
Balancing Performance and Interpretability in Medical
Image Analysis: Case study of Osteopenia

Mikulić, Mateo

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Rijeka, Faculty of Engineering / Sveučilište u Rijeci, Tehnički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:190:026370

Rights / Prava: Attribution 4.0 International / Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2024-11-27

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of 
Engineering

https://urn.nsk.hr/urn:nbn:hr:190:026370
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://repository.riteh.uniri.hr
https://repository.riteh.uniri.hr
https://zir.nsk.hr/islandora/object/riteh:4508
https://www.unirepository.svkri.uniri.hr/islandora/object/riteh:4508
https://dabar.srce.hr/islandora/object/riteh:4508


 

 

 
 

SVEUČILIŠTE U RIJECI 

TEHNIČKI FAKULTET 

Diplomski sveučilišni studij računarstva 

 

 

 

 

 

Diplomski rad 

UTJECAJ ZBUNJUJUĆIH VARIJABLI NA 

INTERPRETABILNOST I PERFORMANSE MODELA 

DUBOKOG UČENJA NA STUDIJI SLUČAJA OSTEOPENIJE  

 

 

 

 

 

 

 

Rijeka, srpanj 2024.               Mateo Mikulić 

                                                                                                               0069087917 



 

 

 
 

SVEUČILIŠTE U RIJECI 

TEHNIČKI FAKULTET 

Diplomski sveučilišni studij računarstva 

 

 

 

 

 

Diplomski rad 

UTJECAJ ZBUNJUJUĆIH VARIJABLI NA 

INTERPRETABILNOST I PERFORMANSE MODELA 

DUBOKOG UČENJA NA STUDIJI SLUČAJA OSTEOPENIJE   

Mentor: Prof. dr. sc. Ivan Štajduhar 

Komentor: dr. sc. Franko Hržić 

 

 

 

 

 

Rijeka, srpanj 2024.               Mateo Mikulić 

                                                                                                               0069087917 

 



SVEUČILIŠTE U RIJECI
TEHNIČKI FAKULTET
POVJERENSTVO ZA DIPLOMSKE ISPITE

Rijeka, 12.03.2024.

Zavod: Zavod za računarstvo

Predmet: Strojno učenje

ZADATAK ZA DIPLOMSKI RAD

Pristupnik: Mateo Mikulić (0069087917)

Studij: Sveučilišni diplomski studij računarstva (1400)

Modul: Programsko inženjerstvo (1441)

Zadatak: Utjecaj zbunjujućih varijabli na interpretabilnost i performanse modela
dubokog učenja na studiji slučaja osteopenije / Impact of confounding
variables on the interpretability and performance of deep learning models
on the case study of osteopenia

Opis zadatka:

Razmotriti metode dubokog učenja korištene za detekciju bolesti kostiju. Za studij Osteopenije
potrebno je pronaći i sakupiti skup podataka te ga opisati. U skupu podataka potrebno je detektirati
zbunjujuće varijable te kroz osmišljeni test ispitati interpretabilnost i performanse odabranih
modela dubokog učenja kada su modeli obučeni na skupu podataka sa zamaskiranim zbunjujućim
varijablama iskupu podataka bez maskiranih zbunjujućih varijabli. Interpretabilnost modela
potrebno je verificirati s medicinskim stručnjacima.

Rad mora biti napisan prema Uputama za pisanja diplomskih / završnih radova koje su objavljene na
mrežnim stranicama studija.

Zadatak uručen pristupniku: 20.03.2024.

Predsjednik povjerenstva za

Mentor: diplomski ispit:

prof. dr. sc. Ivan Štajduhar prof. dr. sc. Miroslav Joler

Komentor:

dr. sc. Franko Hržić



SVEUČILIŠTE U RIJECI 
TEHNIČKI FAKULTET 
Zavod za računarstvo 
 

dr. sc. Franko Hržić 
prof. dr. sc. Ivan Štajduhar 
 
 
Rijeka, 3.7.2024. 
 
 
Predmet:  Izvješće o sadržaju rada, obimu i složenosti istraživanja te 

doprinosu studenta 
   
 
 
 Znanstveni rad naslova „Balancing Performance and Interpretability in 
Medical Image Analysis: Case study of Osteopenia” prihvaćen je za 
objavljivanje u časopisu „Journal of Imaging Informatics in Medicine”,  
rangiranom u drugoj kvartili (Q2, IF 2.9) prema indeksnoj bazi Web Of 
Science, u kategoriji „Radiology, nuclear medicine & medical imaging”. 
Student Mateo Mikulić je prvi autor na navedenom radu, dok je njegov 
komentor dr. sc. Franko Hržić dopisni autor. 
 
 Objavljeni rad rezultat je jednogodišnje suradnje između Medicinskog 
Sveučilišta u Grazu, Zavoda za dječju radiologiju, i Tehničkog fakulteta 
Sveučilišta u Rijeci, tijekom koje je Mateo Mikulić ispitao vrijednu hipotezu o 
relevantnosti maskiranja zbunjujućih varijabli na konkretnoj studiji 
osteopenije. Student je samostalno proveo istraživanje te ponudio niz 
potencijalnih rješenja od kojih je uz pomoć mentora i komentora te savjeta 
radiologa izabirao ona koja su polučila najbolje rezultate. Temeljni izvor 
podataka za istraživanje jest javno dostupan skup podataka, GRAZPEDWRI-
DX, koji obuhvaća više od 20,000 radiograma zapešća. 
 

Naslov formalnog zadatka za diplomski rad studenta na hrvatskom 
jeziku glasi: Utjecaj zbunjujućih varijabli na interpretabilnost i performanse 
modela dubokog učenja na studiji slučaja osteopenije. Naslov znanstvenog 
rada preveden na hrvatski jezik glasi: Balansiranje izvedbe i interpretabilnosti 
u analizi medicinske slike: studija slučaja osteopenije. Znanstveni rad 
sadržajno u potpunosti odgovara zadatku diplomskom rada. 

 
Kao glavni cilj diplomskog rada navodi se ispitivanje zbunjujućih 

varijabli na performanse modela strojnoga učenja na slučaju osteopenije gdje 
će se konačne performanse usporediti i vrednovati od strane medicinskih 
stručnjaka. Svrha istraživanja je ponuditi novi pogled na ravnotežu između 
performansi modela mjerenih klasičnim metrikama, te rangiranja modela od 
strane radiologa koji u obzir uzimaju interpretabilnost modela s obzirom na 
fokus modela tijekom zaključivanja. Kako bi ostvario navedeni cilj, student je 
morao izvršiti sljedeće: 

• Filtrirati skup podataka te dodatno označiti lažne maske koje su 
detektirane kao jedno od rješenja za pretjeranu prilagodbu modela. 



• U suradnji s radiolozima detektirati zbunjujuće varijable na 
medicinskom slučaju osteopenije. 

• Odabrati i istrenirati dovoljan broj modela dubokog učenja kako bi 
izvedeni zaključci bili pravovaljani i statistički signifikantni. 

• Implementirati metodu GradCAM kao alat za interpretabilnost modela 
dubokog učenja. 

• Osmisliti i provesti test u kojem radiolozi validiraju istrenirane modele. 
• Izvesti zaključke o provedenom testiranju. 
• Dokumentirati metodologiju, rezultate i opažanja. 

  
Na temelju navedenoga, mišljenja smo da je student Mateo Mikulić 

sustavno proveo potrebne aktivnosti i kvalitetno obradio temu zadanu za 
diplomski rad. Uzimajući dodatno u obzir njegovu proaktivnost i ažurnost 
tijekom pripreme znanstvenog rada na engleskom jeziku, kao i složenost 
materije, ne nalazimo razloga za odbacivanje njegove molbe. Slijedom 
navedenog, suglasni smo s priznavanjem predmetnog znanstvenog 
članka kao njegovog diplomskog rada. 
 
 
 
 
 

Franko Hržić 
 

________________ 
 
 

Ivan Štajduhar 
 

________________ 
 

 



 

 

 
 

IZJAVA O SAMOSTALNOJ IZRADI RADA 

 

Izjavljujem da sam samostalno izradio diplomski rad.  

 

 

 

 

U Rijeci, 9. srpnja, 2024.        ______________________ 

                         Mateo Mikulić 

  



ZAHVALA 

 

Zahvaljujem dr. sc. Franku Hržiću na trudu i vremenu koje je uložio u mentorstvo, kao i na 

velikoj podršci i prijateljskim savjetima. Također, zahvaljujem obitelji i Martini na ogromnoj 

podršci koju su mi pružili tijekom studija. Hvala svima koji su sudjelovali u postupku izrade 

ovog znanstvenog rada. 



   

 

  1 

 

Balancing Performance and Interpretability in Medical Image 

Analysis: Case study of Osteopenia 
Mateo Mikulića, Dominik Vičevića, Eszter Nagyb, Mateja Napravnika,c, Ivan Štajduhara,c, Sebastian Tschaunerb, 

and Franko Hržića,c,* 

 

a) University of Rijeka, Faculty of Engineering, Department of Computer Engineering, Vukovarska 58, Rijeka 

51000, Croatia  

b) Medical University of Graz, Department of Radiology, Division of Pediatric Radiology, Graz  8036, Austria 

c) University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Radmile Matejčić 2, Rijeka 51000, 

Croatia 

*) Corresponding author: Franko Hržić (e-mail: franko.hrzic@uniri.hr, tel: +385 51 505725) 

Orcids: Eszter Nagy (0000-0001-7080-5996), Mateja Napravnik (0000-0002-3271-3342), Ivan Štajduhar (0000-

0003-4758-7972), Sebastian Tschauner (0000-0002-7873-9839), Franko Hržić (0000-0003-1513-0337) 

Abstract 
Multiple studies within the medical field have highlighted the remarkable effectiveness of using convolutional 

neural networks for predicting medical conditions, sometimes even surpassing that of medical professionals. 

Despite their great performance, convolutional neural networks operate as black boxes, potentially arriving at 

correct conclusions for incorrect reasons or areas of focus. Our work explores the possibility of mitigating this 

phenomenon by identifying and occluding confounding variables within images. Specifically, we focused on the 

prediction of osteopenia, a serious medical condition, using the publicly available GRAZPEDWRI-DX dataset. 

After detection of the confounding variables in the dataset, we generated masks that occlude regions of images 

associated with those variables. By doing so, models were forced to focus on different parts of the images for 

classification. Model evaluation using F1-score, precision, and recall showed that models trained on non-occluded 

images typically outperformed models trained on occluded images. However, a test where radiologists had to 

choose a model based on the focused regions extracted by the GRAD-CAM method showcased different 

outcomes. The radiologists' preference shifted towards models trained on the occluded images. These results 

suggest that while occluding confounding variables may degrade model performance, it enhances interpretability, 

providing more reliable insights into the reasoning behind predictions. The code to repeat our experiment is 

available on the following link: https://github.com/mikulicmateo/osteopenia. 

Keywords 
Artificial Intelligence, Bias Mitigation, Image Processing, Interpretable Decision Making, Occlusion Learning, 

Osteopenia 
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Introduction 
Osteopenia is a medical condition marked by suboptimal bone mass density (BMD). As per the World Health 

Organisation (WHO), osteopenia is characterised by a BMD with values ranging from 1.0 to 2.5 standard deviation 

below that of a "young normal adult" (T-score) [1]. Osteopenia is a medical condition that precedes osteoporosis, 

a more well-known and severe condition characterised by a T-score of ≤-2.5 [2-4]. Even though the risk of fracture 

is higher in individuals with osteoporosis compared to those with osteopenia, the considerably larger number of 

individuals with osteopenia signifies that this group constitutes a significant proportion of the population 

susceptible to fractures [5]. According to a study conducted by Pasco J. A. et al. [6], patients with prevalent 

fracture and osteopenia were found to have the same, if not greater, risk of subsequent fracture as patients with 

osteoporosis. Typical fractures in the hip, spine, and various non-vertebral areas are linked to elevated morbidity 

and mortality. The risk is more pronounced in the fracture's immediate aftermath than in later stages [7, 8]. This 

highlights the severity of osteopenia and the need for fast and effective detection and treatment. Convolutional 

neural networks (CNNs) have proven to be highly effective in medical imaging tasks, including fracture detection 

[9] and tumour detection [10, 11] in radiology images. B. Zhang et al. [12] conducted a study using X-ray images 

of the lumbar spine to train CNN models for predicting osteoporosis and osteopenia. They concluded that their 

deep learning model shows promising results in clinical tasks where BMD screening has not been performed, and 

X-ray images are readily available. According to a study [13] that utilised CT scan images, deep-learning models 

were found to accurately classify between "normal" osteopenia and osteoporosis, as well as predict BMD values. 

In a study [14] where researchers used X-ray chest images to train a deep-learning model, namely ResNet50, 

results were inferior compared to similar studies when classifying osteoporosis. Researchers also insisted that 

their model was not ready for clinical application and needed further improvement. The authors stressed that there 

were no studies to compare classification results of "normal" and osteopenia classes. The researchers in a 

study[15] divided their data into only two classes, "osteoporosis" and "non-osteoporosis," because they found it 

hard to differentiate osteopenia and osteoporosis in classification tasks. 

For machine learning (ML) models to be successfully integrated into clinical practice, they must have 

high reliability and minimal errors. However, to earn the trust of medical practitioners, it is crucial to ensure that 

the models are interpretable, making it possible to understand the decisions they make [16]. Interpretable ML 

models make understanding and explaining the decision-making behind diagnoses and treatment 

recommendations possible [17,18]. Hence, interpretability is crucial in building trust and transparency between 

medical practitioners who rely on ML models and patients [19]. When medical practitioners can understand the 

decisions made by these models, it helps to prevent errors and raise their trust in them. Due to the difficulty of 

interpreting their decision-making process, neural networks are often called "black-box" ML models [20]. This is 

why a tremendous scientific effort has been put into enhancing the interpretability of both CNNs, and neural 

networks in general [21]. One such method is Gradient-weighted Class Activation Mapping (GradCAM) [22], 

which helps to visualise the decision-making process of a CNN by highlighting the regions of an input image that 

contribute the most towards the model's predictions. 

However, it has been shown that deep learning models can pick up on unintended or unhelpful patterns 

in the data used for model training. In the literature, when a ML model learns to make predictions based on features 

other than the target feature, it is often referred to as confounding bias or confounding variables [23-25]. Zech et 

al. [23] found that pneumonia detection in chest radiographs was affected by internal hospital-specific biases. 

Also, laterality markings in radiographs were found to have mild negative effects. Based on research [26], CNNs 

are susceptible to ubiquitous confounding image features, like radiograph labels, when trained to detect bone 

abnormalities. The authors recommend covering these kinds of features when training a CNN model. According 

to a study [27], researchers have discovered that hidden stratification can lead to more than 20% performance 

differences in clinically important subsets. This can occur in unidentified imaging subsets with low prevalence, 

low label quality, subtle distinguishing features, or spurious correlates. One of the notable observations was in the 

CXR14 dataset [28], where a significant number of X-rays in the pneumothorax class revealed the existence of 

chest drains. It is essential to note that chest drains are not a causal factor in diagnosing pneumothorax. Moreover, 

the presence of chest drains indicates that these pneumothorax cases have already been treated and pose almost 

no risk of harm related to pneumothorax. 

In the context of X-ray image-based osteopenia classification, the issue of confounding bias may arise 

due to factors other than the radiograph labels themselves. These factors may include bone abnormalities such as 

periosteal reaction, fractures, and metal insertions (used to aid in proper bone growth after significant fractures). 

Given the mentioned potential confounding variables, we opted to use GRAZPEDWRI-DX [29], a thoroughly 

documented public dataset that suits our research cause. 
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The hypothesis we wanted to research is that the occlusion of confounding variables' features would 

improve the models' performance, similar to the covering mentioned above [26]. We also speculate that adding 

an approach where we occlude "dummy" confounding variable features (randomly masked areas on the bones in 

the image) can further improve model interpretability. To confirm the stated hypotheses, a test with two 

radiologists was specifically tailored in addition to the classical ML algorithm evaluation. During the test, the 

radiologists were presented with an original X-ray image and X-ray images covered with a GradCAM heatmap 

by a model trained with occluded, and without occluded features. The radiologists must select a better heatmap, 

if there is any difference in the quality of heatmaps produced by the models, or mark them as "equal" if there is 

no difference in quality. This whole process is summarised in Fig. 1. 

Materials and Methods 
This section introduces the publicly available dataset GRAZPEDWRI-DX [29] and specifies the utilized modes 

and confounding variables required for reproducing our research. The necessary code, models, and demonstrative 

examples are available at the following GitHub repository https://github.com/mikulicmateo/osteopenia. 

Utilised dataset: GRAZPEDWRI-DX 

The chosen data source is GRAZPEDWRI-DX, a public, well-documented dataset validated by three radiologists 

with between 6 and 29 years of experience in musculoskeletal radiology [29]. The GRAZPEDWRI-DX dataset 

consists of annotated paediatric trauma wrist radiographs of 6,091 patients. 10,643 total studies (20,327 images) 

are made available, typically covering postero-anterior and lateral projections. The dataset is annotated with 

74,459 image tags, and features 67,771 labelled objects [29]. We further adapted this dataset by only considering 

patients who have had osteopenia at one point during the study, which reduces the number of patients to 1,051. 

We also excluded images of cast-covered wrists, as the cast can further hinder the detection of osteopenia. From 

now on, we will refer to this adapted dataset as the filtered dataset. Fig. 2 shows the distribution of osteopenia 

within the filtered dataset. 

Fig. 3 shows the Spearman correlation coefficients and distribution of correlated labels and potentially 

confounding variables in the filtered dataset. The Subfigure 3a shows the percentage of data which includes that 

label, and the Subfigure 3b shows the Spearman correlation coefficients of the respective label in relation to the 

presence of osteopenia. 

The initial exam label denotes whether the radiograph is part of the patient's initial study. With the 

Spearman correlation coefficient of -0.82, a very strong negative correlation is observed between the initial exam 

label and the presence of osteopenia; thus, if a radiograph is part of the initial exam, it is very likely that osteopenia 

is not present. The study number label denotes the number of studies done for the patient in question and increases 

for each subsequent study. The Spearman correlation coefficient of 0.44 shows a moderate positive correlation 

between the study number label and the presence of osteopenia. This means that as the study number increases, 

the presence of osteopenia becomes more likely. 

Based on the information above, osteopenia is not likely to be present in the initial exam but is more 

likely to be observed during subsequent exams of the same patient. From this, we can conclude that osteopenia 

arises more frequently after trauma. 

The latter three labels (fracture, metal, periosteal reaction) in Fig. 3 were identified as potentially 

confounding variables. These variables, if present, could potentially lead to wrong classifications since their 

presence alone may decide the model's output. The fracture variable denotes if fractures are present on the 

radiograph, the metal variable denotes any internal or external metal implants, and the periosteal reaction variable 

denotes if a periosteal reaction is present. Periosteal reaction results when cortical bone reacts to insults [30] (in 

this case, trauma). Initially, the models were trained without occlusions or image augmentations. Afterwards, 

these models were trained on images with occluded fractures. We identified the fractures as a potentially 

confounding variable based on the fracture labels' prevalence in the dataset and the aforementioned tests. The 

metal label, closely associated with the fracture label, is present exclusively in studies after the occurrence of a 

fracture. Consequently, it was also recognised as a potentially confounding variable. Lastly, the periosteal reaction 

label was recognised as a potentially confounding variable because of its close link to fractures (as periosteal 

reaction only occurs after trauma), and because of its moderate positive correlation to the presence of osteopenia. 

In earlier testing of models using GradCAM heatmaps, we noticed that models focus on the text present 

in the image (every radiograph contains the uppercase letter 'R' or 'L'). This coincides with research [26]. Because 

of the above reasons, text was also included as a confounding variable. 

https://github.com/mikulicmateo/osteopenia
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All mentioned confounding variables are annotated in the GRAZPEDWRI-DX dataset with their spatial 

positioning coordinates on the radiograph. Using this, we decided to occlude these variables by masking the area 

around them. The exact occlusion process is described in the following subsection. 

Occlusion of confounding variables 

Since not all radiographs contain the fracture, mask, and periosteal reaction variables, we artificially added 

"dummy" masks. Dummy masks were annotated by hand but in a random fashion. Each image was manually 

inspected, and a hand-drawn mask was added to a random location in each radiograph. The only prerequisite to 

adding these dummy masks was that they at least partially cover bones and/or bone parts. While adding these 

masks, special attention was given to their shape to look as similar as possible to the real annotations for the 

respective label. This was done to ensure no potential bias regarding the annotation mask shape. 

For all the images in the filtered dataset that did not have some or all confounding variables, dummy 

occlusions were manually added so that each image could have every type of variable occlusion. These occlusions 

were the same shape as the real occlusions of that confounding variable, not to give away their validity. An 

example of all types of occlusion can be seen in Fig. 4. 

Since it is undesirable to have all of the feature occlusions present on every X-ray image, their presence 

was decided randomly. The probability of application of any particular occlusion was derived using grid search. 

These probabilities can be found in Table 1. As a result, any single X-ray image could have any combination of 

different occluded features present, and these combinations could differ between epochs. 

Table 1 Probabilities for applying occlusion 

Confounding variable Mask shape Probability of application 

Text Rectangle 50% 

Fracture Rectangle 33% 

Metal Rectangle 50% 

Periosteal reaction Polygon 25.5% 

 

Utilised models 

Although CNN models have led to remarkable progress in computer vision tasks, their results are often difficult 

to interpret. The interpretability of models' outcomes is essential to effectively incorporate ML into medicine. It 

is necessary to identify and correct avoidable errors and to alleviate any concerns patients may have. For example, 

confounding bias would be difficult to detect without interpretability. GradCAM, a technique developed to 

produce "visual explanations" for decisions made by CNNs, is very helpful in identifying such bias in model 

learning [22]. When identified, it is factored into data preparation and augmentation. GradCAM is inspired by 

Class Activation Mapping (CAM) [31], which uses global average pooling and fully connected layers to produce 

a binary heatmap. GradCAM is a generalisation of that technique, does not alter the architecture of a model, and 

does not require re-training of the model. GradCAM works by computing the gradient of the predicted class score 

for the feature maps in a CNN. After global average pooling, the weighted sum of feature maps is obtained, 

emphasising important regions. A ReLU activation is applied to focus on positive contributions, and the resulting 

heatmap is upsampled to the input image size. Selvaraju et al. [22] show how GradCAM identifies biases in 

datasets. Additionally, they conducted a study where they found that GradCAM helps humans establish trust with 

ML models and helps even untrained users recognise a more robust performing model from a weaker one, even 

when predictions are equal. 

For the osteopenia classification task, we utilised a range of CNN architectures with varying levels of 

complexity. These CNNs were selected based on their ability to effectively learn features from images and perform 

classification tasks with high accuracy. The selected models are as follows: 

• As the first model we decided to test a simpler, yet very relevant, CNN architecture, VGG [32]. VGG 

advanced the state-of-the-art by using small 3x3 convolution filters and deeper networks. Such 

architecture enabled the model to capture more information while maintaining fewer parameters than 

models with larger filters but fewer layers. Earlier layers capture low-level features, and deeper layers 

capture higher-level concepts like textures. The architecture can be deepened if needed, which is great 

for research. VGG19 architecture was trained. 
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• As networks get deeper, the problem of vanishing and exploding gradients occurs more frequently, as 

well as the degradation problem [33-35]. Researchers have found that introducing skip connections helps 

with tackling these problems. Residual Networks (ResNet) [36] were the first architecture to introduce 

skip connections. Skip connections bypass layers of a neural network to make it easier for the network 

to learn identity mappings. ResNet34 and ResNet50 architectures were trained.  

• Unlike summation used in ResNet architectures, Densely Connected CNNs (DenseNets) [37] utilise skip 

connections with concatenation, where each layer receives feature maps of all previous layers to improve 

information flow between layers further. DenseNet169 and DenseNet201 architectures were trained.  

All employed models were pretrained with adjusted classifier layers to suit our classification objective. 

Transfer learning was used for faster convergence. Models were trained using the progressive unfreezing method 

in four stages with equal training conditions. The optimiser used was AdamW, with a learning rate of 1.65e-5. 

The learning rate was chosen using random grid search, where the tested range of values was [1e-4, 3e-6]. The 

loss function used was binary cross entropy. 

Data augmentations  

Image values were normalised to the distribution of the ImageNet dataset [38] on which all utilised models were 

pretrained. Additionally, some standard image augmentation techniques were used to artificially increase dataset 

size, thus preventing models from overfitting:  

• Rotation angle: Each image in the dataset is accompanied by an annotation of a two-point line delineating 

the primary axis of the forearm bones. Given that X-ray images are often misaligned, we leveraged this 

axis annotation to centre the images along the edges. Subsequently, a random rotation of up to 20 degrees 

in either direction was applied with a probability of 0.5 to the centred image. The purpose of this 

augmentation was to mitigate the inherent bias introduced by variations in the positioning of the forearm 

during X-ray imaging. Since multiple images of the same individual were available in the dataset, this 

approach effectively reduced the confounding effects of inter-subject variability. 

• Colour augmentations: A random factor within the range of 0.8 to 1.2 was used to jitter the brightness, 

while a range of 0.8 to 1.3 was used to jitter the contrast. The hue and saturation were adjusted by a 

random factor uniformly chosen between [-0.5,0.5].  

• Horizontal flip was applied with a probability factor of 0.5. 

Employed models were first trained using only the augmentations mentioned above. After this, in 

addition to the described augmentation, the models were trained using the hypothesised method: occlusion of 

confounding variables. 

Radiologists' test 

To test if the occlusion of confounding variables would enhance the models' performance, a blind test was carried 

out with the participation of two experienced radiologists. During the test, the radiologists were presented with 

three images arranged side-by-side: (i) the original, unchanged radiograph, (ii) the same X-ray image covered 

with a GradCAM heatmap of a model trained without occluded features, and (iii) also the same radiograph, but 

this time covered with a GradCAM heatmap of a model trained with feature occlusion. The radiologists were 

required to select the image depicting osteopenia most accurately. This test was conducted on 50 X-ray images 

from the test subset, all with osteopenia present. An example of the test query for the radiologists is shown in Fig. 

5. 

Results 

Each model underwent twenty training rounds, with ten rounds conducted without occlusion of confounding 

variables and the other ten rounds with occluded confounding variables. Table 2 showcases the best result of each 

version of the model on the test subset. Table 3 shows the average result for each model when trained with and 

without confounding variables occlusion for ten rounds. The configuration of Table 3 is the same as Table 2, with 

the only difference being that Table 3 has the averaged results along with the standard deviation for all rounds of 

training of each version. All averaged results were statistically tested for significance with a two-tailed paired t-

test. 
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Table 2 Results of best-performing models on the test subset. The left side of the table shows results for the model trained 

without occluded confounding variables. The right side of the table is reserved for the results of models trained with 

occluded confounding variables. Each column describes values for one performance metric. The metrics described are 

accuracy, precision, recall, and F1-score, respectively. Bolded values represent better performance 

 Not occluded Occluded 

Model Accuracy Precision Recall F1-

score 

Accuracy Precision Recall F1-

score 

VGG19 91.18% 90.00% 97.10% 93.41% 91.71% 91.34% 96.27% 93.74% 

ResNet34 92.78% 92.46% 96.68% 94.52% 91.18% 90.31% 96.68% 93.39% 

ResNet50 89.04% 88.46% 95.44% 91.82% 88.24% 88.63% 93.78% 91.13% 

DenseNet169 93.05% 92.16% 97.51% 94.76% 91.18% 88.81% 98.76% 93.52% 

DenseNet201 90.64% 89.62% 96.68% 93.01% 90.91% 89.06% 97.93% 93.28% 

 

 

Table 4 depicts the outcomes of the blind radiologists' test. After the blind-test phase, the judgement of 

radiologists regarding the superior classifier was considered the ground truth for subsequent statistical analysis 

using the McNemar test. The McNemar test was used as a robust analytical instrument to ascertain the statistical 

meaningfulness of the observed differences in the model's performance [39,49]. Table 5 represents the p-values 

of the McNemar statistical test. 

 

Table 3  Averaged results (10 trainings) on the test subset. Values where the difference is statistically significant (t-test, p-

value < 0.05) are marked in bold 

 Model Accuracy Precision Recall F1-score 

Not 

occluded 

VGG19 90.05 ± 0.73% 90.04 ± 0.95% 95.10 ± 0.89% 92.50 ± 0.54% 

ResNet34 90.99 ± 0.98% 89.54 ± 1.36% 97.43 ± 1.42% 93.31 ± 0.72% 

ResNet50 88.00 ± 0.65% 89.29 ± 1.16% 92.49 ± 1.63% 90.85 ± 0.53% 

DenseNet169 91.42 ± 0.75% 90.39 ± 1.08% 97.01 ± 0.85% 93.58 ± 0.54% 

DenseNet201 89.57 ± 0.52% 88.67 ± 1.16% 96.14 ± 1.37% 92.24 ± 0.37% 

Occluded VGG19 90.72 ± 0.69% 90.03 ± 0.86% 96.27 ± 0.90% 93.04 ± 0.51% 

ResNet34 89.55 ± 1.28% 87.29 ± 1.79% 98.13 ± 1.33% 92.37 ± 0.86% 

ResNet50 86.93 ± 1.23% 87.60 ± 1.43% 92.90 ± 1.91% 90.15 ± 0.95% 

DenseNet169 89.84 ± 1.08% 89.29 ± 1.02% 95.77 ± 3.13% 92.37 ± 1.01% 

DenseNet201 89.39 ± 0.91% 87.46 ± 1.38% 97.55 ± 1.18% 92.22 ± 0.62% 

 

 

Table 4 Results of radiologists’ tests 

 DenseNet169 VGG19 

 Not 

occluded 

better 

Occluded 

better 

Equal Not 

occluded 

better 

Occluded 

better 

Equal 

Radiologist 

1 

22% 

(11 images) 

58%  

(29 images) 

20%  

(10 images) 

4%  

(2 images) 

66% 

 (33 images) 

30%  

(15 images) 

Radiologist 

2 

18%  

(9 images) 

60%  

(30 images) 

22%  

(11 images) 

14%  

(7 images) 

74%  

(37 images) 

12%  

(6 images) 
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Table 5 McNemar test results. The rows represents radiologists and the columns depict evaluated models. For example, the 

first row and the first column mark the p-value of the McNemar test for “Radiologist 1” and the DenseNet169 model. The 

tested null-hypothesis is “occluded versus non-occluded model performance is insignificant.” 

 DenseNet169 p-value VGG19 p-value 

Radiologist 1 0.00443 1.606 ∙ 10-7 

Radiologist 2 0.00077 6.106 ∙ 10-6 

 

Discussion 
From Table 2, we can see that measured performance metrics favour the model version without the occlusions in 

cases of both versions of ResNet and DenseNet169. VGG19 and DenseNet201, however, perform better when 

trained with occluded confounding variables. In Table 3, similar trends follow, except for DenseNet201, whose 

average performance leans on the side where confounding variables were not occluded. Our study aimed to 

explore the hypothesis that the model would exhibit improvement through training with occluded confounding 

variables. To achieve this, we identified the models that demonstrated the highest accuracy for both "occluded" 

and "not occluded" training scenarios. Specifically, DenseNet169 achieved the highest F1 score in the "not 

occluded" training category. In contrast, VGG19 performed the best in the "occluded" category. 

As it was shown that the model could learn the right choice for the wrong reason, this means that the F1 

score could not be considered as the sole metric for model performance. To add context to the F1 score, we opted 

for the visualisation tool GradCAM. The GradCAM technique superimposes heatmaps on the original X-ray 

images to depict the models' areas of focus. Examples of the GradCAM heatmaps can be seen in Fig. 6. 

  From GradCAM heatmaps, it is clear that the models with occluded confounding variables focus more 

on the important regions of bones in the radiographs, which are closer to what a human might focus on. To test 

this further, we performed a blind test with two radiologists. In Table 4, we see that the radiologists consider the 

models with occluded training type to be the better classifiers in most cases. As per the assessment made by the 

radiologists, the DenseNet model trained with occluded features was deemed superior in 58% and 60% of cases 

respectively for each radiologist. The VGG19 model trained with occluded features outperformed its counterpart 

in 66% and 74% of the cases. 

The results of the blind test (images with the superior classifier) were used as ground truth for subsequent 

statistical analysis using the McNemar test. The null-hypothesis being tested was that the difference between 

model predictions is not statistically significant. Table 5 shows the results of said test. Since the p-values of the 

McNemar test for both models are less than 0.05, we reject the null-hypothesis and conclude that the difference 

in the performance of the models is significant. 

In summary, while common ML model evaluation metrics may indicate better performance in non-

occluded models, models with explainable predictions are deemed more valuable from the perspective of medical 

practitioners (in this case, radiologists). The case study presented herein on the classification of osteopenia 

underscores the importance of integrating medical domain knowledge into the development of ML models. This 

highlights the need for close collaboration with medical professionals. Moreover, training models with occlusions 

may be helpful in other domains where confounding variables pose a challenge. An important observation to note 

is that the accuracy and F1-score of all models in this study (both trained with and without occlusion) surpass the 

results of all models presented in a paper [41] that used the same GRAZPEDWRI-DX dataset to classify 

osteopenia. 

Conclusions 
This study tested the hypothesis that the occlusion of confounding variables' features enhances predictive 

models' performance. On the one hand, the conventional metrics favoured models trained on non-occluded data 

over models trained on occluded data. On the other hand, radiologists disagreed with that conclusion. This case 

study emphasises the importance of incorporating medical expertise into ML algorithms. It highlights the need 

for collaboration between medical professionals and ML specialists. As a potential avenue for further research, 

additional experiments involving models with occluded confounding variables within alternative problem 

domains should be conducted. This would help better understand the potential impact of training models with 

occluded confounding variables on their performance. 
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Figures 
All figures were made using: matplotlib, GIMP, Inkscape and diagrams.net. 

 

Fig. 1 An overview of the conducted research process. The research can generally be divided into two parts: detection of 

confounding variables and their evaluation 

 

Fig. 2 Distribution of osteopenia presence in the filtered dataset 
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Fig. 3a Label distribution in the filtered dataset 

 
Fig. 3b The values of Spearman correlation coefficients of labels in the filtered dataset 

Fig. 3 Relations between labels in the filtered dataset 
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Fig. 4 A mosaic of proposed occlusion masks. Even for examples that did not have a variable present, a "dummy" mask was 

added nonetheless 
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Fig. 5 An illustration of the test instance presented to the radiologists during a blind test. The X-ray image contains the letter 

'L' which indicates the left hand. Upon examining the heatmaps, it is evident that one of the models exhibits greater focus on 

the letter 'L' 

 

Fig. 6 GradCAM heatmaps of the best-performing instances of all trained models on the same X-ray image for each training 

type. Notably, the models trained with occluded confounding features exhibit a lower focus on the fractured area of the bone 

compared to their counterparts trained with unoccluded confounding features. Additionally, the VGG19 model displays an 

improved heatmap in the area of the letter 'L'  

 



 

 

 
 

PROŠIRENI SAŽETAK 

Brojne studije u medicini su istaknule izvanredne rezultate konvolucijskih neuronskih mreža u 

predviđanju medicinskih stanja pacijenata, a ponekad čak nadmašujući medicinske stručnjake. 

Unatoč njihovim izvanrednim performansama, konvolucijske neuronske mreže često se 

percipiraju kao algoritmi "crne kutije" (engl. black box algorithm), što znači da nije jasno koje 

značajke pridonose određenom predviđanju. Zbog principa "crne kutije" postoji pitanje dolaze li 

konvolucijske neuronske mreže do točnih zaključaka iz pogrešnih razloga i fokusiraju li se na 

pogrešna područja. Postoji mogućnost da slika sadrži varijable koje utječu na predviđanje, a nisu 

relevantne za to predviđanje, već se slučajno pojavljuju zajedno s relevantnim varijablama. Te 

varijable se nazivaju zbunjujuće varijable. Primjerice, kod smanjene gustoće kostiju česte su 

frakture kostiju, ali se fraktura ne mora dogoditi zbog smanjene gustoće kostiju – prema tome, ako 

želimo klasificirati smanjenu gustoću kostiju, fraktura predstavlja zbunjujuću varijablu. 

Ovaj rad istražuje mogućnost ublažavanja utjecaja zbunjujućih varijabli unutar slika na 

predviđanje konvolucijskih neuronskih mreža na način da se zbunjujuće varijable identificiraju i 

uklone. Konkretno, fokus je na predviđanju osteopenije, ozbiljnog medicinskog stanja koje 

prethodi osteoporozi. Za ovaj zadatak korišten je javno dostupan GRAZPEDWRI-DX skup 

podataka, iz kojeg je odabran podskup rendgenskih snimki pacijenata s osteopenijom koji sadrži 

3731 snimku. Nakon što su identificirane zbunjujuće varijable u korištenom skupu podataka, 

generirane su maske koje zaklanjaju regije slika povezane s tim varijablama. Također, označene 

su "lažne maske" koje se nasumično primjenjuju na ostale slike kako ne bi bile uvedene nove 

zbunjujuće varijable u obliku maski. Okluzijom dijelova slike maskama, modeli su prisiljeni 

fokusirati se na različite dijelove slike koji su relevantni za detekciju zadanog stanja. 

Evaluacija modela pomoću uobičajenih metrika poput F1-mjere, preciznosti, odziva i točnosti, 

pokazala je da su modeli trenirani na slikama bez maski obično nadmašili modele trenirane na 

slikama s maskama. Međutim, nepristrani test s radiolozima pokazao je drugačije rezultate. 

Radiolozi su preferirali modele trenirane na slikama s maskama. U testu su radiolozi birali model 

na temelju regija slika na koje je model fokusiran prilikom predviđanja, pri čemu su regije 

dobivene GRAD-CAM metodom. Rezultati sugeriraju da uklanjanje zbunjujućih varijabli može 

smanjiti performanse modela prema uobičajenim metrikama, ali pruža pouzdaniji uvid u razloge 

koji utječu na predviđanja modela. 

Ovaj rad naglašava važnost interpretabilnosti i performansi konvolucijskih neuronskih mreža iz 

perspektive kliničke prakse, a ne samo znanstvenih istraživanja. 



 

 

 
 

KLJUČNE RIJEČI 

Umjetna inteligencija, ublažavanje pristranosti, obrada slike, interpretabilno donošenje odluka, 

učenje s okluzijom, osteopenija 


