

measure. In contrast, the χr component favors the reconstructed TFDs optimized using
the MS measure, by 3.05% to 41.62%. The same observation applies to the χct component,
which is equal to or negligibly smaller when using the MS measure instead of Nr as
the optimization objective. The only exception is the RTwIST algorithm, where the
reconstructed TF samples related to the sinusoidal FM component that deviated more
from its true position are classified as cross-terms, which increases the χct value when
the MS objective has been used. According to the χ measure, optimization using the Nr

objective achieves reconstructed TFDs with overall higher performance for all considered
reconstruction algorithms (by 3.65% up to 49.71%). As the best-performing algorithm,
the RTwIST is highlighted, which achieves improvements compared to the considered
reconstruction algorithms by 43.80% (TwIST) up to 80.21% (YALL1) and by 51.89%
(TwIST) up to 70.67% (YALL1) using objective functions with MS or Nr, respectively.

The measure reveals similar performance of reconstructed TFDs for the signal zLFM(t).
The lower measure component χat highlights better auto-term preservation for reconstructed
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Table 6.4 Performance results of the IF/GD-based measure for evaluating reconstructed
TFDs optimized with objective functions (MSEt, MSEf , MS) and (MSEt, MSEf , Nr) for
the signal zLFM(t). Bold values indicate the best-performing algorithm.

zLFM(t)

Algorithm Objectives Measure Components
MSEt,MSEf χat χr χct χ

TwIST MS 0.0678 0.0062 0.0050 0.0270
Nr 0.0675 0.0064 0.0071 0.0263

SpaRSA MS 0.1287 0.0082 0.0003 0.0457
Nr 0.1126 0.0090 0.0004 0.0407

SALSA MS 0.0698 0.0068 0.0006 0.0257
Nr 0.0681 0.0072 0.0009 0.0254

YALL1 MS 0.3248 0.0042 0.0001 0.1096
Nr 0.3121 0.0042 0.0001 0.1055

RTwIST MS 0.0623 0.0054 0.0005 0.0227
Nr 0.0572 0.0066 0.0005 0.0214

TFDs optimized with the Nr measure by 0.44% up to 12.51%. The lower components
χr and χct are achieved for reconstructed TFDs optimized with the MS measure by up
to 18.18% and 33.33%, respectively. The RTwIST algorithm is highlighted as the best-
performing TFD, with 11.67% (SALSA) up to 79.29% (YALL1) and 15.75% (SALSA) up
to 79.72% (YALL1) lower χ measure using objective functions with MS or Nr, respectively.
For this signal example, it can be concluded that using both objective functions resulted
in reconstructed TFDs with no significant difference – χ results are slightly in favor when
using Nr objective (by 1.17% up to 10.94%).

Based on the findings presented in this section, the conclusions drawn in the preceding
chapters can be confirmed. The results indicate that optimizing with the MS objective
function leads to slightly better concentration of auto-terms and suppression of cross-terms.
However, there is a higher probability of excluding auto-term samples in this case. On
the other hand, the Nr objective function is better at preserving auto-terms by favoring
continuous auto-term trajectories, even if the resolution of auto-terms is slightly degraded.
Overall, having the Nr objective function ensures slightly better results, as obtained by χ

measure components.

Finally, the reconstructed TFDs obtained using two distinct CS-AF area selections
for the signals zPFM(t), shown in Figure 5.10, and zgrav(t), shown in Figure 5.11, were
evaluated. The results are presented in Table 6.5.

For the signal zPFM(t), this measure correctly detects that the biggest improvement
has been achieved in the suppression of interference caused by the non-LFM component,
as evaluated with a significantly lower χct component. Specifically, TwIST, SpaRSA, and
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Table 6.5 Performance results of the IF/GD-based measure for evaluating optimized
reconstructed TFDs with two different CS-AF area selections for the signals zPFM(t) and
zgrav(t). Bold values indicate the best-performing algorithm.

RTwIST TwIST SpaRSA SALSA

Γ,Λ 0, 1 Γ+,Λ+ 0, 1 Γ+,Λ+ 0, 1 Γ+,Λ+ 0, 1 Γ+,Λ+

zPFM(t)

χat 0.0311 0.0296 0.0536 0.0530 0.1660 0.0589 0.0435 0.0433
χr 0.0136 0.0080 0.0092 0.0082 0.0232 0.0060 0.0069 0.0067
χct 0.0027 0.0006 0.0025 0.0 0.0826 0.0 0.0042 0.0
χ 0.0158 0.0127 0.0218 0.0204 0.0906 0.0216 0.0182 0.0167

zgrav(t)

χat 0.2081 0.1468 0.2481 0.2148 0.2666 0.2184 0.2252 0.1918
χr 0.0122 0.0076 0.0142 0.0080 0.0124 0.0082 0.0094 0.0070
χct 0.0020 0.0012 0.0009 0.0003 0.0005 0.0004 0.0005 0.0014
χ 0.0741 0.0519 0.0877 0.0744 0.0932 0.0757 0.0784 0.0667

SALSA algorithms with presented (Λ+,Γ+) completely suppress the interference as seen
by χct = 0. It is confirmed that the SpaRSA algorithm exhibits the most prominent
enhancement, with χat, χr, χct and χ values improved by 64.52%, 74.14%, 100% and
76.16%, respectively. It may be noted that χ highlights reconstructed TFDs obtained
using the CS-AF area selection presented in this dissertation as better-performing in all
reconstruction algorithms. The RTwIST algorithm is highlighted among the considered
reconstruction algorithms, with improvements of 13.19% up to 82.56% and 23.95% up to
41.20% using (Λ = 0,Γ = 1) and (Λ+,Γ+), respectively.

The results of the measure components χat and χr in the signal zgrav(t) further verifies
that the use of the parametrized CS-AF area improves the preservation and resolution of
hyperbolic auto-term. Specifically, the use of CS-AF results in improvements of 14.79%
to 29.46% and 25.53% to 43.66% for χat and χr, respectively. Similarly to the previous
signal example, the presented CS-AF area selection results in improved χ values across all
reconstruction algorithms, where the RTwIST shows improvements by 5.48% up to 20.49%
and by 22.19% up to 31.44% using (Λ = 0,Γ = 1) and (Λ+,Γ+), respectively.

In conclusion, the IF/GD-based measure presented in this study supports the im-
provement of the RTwIST algorithm over other considered algorithms with respect to the
compromise between auto-term resolution and preservation, and the ability to suppress
cross-terms. The measure shows that the RTwIST algorithm consistently performs better
in preserving auto-terms, as confirmed by the superior performance of the χat component.
However, the ability to suppress cross-terms and resolve auto-terms is competitive with
the other algorithms and is signal-dependent.
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6.3.2 Evaluating Optimization Performance: Results

This subsection aims to evaluate the suitability and performance of measure compo-
nents χat, χr, and χct as objective functions for optimization purposes in comparison
to (MSEt,MSEf ,M

S) and (MSEt,MSEf , Nr). The RTwIST algorithm is used to address
the multi-objective optimization problem presented in (5.5), where χat, χr, and χct are
formalized as objective functions:

minimize: χat, χr, χct(αTwIST, βTwIST, p, δt, δf )

subject to: αTwIST ∈ ⟨0, 1], p ∈ [0, 1], βTwIST ∈ ⟨0, 2α], δt, δf ∈ [0.6, 1].
(6.13)

The results of the numerical evaluation of the reconstructed TFDs obtained from this
optimization process for the signals zSINLFM(t) and zLFM(t) is given in Table 6.6, while the
obtained reconstructed TFDs are shown in Appendix E.

The findings of this simulation demonstrate that the IF/GD-based measure can be
effectively utilized for optimization purposes and provides comparable performance to
previously presented objective function formulations. The optimized reconstructed TFDs
using the IF/GD-based measure tend to exhibit higher resolution than those optimized

Table 6.6 Reconstructed TFDs obtained using the multi-objective optimization approach
with the IF/GD-based measure components χat, χr and χct as objective functions for the
signals zSINLFM(t) and zLFM(t). Bold values indicate the best-performing algorithm.

Algorithm Measure Components
χat χr χct χ

zSINLFM(t)

TwIST λ+ = 7.520 0.0625 0.0163 0.0003 0.0264

SpaRSA λ+ = 6.632 0.0623 0.0150 0.0004 0.0259

SALSA λ+ = 12.20 0.0664 0.0111 0.0003 0.0259

YALL1 λ+ = 1.581 0.1208 0.0081 0.0009 0.0433

RTwIST (p+, δ+t , δ
+
f ) 0.0161 0.0097 0.0002 0.0087

(0.81, 0.95, 0.86)

zLFM(t)

TwIST λ+ = 2.682 0.0675 0.0064 0.0062 0.0267

SpaRSA λ+ = 4.871 0.0711 0.0095 0.0004 0.0270

SALSA λ+ = 12.780 0.0680 0.0070 0.0006 0.0252

YALL1 λ+ = 2.970 0.2787 0.0044 0.0002 0.0944

RTwIST (p+, δ+t , δ
+
f ) 0.0559 0.0055 0.0004 0.0206

(0.0, 0.99, 0.96)
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with the Nr measure and greater preservation of auto-terms than those optimized with the
MS measure. Despite the fact that all reconstruction parameters contribute to the final
result, this is particularly evident in the obtained λ+ values. For the zSINLFM(t) signal,
the λ+ value lies between the values obtained with the MS and Nr objectives: 7.947→
7.520 → 6.711 (TwIST), 9.262 → 6.632 → 6.541 (SpaRSA), 13.217 → 12.20 → 11.706

(SALSA), 5.561→ 1.581→ 1.480 (YALL1).
The same trend is observed for the zLFM(t) signal: 2.701 → 2.682 → 2.081 (TwIST)

and 13.941→ 12.780→ 12.180 (SALSA), except for the SpaRSA and YALL1 algorithms
where the λ+ value is reduced to better preserve auto-terms: 6.145→ 5.390→ 4.871 and
4.001→ 3.931→ 2.970, respectively. The reconstructed TFDs obtained using the RTwIST
algorithm show similar auto-term resolution to the TFDs optimized with MS measure
with better auto-term preservation.

In conclusion, the optimized reconstructed TFDs using the IF/GD-based measure
achieve a slightly better trade-off between the χ measure and its components compared to
the TFDs presented in Tables 6.3 and 6.4. This is expected since the optimization process
directly minimized the χ components.

6.4 Renyi Entropy-Based Algorithm Enhancement

This dissertation has shown that the performance of the RTwIST algorithm relies on the
choice of the parameter p, which must be set according to the signal component’s alignment
along the time or frequency axis. The parameter p operates globally, i.e., the entire TFD
is considered. However, signal components may have locally varying directions and shapes,
requiring signal components in localized TF regions to have widely divergent p values.
This suggests that having a single global parameter, such as p, may be inappropriate.

To address this issue, an alternative approach is presented that leverages the CM(t, f)

map to improve the RTwIST reconstruction algorithm. Specifically, the selection of
parameter p can be omitted entirely by modifying (5.4) as:

[ςz(t, f)]
[n+1] = shrinkt

{
ηt{[ς ′z(t, f)][n+1]}

}
+ shrinkt

{
ηf{[ς ′z(t, f)][n+1]}

}
, (6.14)

indicating that the final shrunken TFD [ςz(t, f)]
[n+1] is composed of two independent

shrinkage operations over time and frequency that do not require any input from a
user. That is, the CM(t, f) determines the TF regions of ς ′z(t, f) on which shrinkt {·} or
shrinkf {·} is performed. Note that the usual inputs to the RTwIST algorithm, NCt(t) and
NCt(f), have been replaced with more accurate local numbers of components estimated
on TFDs with disjoint components, ηt{ρ(t, f)} and ηf{ρ(t, f)}.

The expected advantages with the modified RTwIST algorithm, further denoted with
MRTwIST, not having parameter p are numerous. First, a user does not need to know
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the signal component behavior to tune the parameter p accordingly. Second, optimization
convergence may be quicker with fewer input parameters to optimize. Third, if p ̸= 0 or
p ̸= 1, multiplication of ς t,fz (t, f) with p or (1− p) lowers its amplitude and, consequently,
the amplitude of the reconstructed TFD.

The performance evaluation of the MRTwIST algorithm was conducted on the signals
employed throughout the dissertation, namely zSINLFM(t), zLFM(t), zmix(t), and zgrav(t). A
comparison is made between the performance of MRTwIST and the LO-ADTFD. The
simulation encompassed all the methods introduced in this dissertation, including the
utilization of CS-AF area selection from Chapter 5 and the optimization of reconstruction
parameters via multi-objective optimization formalized in (6.13). The IF/GD-based
measure employed the IFs and GDs from the BSS-STRE-NBRE method. The remaining
parameters pertaining to NSGA-III, reconstruction algorithms, and LRE were consistent
with the preceding simulations. The resulting reconstructed TFDs are depicted in Figure
6.16, and their performance evaluated using the χ measure components, is presented in
Table 6.7.

The reconstructed TFDs obtained through the MRTwIST algorithm exhibit high
resolution and preserved auto-terms, along with effective suppression of cross-terms,
across all considered signals. On the one hand, the LO-ADTFD demonstrates superior
preservation of auto-terms than the MRTwIST algorithm, as evidenced by the lower χat

component. However, that is expected given that the estimated IFs and GDs are based
on the LO-ADTFD. On the other hand, the MRTwIST outperforms the LO-ADTFD in
terms of the χr and χct components. Notably, the MRTwIST achieves a reduction of up
to 73.29% in χr and up to 99.52% in χct. These results prove the superiority of the TFD
reconstruction method in terms of auto-term resolution and cross-term suppression over
LO-ADTFD. The optimized CS-AF areas for all four signal examples can be found in
Appendix F.

It is important to highlight that, except for zSINLFM(t), all signal examples are found
to be optimal with the ideal parameters δ+t = 1 and δ+f = 1. This finding provides further
validation for the methods presented in this dissertation, as they collectively enhance
various underlying procedures for TFD reconstruction. These improvements facilitate the
selection of parameters that yield higher-performing reconstructed TFDs. Additionally,
it should be noted that simplifying the MRTwIST by presetting parameters δt and δf to
one and excluding them from the optimization process could potentially be advantageous.
However, given the variability of real-life signals, further research is necessary to draw
definitive conclusions.
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(a) (b)

(c) (d)

Figure 6.16 Reconstructed TFDs using the MRTwIST algorithm for the considered
signals: (a) zSINLFM(t); (b) zLFM(t); (c) zmix(t); (d) zgrav(t).

Table 6.7 Performance evaluation of the reconstructed TFDs obtained using the MRTwIST
algorithm versus the LO-ADTFD for the signals zSINLFM(t), zLFM(t), zmix(t) and zgrav(t).
Bold values indicate better performing TFD.

Measure Components
χat χr χct

zSINLFM(t)
α+

TwIST, β
+
TwIST 0.912, 0.802 0.0140 0.0094 0.0002

δ+t ,Γ
+,Λ+ 0.97, 0.010, 0.879
LO-ADTFD 0.0 0.0238 0.0033

α+
TwIST, β

+
TwIST 0.870, 0.849 0.0213 0.0039 0.0002

zLFM(t) δ+f ,Γ
+,Λ+ 1.0, 0.130, 0.418

LO-ADTFD 0.0 0.0098 0.0347

zmix(t)
α+

TwIST, β
+
TwIST 0.885, 0.880 0.0829 0.0039 0.0020

δ+t,f ,Γ
+,Λ+ 1.0, 0.073, 0.190

LO-ADTFD 0.0 0.0146 0.0208

zgrav(t)
α+

TwIST, β
+
TwIST 0.896, 0.919 0.1148 0.0046 0.0002

δ+t,f ,Γ
+,Λ+ 1.0, 0.160, 0.186

LO-ADTFD 0.0 0.0128 0.0417
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6.5 Summary

In this chapter, several methods have been presented for defining performance measure
criteria using estimated IFs and GDs. First, a method has been introduced for automatically
defining a binary map that indicates TFD blocks necessitating specific localization. This
method exploits the STRE and NBRE methods’ imperfections to find local components
unsuitable for certain localization approaches. Several applications of the presented binary
map have been shown. First, component extraction using the binary map yielded more
accurate local component numbers. Second, it allowed the definition of a method for
combined IF and GD estimation, which improved Image-based and BSS IF estimation
algorithms to estimate GD. Third, the binary map was used to modify the RTwIST
algorithm, called MRTwIST, to improve TFD reconstruction without the key parameter
defined in the previous chapter.

The presented measure criteria, χ, consisted of three components: the first component,
χat, penalizes missing auto-terms on or near an estimated IF or GD, the second component,
χr, measures the auto-term main lobe as its resolution, and the third component, χct,
determines the amount of unresolved cross-terms. The results were measured on synthetic
and real-life gravitational signals. The presented measure was more informative than
the LRE-based measure and performed satisfactorily as an objective function for the
multi-objective optimization approach.
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CHAPTER 7

TIME-FREQUENCY ANALYSIS OF
ELECTROENCEPHALOGRAM
SEIZURE SIGNALS

In this chapter, the presented methods are evaluated for their effectiveness in analyzing
a real-life electroencephalogram (EEG) seizure signal in epilepsy, as published by the author
in the international peer-reviewed journal [57]. Epilepsy, a common neurological condition,
is distinguished by the occurrence of repeated seizures caused by the rapid and excessive
firing of nerve cells in the brain, leading to a disruption in normal electrical activity
[51, 125]. While EEG recordings are non-invasive and commonly used for identifying these
disruptions, manual identification of seizures requires a neurologist in real-time, which
is limiting. Therefore, the development of automated seizure detection systems using
computers has become an area of significant interest [31, 36, 59, 63, 69, 85, 90, 124, 146].

EEG signals, which exhibit non-stationary properties, are typically analyzed using
time-frequency and time-scale representations [11, 58, 109, 146]. However, the analysis
of EEG seizure signals exhibits a unique challenge due to their combination of rhythmic
and spike characteristics. Previous studies have emphasized the importance of IF in
characterizing non-stationary signals in practical applications [19, 59, 75, 84, 90, 95, 117].
Nevertheless, the estimation of IF for EEG seizure signals raises concerns about the
suitability of existing approaches, as the spike components require a distinct methodology
utilizing the GD technique [62, 66]. Consequently, the main objective of this chapter is
to apply the presented method in Chapter 6 to automatically estimate IF and GD for
obtaining accurate estimates of both spikes and sinusoidal components.

An alternative avenue for feature extraction involves leveraging the graphical represen-
tation of TFDs as images, enabling the application of image analysis techniques such as
Haralick features and local binary patterns [6, 23, 69, 149]. Moreover, previous studies
have shown the advancements of TFD features in accurately detecting and analyzing
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Figure 7.1 The 10-20 EEG electrode placement. T4 − T6, F4 − T4, F3 − T3, T5 − O1,
T6−O2, T3−T5, C4−P4, F4−C4, F3−C3, P4−O2, C3−P3, T4−C4, C4−CZ , CZ −C3,
P3 −O1, T6 − P4, C3 − T3, PZ − P3, P4 − PZ , and P3 − T5 are the channel designations.

seizure activity [17, 60]. However, selecting an appropriate TFD for EEG seizure sig-
nals is not a straightforward task. The existence of spikes introduces cross-terms in the
TFD, necessitating the application of smoothing along the frequency axis, which can
lead to a loss of resolution in the sinusoidal signal component. One commonly employed
solution is the LO-ADTFD, which has exhibited high performance in analyzing EEG
signals of interest [59, 87]. Therefore, the second objective of this chapter is to apply
sparse TFD reconstruction to EEG seizure signals and compare the performance of the
MRTwIST algorithm with other reconstruction algorithms utilized in this study, as well as
the LO-ADTFD.

7.1 EEG Database Description

In this study, a database comprising 200 EEG seizure signals was employed, which
had been previously made available in [17]1 and utilized in [59, 60, 62, 86]. The EEG
signals were obtained from newborns who were admitted to the Royal Women’s Hospital
in Brisbane, Australia, and sampled at 256 Hz using the 10-20 international electrode
placement method with bipolar montage, as illustrated in Figure 7.1. The electrode
locations in this study are denoted by a combination of a letter indicating the lobe and a
number (or letter) indicating the hemisphere. Specifically, the lobe letters used are F for
Frontal, T for Temporal, C for Central, P for Parietal, and O for Occipital regions of the
brain. It is pertinent to highlight that there is an absence of a designated Central lobe.
Electrodes bearing even numbers are affiliated with the right hemisphere, whereas those
bearing odd numbers are linked to the left hemisphere.

1Available at: https://github.com/nabeelalikhan1/EEG-Classification-IF-and-GD-features
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(a) (b)

Figure 7.2 For the real-life EEG seizure signal representative, zEEG(t): (a) recordings
over different channels; (b) time-domain representation with pronounced spikes.

The EEG signals were preprocessed to remove noise and interference. Initially, an
analog bandpass filter was employed with a frequency range of 0.5 to 70 Hz to eliminate
low-frequency noise components. Subsequently, a 50 Hz notch filter was employed to
suppress power line interference. The preprocessed signals then progressed through a
low-pass filter with a cut-off frequency of 16 Hz. To lower the computational burden, the
data were downsampled to 32 Hz. To facilitate analysis, the collected EEG signals were
partitioned into non-overlapping intervals of 8 seconds, as illustrated in Figure 7.2a. For
this study, one representative of seizure activity has been selected according to the studies
[14, 87], which time representation is shown in Figure 7.2b.

7.1.1 EEG Seizure Signal: Mathematical Model

EEG seizure signals are typically represented as amplitude-modulated FM signals with
piecewise LFM [59, 60]:

sEEG(t) =
NC∑
k=1

ak(t)e
j2π

∫
fk(τ)dτ . (7.1)

However, the model in (7.1) does not incorporate the presence of spikes or short-duration
transients, which are frequently observed in EEG seizure recordings. In order to address
this limitation, an updated model has been used in this study, given as follows [59, 60]:

sEEG(t) =
NC∑
k=1

ak(t)e
j2π

∫
fk(τ)dτ +

NC∑
k=1

δ(t− Tk), (7.2)

where the second term signifies the spikes in the EEG signal that occur at times Tk. By
adding this term, the signal model accounts for both the frequency-modulated components
of the signal and the abrupt spikes that can occur during seizures.
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Prior investigations have indicated that the utilization of a differential operator (filter)
serves to equalize the background of EEG signals and amplify the discernible features of
spikes. This technique significantly facilitates the analysis of EEG signals by augmenting
the visibility and interpretability of spikes [60, 62, 83, 117]. Hence, this study involves
EEG seizure signals without, denoted as zEEG(t), and with a differentiator filter, denoted
as zEEGfilt(t). Figure 7.3 shows the TFDs of the EEG signals, namely the EMBD and
LO-ADTFD, which provide a visualization of the signal’s components. The TFDs reveal
that the considered signal consists of one dominant sinusoidal component and seven spikes.
Moreover, the LO-ADTFD outperforms the EMBD method in terms of component retention
and interference suppression. The filtered signal, zEEGfilt(t), exhibits more pronounced true
components and fewer interference terms than the unfiltered signal zEEG(t). Note that the
LRE parameters have been set as Θt = Θf = 5 for the purpose of acquiring spike features
more rigorously, while the LO-ADTFD has been used as an underlying RID.

(a) (b)

(c) (d)

Figure 7.3 (a) EMBD of the signal zEEG(t), αEMB = 0.1, βEMB = 0.2; (b) LO-ADTFD
of the signal zEEG(t); (c) EMBD of the signal zEEGfilt(t), αEMB = 0.08, βEMB = 0.3; (d)
LO-ADTFD of the signal zEEGfilt(t).
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7.2 Evaluating Instantaneous Frequency and Group

Delay Estimation Performance: Results

Figure 7.4 demonstrates the effectiveness of CM(t, f) in discerning and separating
the sinusoidal and spike components present in both zEEG(t) and zEEGfilt(t) signals. The
resulting CM(t, f) successfully associates different localization approaches for spike and
sinusoidal components. As a result, separate TFDs for the extracted spike and sinusoidal
components are displayed in Figure 7.5. Notably, these TFDs exhibit a substantial
reduction in spurious local maxima when compared to the original LO-ADTFD analysis, as
evident from the diminished estimated local numbers of components (NCt(t) and NCf (f))
illustrated in Figure 7.6.

It may be observed that discernible performance variations persist between the two
signals, namely zEEG(t) and zEEGfilt(t). The LO-ADTFD applied to the unfiltered signal
zEEG(t) does not entirely eliminate cross-terms, leading to slightly diminished performance
in estimating CM(t, f), NCt(t), and NCf(f) due to unresolved cross-term interference.

(a) (b)

(c) (d)

Figure 7.4 The obtained CM (t, f) for the considered signal: (a) zEEG(t); (b) zEEG(t) with
its LO-ADTFD; (c) zEEGfilt(t); (d) zEEGfilt(t) with its LO-ADTFD. The regions highlighted
by yellow and dash-dotted pink rectangles delineate time-based analysis areas, whereas
the remaining blue region of the TFD necessitates frequency-based analysis.
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(a) (b)

(c) (d)

Figure 7.5 Components extracted using different approaches: (a) time-based analysis using
ηt{ρ(lo)(t, f)} for zEEG(t); (b) frequency-based analysis using ηf{ρ(lo)(t, f)} for zEEG(t); (c)
time-based analysis using ηt{ρ(lo)(t, f)} for zEEGfilt(t); (d) frequency-based analysis using
ηf{ρ(lo)(t, f)} for zEEGfilt(t).

The obtained results in this study are noteworthy and demonstrate the effectiveness of the
presented methodology in extracting and characterizing the targeted components, yielding
overall satisfactory outcomes.

Furthermore, it is pertinent to acknowledge that during the process of extracting
intersecting components necessitating distinct localization techniques, a minor fraction of
components proximate to the point of intersection may inadvertently be captured using an
alternative TFD method. This occurrence is exemplified in Figure 7.5a for the unfiltered
EEG signal zEEG(t), wherein minute portions of spike components coexist alongside
sinusoidal components. This conduct may be credited to pragmatic considerations in the
computation of the NBRE and STRE. The employed sliding window, with a designated size
(Θt or Θf ), effectively detects the time or frequency support of a component with a slight
extension beyond the ideal range stipulated in [103, 105]. Consequently, the boundaries
of the TFD block delineated in the CM(t, f) exhibit a marginal expansion relative to the
actual time or frequency support of the component, accommodating this phenomenon.
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(a) (b)

(c) (d)

Figure 7.6 Comparison of the local numbers of signal components derived from the
application of the STRE and NBRE within the starting TFD (indicated by the yellow
dashed line) and subsequent extraction of components employing the presented operators
ηt and ηf (represented by the blue solid line) for the respective signals: (a, b) zEEG(t); (c,
d) zEEGfilt(t).

Figure 7.7 illustrates the IFs and GDs estimated using the method given in [62]2 for
the EEG signals zEEG(t) and zEEGfilt(t). The estimated IFs are computed employing a
time-domain approach, whereas the estimated GDs are derived from the signal’s FT using
the duality property, which converts vertical signal ridges into horizontal within TFD [62].
The results demonstrate the efficacy of the method in estimating the IFs and GDs for the
zEEGfilt(t), consistent with the research in [62].

Nevertheless, when applied to the unfiltered signal zEEG(t), the approach has been
found to be unsuitable for accurately estimating the GDs, as shown in Figure 7.7d. This
constraint arises from the existence of unaddressed background noise and a variable number
of components in the TF domain. Note that the user must supply the overall number
of components to achieve these estimates, which can pose a functional restriction when
dealing with an unfamiliar signal. These findings yield valuable insights into the constraints
of the method in [62] and further substantiate the requirement for an automated approach

2Available at: https://github.com/nabeelalikhan1/EEG-Classification-IF-and-GD-features
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(a) (b)

(c) (d)

Figure 7.7 For the considered EEG seizure signals: (a) estimated IFs (red line) of
zEEGfilt(t); (b) estimated GDs (blue line) of zEEGfilt(t); (c) estimated IFs (red line) of
zEEG(t); (d) estimated GDs (blue line) of zEEG(t). The method proposed in [62] was used.

to IF and GD estimation presented in this dissertation.

Figures 7.8 and 7.9 offer a comparative evaluation of the performance of the presented
mutual IF and GD estimation technique against the Image-based and BSS with STRE IF
estimation approaches. The findings indicate that the considered IF estimation methods
yield accurate estimates when a sinusoidal component is given. However, the estimation of
IFs for spike components is characterized by pronounced discontinuities and challenges in
distinguishing them from background samples, particularly in the case of the unfiltered
signal zEEG(t). These findings are consistent with previous research that has reported the
difficulty of analyzing spike components using IF estimation methods alone [62, 66].

On the contrary, the estimation of GDs for the spike components demonstrates a
significant enhancement in their connectivity and overall preservation. The results pre-
sented in Figures 7.8 and 7.9 demonstrate that all considered IF and GD estimation
methods effectively estimate the mutual IFs and GDs, resulting in improved connectivity
and preservation of the spike components. These findings highlight the importance of
incorporating GD estimation in the analysis of signals with spike components and provide
valuable perspectives on the effectiveness of the mutual IF and GD estimation method.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.8 IF and GD estimation (in yellow) of EEG seizure signals using various
methods: (a) the Image-based-STRE for zEEG(t); (b) the Image-based-STRE-NBRE for
zEEG(t); (c) the BSS-STRE for zEEG(t); (d) the BSS-STRE-NBRE for zEEG(t); (e) the
Image-based-STRE for zEEGfilt(t); (f) the Image-based-STRE-NBRE for zEEGfilt(t); (g) the
BSS-STRE for zEEGfilt(t); (h) the BSS-STRE-NBRE for zEEGfilt(t).
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(a) (b)

Figure 7.9 B(shrink)(t, f) consisted of estimated IFs and GDs (in yellow) obtained utilizing
the shrinkage operator for the EEG seizure signals: (a) zEEG(t); (b) zEEGfilt(t).

Table 7.1 Comparison of the performance between the mutual IF and GD estimation and
the IF estimation methods for the EEG seizure signals zEEG(t) and zEEGfilt(t) database.
Values in bold indicate the best-performing algorithm.

Method Image-based Image-based BSS BSS Shrinkage
operator

Support
information

STRE STRE and
NBRE

STRE STRE and
NBRE

STRE and
NBRE

Estimation IF IF and GD IF IF and GD IF and GD

Database containing 200 examples of zEEG(t)

MSEt,f 0.0522 0.0302 0.0482 0.0287 0.0278
MAEt,f 0.1733 0.1212 0.1412 0.1121 0.1097

Database containing 200 examples of zEEGfilt(t)

MSEt,f 0.0729 0.0589 0.0802 0.0522 0.0546
MAEt,f 0.3121 0.2311 0.3324 0.2215 0.2317

Table 7.1 summarizes the experimental findings of the IF and GD estimated mutually,
which have been averaged over a database consisting of 200 zEEG(t) signals. The findings
provide empirical evidence supporting the effectiveness of the mutual IF and GD strategy
compared to IF estimation alone. Explicitly, when applied to the unfiltered zEEG(t)

database, the BSS-STRE-NBRE and Image-based-STRE-NBRE methods demonstrate
significant improvements of up to 42.23% and 30.08%, respectively, in terms of the MSEt,f

and MAEt,f indicators, when compared to the BSS-STRE and Image-based-STRE methods.
Comparable advancements are also observed for the zEEGfilt(t) database, with reductions
of up to 34.96% and 33.41% in the MSEt,f and MAEt,f indicators, respectively, using the
BSS-STRE-NBRE and Image-based-STRE-NBRE methods. Furthermore, the outcomes
demonstrate the superior performance of the shrinkage operator compared to the BSS-
STRE and Image-based-STRE methods. The shrinkage operator-based estimation achieves
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improvements of up to 46.45% and 36.61% for the zEEG(t) database, and up to 31.71%
and 30.35% for the zEEGfilt(t) database, in terms of the MSEt,f and MAEt,f indicators
respectively. Notably, the estimation performance of the shrinkage operator exhibits
competitiveness comparable to that of the BSS-STRE-NBRE method.

7.3 Evaluating TFD Reconstruction Performance:

Results

This section encompasses the evaluation of four distinct algorithms, namely MRTwIST,
TwIST, SALSA, and SpaRSA, for the purpose of assessing the reconstruction performance
of TFDs on signals zEEG(t) and zEEGfilt(t) in conjunction with LO-ADTFD and EMBD. The
measure χ components are utilized as a comparative criterion for performance evaluation,
serving as the objective functions for optimizing the reconstructed TFD parameters. The
parameters of the NSGA-III and reconstruction algorithms remain consistent with those
used in previous chapters, while the LRE parameters adhere to the definitions provided in
the preceding section.

Figure 7.10 showcases the reconstructed TFDs of the signal zEEG(t), while the corre-
sponding numerical outcomes are presented in Table 7.2. Upon visual examination, it
becomes evident that all reconstruction algorithms encounter challenges in preserving
the spike components in comparison to the sinusoidal components. This phenomenon
arises due to the complex nature of the signal’s AF, where the actual spike components
are masked by interference, thereby rendering them more difficult to retain during the
application of the CS-based approach. Notably, MRTwIST exhibits improved detection
of spike components compared to other algorithms. Nevertheless, the CS-AF approach
compromises their consistency, leading to a decrease in overall reconstruction performance
manifested by the representation of delta functions.

The obtained results indicate that MRTwIST surpasses the other reconstruction
algorithms across a majority of metrics. Particularly, the preservation of auto-terms
and improvements in resolution are confirmed by the values of χat and χr, which are
reduced by 78.74% and 25.42%, respectively, in comparison to the second-best algorithms,
SALSA and SpaRSA. However, inaccuracies in the trajectories of spike components within
MRTwIST result in certain samples being misclassified as cross-terms, contributing to a
slight increase in the χct value when compared to the SpaRSA and SALSA algorithms.
Overall, MRTwIST exhibits commendable performance in terms of χ, which surpasses the
second-best algorithm, TwIST, by 78.94%.

When comparing MRTwIST to LO-ADTFD, notable enhancements are observed
in terms of χr, χct, and χ, exhibiting improvements of 64.63%, 92.45%, and 25.43%,
respectively. However, MRTwIST performs less favorably than LO-ADTFD and EMBD in
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(a) (b)

(c) (d)

Figure 7.10 Reconstructed TFDs of the unfiltered zEEG(t) signal obtained using the
following reconstruction algorithm: (a) MRTwIST; (b) TwIST; (c) SALSA; (d) SpaRSA.

Table 7.2 Performance evaluation of the considered TFDs for the unfiltered EEG seizure
signal zEEG(t). Bold values indicate the best-performing TFD.

zEEG(t)

χat χr χct χ

MRTwIST 0.0789 0.0044 0.0083 0.0305
TwIST 0.4033 0.0204 0.0095 0.1444
SpaRSA 0.6542 0.0059 0.0013 0.2205
SALSA 0.3711 0.0160 0.0074 0.1315
EMBD 0.0382 0.0261 0.1691 0.0778

LO-ADTFD 0.0 0.0128 0.1100 0.0409
MRTwIST: α+

TwIST = 0.914, β+
TwIST = 0.804, δ+t = δ+f = 0.99, Γ+ = 0.07, Λ+ = 0.40;

TwIST: α+
TwIST = 0.923, β+

TwIST = 0.801, λ+ = 0.022, Γ+ = 0.01, Λ+ = 0.89;
SALSA: λ+ = 0.03, Γ+ = 0.01, Λ+ = 0.98; SpaRSA: λ+ = 0.06, Γ+ = 0.01, Λ+ = 0.78
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(a) (b)

(c) (d)

Figure 7.11 Reconstructed TFDs for the filtered zEEGfilt(t) signal obtained using the
following reconstruction algorithm: (a) MRTwIST; (b) TwIST; (c) SALSA; (d) SpaRSA.

terms of χat, primarily due to the challenges associated with preserving spike components.

The reconstructed TFDs of the filtered signal zEEGfilt(t) are presented in Figure 7.11,
and the corresponding numerical results are reported in Table 7.3. Visual inspection reveals
that all reconstruction algorithms struggled to fully preserve the spike and sinusoidal
components. However, due to the lower complexity of the signal’s AF, the spike components
are better preserved compared to those in the signal zEEG(t).

The results show that MRTwIST outperforms other reconstruction algorithms in all
metrics for the filtered signal. Specifically, MRTwIST reduces χat, χr, χct, and χ values
by 19.53%, 18.75%, 75.22%, and 31.97% compared to the second-best algorithms, TwIST,
SpaRSA, SpaRSA, and TwIST, respectively. When compared to LO-ADTFD, MRTwIST
shows improvements in terms of χr and χct by 49.35% and 63.64%, respectively. As
expected, LO-ADTFD and EMBD achieved better auto-term preservation measured with
χat, due to which LO-ADTFD turns out to be better-performing overall than MRTwIST,
with a lower χ value. The complexity of the signals’ AFs and the obtained CS-AF areas
for the MRTwIST algorithm are shown in Figure 7.12.

The previously obtained results yield several notable conclusions. Firstly, the MRTwIST
algorithm has exhibited superior performance in reconstructing TFDs compared to the
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Table 7.3 Performance evaluation of the considered TFDs for the filtered EEG seizure
signal zEEGfilt(t). Bold values indicate the best-performing TFD.

zEEGfilt(t)

χat χr χct χ

MRTwIST 0.1879 0.0039 0.0028 0.0649
TwIST 0.2335 0.0081 0.0446 0.0954
SpaRSA 0.6833 0.0048 0.0113 0.2331
SALSA 0.3108 0.0127 0.0212 0.1149
EMBD 0.0 0.0172 0.2062 0.0745

LO-ADTFD 0.0 0.0077 0.0077 0.0051
MRTwIST: α+

TwIST = 0.922, β+
TwIST = 0.812, δ+t = δ+f = 0.99, Γ+ = 0.05, Λ+ = 0.51;

TwIST: α+
TwIST = 0.923, β+

TwIST = 0.801, λ+ = 0.001, Γ+ = 0.01, Λ+ = 0.91;
SALSA: λ+ = 0.002, Γ+ = 0.01, Λ+ = 0.61; SpaRSA: λ+ = 0.0026, Γ+ = 0.01, Λ+ = 0.75

(a) (b)

Figure 7.12 AFs with highlighted CS-AF areas in yellow obtained with the MRTwIST
algorithm for the considered signal: (a) zEEG(t); (b) zEEGfilt(t).

other algorithms under evaluation. Moreover, it has proven to exhibit higher resolution in
preserving auto-terms and better suppression of cross-terms in comparison to the highly-
performing LO-ADTFD. However, it is important to acknowledge that in practical signal
scenarios characterized by closely-spaced multi-components and complex behavior, the
selection of the CS-AF area may result in the degradation of actual component trajectories.
This observation highlights a potential avenue for future research, where alternative TFDs
that incorporate initial interference reduction prior to reconstruction should be explored
as potential replacements for the WVD in CS-based method based on the AF. have
the potential to pave the way for the advancement of more resilient and accurate TFD
reconstruction techniques capable of handling intricate signal characteristics and mitigating
the challenges associated with interference and overlapping components.
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7.4 Summary

This chapter provided an analysis of EEG seizure signals that were representative of
both spike and sinusoidal components. The efficacy of using a differential filter to enhance
useful components was examined, and a method for creating CM(t, f) map was applied
that has allowed for the classification of spike and sinusoidal components. Results from
the experiments have shown that component extraction was achieved with more accurate
local numbers of components.

The study also evaluated the performance of existing BSS-STRE and Image-based
estimation methods for estimating EEG seizure signals. The results indicated that mutually
estimating the IF and GD significantly enhanced component estimation performance for
both unfiltered and filtered EEG seizure signals, as shown using the improved BSS-STRE-
NBRE, Image-based-STRE-NBRE, and shrinkage operator-based algorithms.

Additionally, the reconstruction performance of the CS-based method has been ex-
amined on EEG data. The experiments showed that using the MRTwIST algorithm
resulted in significant improvements in spike reconstruction, auto-term resolution, and
cross-term reduction over the other reconstruction algorithms considered. Furthermore,
the MRTwIST algorithm achieved better auto-term resolution and cross-term elimination
than the LO-ADTFD. However, component consistency as a delta function remained in
favor of the LO-ADTFD.
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CHAPTER 8

CONCLUSIONS AND FUTURE
WORK

8.1 Conclusions

Time-frequency distributions present a notable contribution to the analysis of non-
stationary signals as they allow for the visualization of signal energy distribution in joint
time-frequency domain. However, TFDs involve a compromise between auto-resolution and
cross-term suppression, which makes their interpretation complicated. Advanced methods
have introduced another complexity to this trade-off, known as auto-term preservation,
which highlights the limitations of existing concentration measures and optimization
approaches. Although compressive sensing-based methods have been used to obtain highly
concentrated sparse TFDs, their reconstructed TFDs heavily rely on input parameters
and underlying procedures, limiting their broad applicability.

The key idea is to define performance criteria that properly evaluate auto-term preserva-
tion and penalize its absence. Calculating and comparing the local numbers of components
in starting and reconstructed TFDs obtained using the LRE methods accomplishes this.
The conducted experiments have shown that when the reconstructed TFDs are evaluated
with the proposed criteria, the TFD reconstruction that caused the absence of auto-terms
is highlighted as poorly performing, which has not been the case when using traditional
global concentration measures. This supports the first hypothesis of this dissertation. The
here-proposed criteria have been implemented in a multi-objective meta-heuristic opti-
mization environment as objective functions. The results have shown that the presented
optimization approach converges to a high-performing TFD with preserved auto-terms,
which has not been achieved using existing optimization approaches.

This research involved further upgrading the LRE method with the introduction of the
NBRE approach. Experimental results have shown that the local number of components in
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frequency bins obtained using the NBRE exhibits higher accuracy than the one obtained
using the STRE for certain signals. This finding supports the second hypothesis of this
study. Moreover, the study underscores the importance of considering both time and
frequency localizations in TFD analysis, as demonstrated by the different applications
presented throughout the dissertation.

The first enhancement of the CS-based method involves the algorithm for the shrinkage
operator that locally detects and concentrates on the signal’s auto-terms, which exhibit
the largest surfaces in each time and frequency slice. The STRE and NBRE methods
determine the total number of surfaces to be considered. The proposed LRE-based
sparse reconstruction algorithm outperforms all of the tested ℓ1 norm-based reconstruction
algorithms in terms of the here-proposed performance criteria. This finding supports the
third hypothesis of this study.

The second enhancement of the CS-based method involves a method that adapts the
CS-AF area in the AF on auto-term trajectories with arbitrary shapes. This method uses
parameters to reduce the density between samples related to auto-terms or cross-terms,
based on which the DBSCAN clustering method extracts a single cluster with auto-term-
explicit samples. Experimental results have demonstrated that this method increases the
number of auto-term-related samples in the CS-AF area, while simultaneously discarding
noise and cross-term-related samples. As a result, TFD reconstruction is improved, with
less sensitivity to noise.

In addition to the LRE-based performance criteria described previously, this dissertation
presents another set of criteria based on estimated IFs and GDs. The research conducted
to establish these criteria has yielded an LRE-based method that automatically delineates
TFD regions necessitating specific localization. The ability to seamlessly integrate both
localization approaches without requiring any prior knowledge from the user proves
advantageous across multiple applications. Firstly, this method facilitates the combined
estimation of IF and GD, surpassing the performance of IF estimation alone. Secondly, it
achieves an improvement over the previously proposed LRE-based sparse reconstruction
algorithm. The performance criteria formulated based on the estimated IFs and GDs
independently indicate the quality of auto-term preservation, resolution, and cross-term
suppression, which confers an advantage over the LRE-based criterion. Furthermore, the
optimization performance based on these criteria demonstrates competitiveness with the
LRE-based criterion, resulting in reconstructed TFDs that exhibit preserved auto-terms
with high resolution and suppressed cross-terms.

Ultimately, the outcomes elucidated in this dissertation reinforce the efficacy of mutual
IF and GD estimations, alongside the here-presented CS-based method’s enhancements,
in facilitating an enhanced estimation of components and reconstruction of EEG seizure
signals. These advancements hold substantial promise for informing future research
endeavors in the domain of seizure detection.
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8.2 Future Research Directions

The presented optimization methodology holds the potential to be implemented in
various TF methods that require auto-term preservation. Further advancements within
these methods, similar to the CS-based method in this dissertation, could be achieved.

Although the WVD served as the basis for sparse time-frequency distribution TFD
calculation in this dissertation, it would be advantageous to delve into alternative classes
of TFDs, involving other QTFDs and higher-order TFDs. QTFDs may introduce fewer
cross-terms than the WVD, but may require a higher reconstruction algorithm requirement.
On the other hand, higher-order TFDs may require a different approach in the CS-AF area
due to the introduction of more cross-terms. The research direction could focus on finding
a substitute domain other than the AF since the mathematical by-product of higher-order
TFDs introduces artificial auto-terms, which are indistinguishable from true auto-terms in
the magnitude plot of the AF.

Another research direction could involve a thorough investigation of how to weight
the performance criteria used in this dissertation and combine them into one measure.
This could allow for the implementation of single-objective meta-heuristic optimization
algorithms, which have some advantages over multi-objective ones.

Finally, future research directions could focus on more application-oriented research
in EEG signal processing. Improvements in component estimation and reconstruction
obtained in this dissertation could be used in developing a classifier for detecting seizures
from background data without specialist intervention. This would require a thorough
investigation of existing approaches that are not based on TF analysis and their possible
connection with deep learning algorithms. This research direction is not limited to
the analysis of EEG seizure signals, but could include other EEG, seismic, radar, and
gravitational signals, among others.
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GDs
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Z(f) Fourier transform of z(t)
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ξkj linear membership function for the k-th solution of the j-th objec-
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ρ̂(t, f) ideal time-frequency distribution
ρ(t, f) generalized Quadratic time-frequency distribution
ρ(ad)(t, f) adaptive directional time-frequency distribution
ρ(lo)(t, f) locally adaptive directional time-frequency distribution
ρref(t, f) generalized Quadratic TFD of the local Rényi entropy reference

signal
σCW kernel parameter of the Choi-Williams distribution
σG width of the Gaussian function
ςz(t, f) soft-thresholding result
ς ′z(t, f) argument of the soft-thresholding operator
τ lag variable
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Υz (t, f) reconstructed time-frequency distribution
Υz (t, f) matrix representation of the reconstructed time-frequency distri-

bution
Υ̂z (t, f) optimal Υz (t, f)

Υℓ0
z (t, f) Υ̂z (t, f) obtained with the ℓ0 minimization

Υℓ1
z (t, f) Υ̂z (t, f) obtained with the ℓ1 minimization

ϕi(t) instantaneous phase of the i-th signal component
χ IF/GD-based measure calculated as the mean value of its compo-

nents
χat IF/GD-based measure component determining the auto-term

preservation quality of a TFD
χct IF/GD-based measure component determining the cross-term sup-

pression quality of a TFD
χr IF/GD-based measure component determining the auto-term res-

olution quality of a TFD
Ψ domain transformation matrix representing the 2D Fourier trans-

form
Ω database matrix consisted of AF samples from AzΓ (ν, τ) and

AzΛ (ν, τ)
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Appendix A

PSEUDOCODE OF
MULTI-OBJECTIVE
META-HEURISTIC ALGORITHMS

This appendix presents the pseudocode of the multi-objective meta-heuristic algorithms
used in this dissertation.

Algorithm 3 MOPSO Pseudocode
Require: w, c1, c2, mr, Npar, Npop and Tmax.
Ensure: a set of Pareto-optimal solutions that are non-dominated.
1: Randomly initialize the particle population.
2: Evaluate the objective functions of each particle.
3: Set each particle’s personal best position to its current position.
4: Identify the non-dominated solutions within the initial population and store them in

the Pareto archive.
5: while termination criterion not met do
6: Compute the updated velocity of a particle by considering its current velocity,

personal best position, and global best position with c1, c2 and w.
7: Calculate the position of a particle by considering its current position and velocity.
8: Evaluate the objective functions of the new position.
9: Update the personal best position.

10: If the objective function values of the new position are better than the personal
best position, update the personal best position.

11: Update the global best position.
12: If the objective function values of the new position are better than the global best

position, update the global best position with the non-dominated set of solutions.
13: Apply mutation to some particles with probability mr.
14: Evaluate the objective function of mutated particles.
15: Update personal best position for mutated particles.
16: Determine new non-dominated solutions and store them in the Pareto archive.
17: Increment current iteration.
18: end while
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Algorithm 4 NSGA-III Pseudocode
Require: pc, pm, mr, Npar, Npop and Tmax.
Ensure: a set of Pareto-optimal solutions that are non-dominated.
1: Initialize the population of individuals randomly.
2: Evaluate the objective functions of each individual.
3: Assign each individual to a rank based on dominance.
4: Calculate the probability of crossover and mutation for the next generation.
5: Identify the non-dominated solutions within the initial population and store them in

the Pareto archive.
6: while termination criterion not met do
7: Generate offspring population using crossover and mutation operators with proba-

bilities pc and pm, respectively.
8: Evaluate the objective functions of the offspring population.
9: Merge parent and offspring populations.

10: Assign each individual to a rank based on dominance.
11: Truncate the population to its original size using non-dominated sorting.
12: Determine new non-dominated solutions and store them in the Pareto archive.
13: Increment current iteration.
14: end while

Algorithm 5 MOWCA Pseudocode
Require: Nsr, dmax, Npar, Npop and Tmax.
Ensure: a set of Pareto-optimal solutions that are non-dominated.
1: Initialize the population of individuals randomly and get the starting streams, rivers,

and sea using Nsr.
2: Evaluate the objective functions of each stream.
3: Identify the non-dominated solutions within the initial population and store them in

the Pareto archive.
4: Determine the flow intensity for rivers and seas based on the computed crowding

distance values.
5: while termination criterion not met do
6: Compute the flow of streams into rivers and swap the positions of a river with a

stream that yields the best solution.
7: Compute the flow of rivers into the sea and exchange the positions of the sea with a

river that yields the best solution.
8: Check the evaporation condition and reduce the value of dmax.
9: Generate new feasible solutions for the population.

10: Evaluate the objective functions of new solutions, determine new non-dominated
solutions, and store them in the Pareto archive.

11: Compute the crowding distance value for each member of the Pareto archive and
eliminate the members with the lowest crowding distance value as required.

12: Calculate the crowding distance value for each member of the Pareto archive in
order to determine the selection of new seas and rivers.

13: Increment current iteration.
14: end while
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Appendix B

RESULTS OF THE HYPERVOLUME
TEST ON META-HEURISTIC
ALGORITHMS IN CHAPTER 4

This appendix presents the results of the hypervolume test performed on the Pareto
front obtained using the TwIST algorithm optimized with the MOPSO, NSGA-III, and
MOWCA meta-heuristic algorithms. Table B.1 reveals that the NSGA-III achieved the
overall best Pareto front among the considered algorithms.

Table B.1 Hypervolume values (best, average, worst) of the TwIST algorithm optimized
with objective functions using the MS or Nr measures for the signals zSINLFM(t) and
zLFM(t). Values in bold indicate the highest hypervolume values.

zSINLFM(t) zLFM(t)

Objectives MS Nr MS Nr

MSEt, MSEf MSEt, MSEf MSEt, MSEf MSEt, MSEf

53.8745 73.0021 88.1478 84.8888
MOPSO 52.8899 71.8987 87.7896 83.6987

51.1112 70.4587 85.7896 81.9873

54.8777 73.7778 89.9354 85.1254
NSGA-III 54.2589 73.1054 88.3698 84.3698

53.7896 72.2365 87.4587 83.5698

54.6587 74.1125 88.4587 84.8878
MOWCA 53.8987 73.3654 87.9887 84.0125

52.2222 72.1254 86.9878 83.0021
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Appendix C

RESULTS OF THE PARETO FRONT
IN CHAPTER 4

This appendix presents examples of the Pareto front obtained using the NSGA-III for
the signals zSINLFM(t) and zLFM(t), and arbitrarily chosen reconstruction algorithms in
Figures C.1 and C.2, respectively.

(a) (b)

(c) (d)

Figure C.1 Pareto fronts (blue circles) and ξbest (red triangle) for the signal zSINLFM(t)
and reconstruction algorithm: (a) SALSA; (b) YALL1; (c) SALSA; (d) TwIST.
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(a) (b)

(c) (d)

Figure C.2 Pareto fronts (blue circles) and ξbest (red triangle) for the signal zLFM(t) and
reconstruction algorithm: (a) SpaRSA; (b) YALL1; (c) SALSA; (d) SpaRSA.
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Appendix D

RESULTS OF THE OPTIMIZED
COMPRESSIVE SENSING AREAS IN
CHAPTER 5

This appendix presents the optimized CS-AF areas obtained from the reconstruction
algorithms for signals zPFM(t) and zgrav(t) (Figures D.1 and D.2).

(a) (b)

(c) (d)

Figure D.1 Clustered CS-AF area for the signal zPFM(t) and reconstruction algorithms:
(a) RTwIST; (b) TwIST; (c) SpaRSA; (d) SALSA. The black circles represent the samples
within the cluster, while the red circles indicate the outlier samples. The black rectangle
corresponds to the automatically selected N ′τ ×N ′ν area.
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(a) (b)

(c) (d)

Figure D.2 Clustered CS-AF area for the signal zgrav(t) and reconstruction algorithms:
(a) RTwIST; (b) TwIST; (c) SpaRSA; (d) SALSA. The black circles represent the samples
within the cluster, while the red circles indicate the outlier samples. The black rectangle
corresponds to the automatically selected N ′τ ×N ′ν area.
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Appendix E

RESULTS OF THE
RECONSTRUCTED TFDS
OPTIMIZED WITH THE
IF/GD-BASED CRITERIA IN
CHAPTER 6

This appendix presents the reconstructed TFDs obtained using the RTwIST (Figure E.1)
and TwIST, SpaRSA, SALSA, and YALL1 reconstruction algorithms (Figure E.2) for the
signals zSINLFM(t) and zLFM(t), whose parameters have been optimized with (χat, χr, χct)

objective functions.

(a) (b)

Figure E.1 Reconstructed TFDs optimized with (χat, χr, χct) objective functions for the
considered signals obtained using the RTwIST reconstruction algorithm: (a) zSINLFM(t);
(b) zLFM(t).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure E.2 Reconstructed TFDs optimized with (χat, χr, χct) objective functions for the
considered signals obtained using the following reconstruction algorithm: (a) zSINLFM(t),
TwIST; (b) zSINLFM(t), SpaRSA; (c) zSINLFM(t), SALSA; (d) zSINLFM(t), YALL1;
(e) zLFM(t), TwIST; (f) zLFM(t), SpaRSA; (g) zLFM(t), SALSA; (h) zLFM(t), YALL1.
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Appendix F

RESULTS OF THE OPTIMIZED
COMPRESSIVE SENSING AREAS IN
CHAPTER 6

This appendix presents the optimized CS-AF areas obtained using the MRTwIST
algorithm for the signals zSINLFM(t), zLFM(t), zmix(t), zgrav(t) in Figure F.1.

(a) (b)

(c) (d)

Figure F.1 AFs with highlighted CS-AF areas in yellow obtained using the MRTwIST
algorithm for the signal: (a) zSINLFM(t); (b) zLFM(t); (c) zmix(t); (d) zgrav(t).
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